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Influence on crystal nucleation of an order-disorder transition among the subcritical clusters
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Studies of nucleation generally focus on the properties of the critical cluster, but the presence of defects within
the crystal lattice means that the population of nuclei necessarily evolve through a distribution of precritical
clusters with varying degrees of structural disorder on their way to forming a growing stable crystal. To
investigate the role precritical clusters play in nucleation, we develop a simple thermodynamic model for crystal
nucleation in terms of cluster size and the degree of cluster order that allows us to alter the work of forming the
precritical clusters without affecting the properties of the critical cluster. The steady state and transient nucleation
behavior of the system are then studied numerically, for different microscopic ordering kinetics. We find that the
model exhibits a generic order-disorder transition in the precritical clusters. Independent of the types of ordering
kinetics, increasing the accessibility of disordered precritical clusters decreases both the steady state nucleation
rate and the nucleation lag time. Furthermore, the interplay between the free-energy surface and the microscopic
ordering kinetics leads to three distinct nucleation pathways.

DOI: 10.1103/PhysRevE.105.L062602

There is growing evidence to suggest that many sys-
tems crystallize via nonclassical nucleation where fluctuations
other than that of the size of the crystal clusters play a sig-
nificant mechanistic role in the phase change [1–5]. These
additional fluctuations can take the form of crystalline order
[1–3], cluster composition [6], or cluster shape [7], to name
some common examples. A particular class of nonclassical
nucleation is that involving a two-step nucleation [8–13],
which has been observed in a variety of molecular [14–17]
and colloidal systems [18–23]. This process, which involves
the initial formation of a cluster structurally related to ther-
modynamically nearby metastable states that then transform
to the stable state at a larger size, can be regarded as a limiting
case where the fluctuations in the cluster take the form of two
distinguishable states.

Previously [4,12], it has been argued that the coupling
of structural fluctuations with the interfacial free energy in
crystal clusters can lead, quite generically, to an order-disorder
transition as a function of the cluster size. It is unclear, how-
ever, how the existence of such a transition in the precritical
clusters could influence the nucleation rate. This is because
the steady state value of the nucleation rate is typically re-
garded as being entirely determined by the kinetics at the
critical nucleus [24]. This result would appear to leave only
the transient nucleation rate (i.e., on the approach to steady
state) to reflect the ordering process within precritical clus-
ters. In this Letter, we show that the presence of an ordering
transition gives rise to nucleation pathways reminiscent of the
two-step processes and that the inclusion of the additional
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accessible degrees of freedom for the crystal clusters directly
changes both the transient nucleation behavior and the steady
state rate.

Disorder in a crystal cluster will have two generic con-
sequences. One will be to increase the bulk contribution to
free energy of the cluster over that of the perfect crystal.
The second consequence will be to decrease the crystal-liquid
interfacial free energy by diminishing the entropic difference
between the adjacent phases. Here, we introduce a simple
model that captures these two competing effects and describes
the reduced work of forming a cluster as

� f (n, φ) = �G(n, φ)

|�μc|kBT
= �d (1 − φ)n − φn

+ γcσ [1 − (1 − φ)δ]n2/3, (1)

where �G is the Gibbs free energy of forming a cluster of
size n, with a degree of order, φ, and �μc is the difference
in chemical potential between the stable equilibrium crystal
phase and the metastable liquid. When φ = 1.0, the cluster
has the structure of the perfect crystal, but φ is decreased by
the presence of defects characterized by a bulk excess free
energy relative to that of the equilibrium crystal, �d > 0.
While the structural nature of the defect can be interpreted
broadly, it is necessarily distinct from the average order of the
metastable fluid so that a cluster with φ = 0 is structurally
distinct from the fluid and thermodynamically unstable. The
surface contributions to � f are given by the reduced surface
free energy of the perfectly ordered crystal, γc, the relative sur-
face free energy decrease due to disorder, δ, and a geometric
factor, σ , that accounts for the shape of the cluster.

The description of the free energy can be simplified by
characterizing the free-energy landscape using the size of the
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FIG. 1. Free energy, � f (n, φ) [Eq. (1)], using �d = 0.4 and
γcσ = 6.0, for (a) g = 0.40 and (b) g = 0.64. Top: Contour plots of
the free energy as a function n and φ, with n† and n∗ denoted by a red
dashed line and red point, respectively. Bottom: Free-energy profile
as a function of n for disordered clusters, φ = 0.01, and ordered
clusters, φ = 1.0.

crossover cluster n† at which the order-disorder transition
occurs. At small φ, the free energy increases monotonically
with n, indicating disordered clusters are always thermody-
namically unstable with respect to cluster size and will tend
to shrink. The free energy is linear in φ at fixed n. When a
cluster is small, the slope at fixed n, (∂� f /∂φ)n, is positive
because the surface free-energy cost of forming an ordered
solid-fluid interface is significantly greater than that for the
disordered clusters, while the respective gain in bulk free en-
ergy is small. For larger clusters, the greater bulk free-energy
gain of the ordered state begins to dominate and we see a
crossover at a cluster size, n† = (γcσ )3g3 = 27

8 n∗g3, where
the slope becomes negative and the ordered clusters become
more stable. Here, we have introduced a characteristic di-
mension g = δ/(1 + �d ) of the crossover cluster n†. Figure 1
shows the free-energy surface for different values g, along
with the free-energy profiles for the growth of ordered and
disordered clusters. With φ = 1.0, Eq. (1) reduces the usual
expression for classical nucleation theory (CNT), �G(n) =
−�μcn + γcσn2/3, going through a maximum at the critical
size n∗ = 8(γcσ )3/27, and is independent of g.

For g � 2/3, n† occurs before n∗, which is independent
of g, and the lowest free-energy path for nucleation involves
the initial growth of small disordered clusters that then order
at n† to form a perfectly ordered cluster before eventually
going over the nucleation barrier [Figs. 1(a) and 1(b)]. Phe-
nomenologically, the model is similar to two-step nucleation
models where the intermediate metastable phase is higher in
free energy than the mother phase and has low surface tension
[9,13], but the defects included here cannot form a bulk ther-
modynamic phase so the clusters remain thermodynamically
unstable and the key features of the model should be generally
applicable to crystal nucleation. For g � 2/3, n∗ begins to
grow and become more disordered and n† = n∗. We focus on
cases with n† < n∗.

The kinetic evolution of clusters on this free-energy surface
can be characterized in terms of equilibrium reactions for the
growth and decay of a cluster through the addition or loss
of a monomer and for the order-disorder processes. The rate

constants for the growth and decay processes, obtained from
a simple rate theory, are given by [24–26]

κ+
n,φ = n2/3 exp [−�nG(n, φ)/2kBT ],

κ−
n,φ = (n − 1)2/3 exp [�nG(n − 1, φ)/2kBT ], (2)

where �nG(n, φ) = �G(n + 1, φ) − �G(n, φ) and the pref-
actor accounts for the addition and loss of monomers at the
surface. Similarly, the rate constants for the order-disorder
kinetics are

ω+
n,φ = α(n) exp [−�φG(n, φ)/2kBT ],

ω−
n,φ = α(n) exp [�φG(n, φ − �φ)/2kBT ], (3)

where �φG(n, φ) = �G(n, φ + �φ) − �G(n, φ), and α(n)
is a size-dependent prefactor that captures the effects of dif-
ferent ordering mechanisms. The ordering kinetics in a cluster
will depend both on the relationship between the equilibrium
crystal order and the local structure of the defect, and where
structural relaxation can occur. The crystal-fluid interface at
the cluster surface is the most dynamic region of a cluster,
where annealing can occur. If the defects structure is incom-
patible with the crystal structure, the defect must diffuse to
the surface before rearranging in a surface-mediated ordering
(SMO) process, then α(n) ∼ D/n2/3, where the size depen-
dence accounts for the additional time it takes for a defect to
reach the surface in larger clusters and D is the defect diffusion
coefficient. As an alternative, we assume a uniform ordering
(UO) process, where the defects can easily rearrange without
diffusion, has kinetics determined by the free-energy surface
alone and α(n) = C is the size-independent constant.

The time-dependent forward rates of cluster growth and
cluster ordering can be defined for n, φ clusters as

Ig
n,φ,t = κ+

n,φNn,φ,t − κ−
n+1,φNn+1,φ,t ,

Io
n,φ,t = ω+

n,φNn,φ,t − ω−
n,φ+δφNn,φ+δφ,t , (4)

respectively, where Nn,φ,t is the number of clusters with size
and order n, φ at time t . The time evolution of the cluster pop-
ulation can then be described by ∂Nn,φ,t

∂t = Ig
n−1,φ,t − Ig

n,φ,t +
Io
n,φ−δφ,t − Io

n,φ,t , which we solve numerically using discrete
time intervals, δt , following a method developed by Kelton
et al. [26]. Full details of the numerical method can be found
in the Supplemental Material (SM) [27].

The steady state population of clusters, Nn,φ,ss, obtained at
t ≈ 3000 s, is solely a function of the free-energy surface and
is the same for both kinetic models. Figure 2(a) shows that
Nn,φ,ss for the ordered clusters exhibits a decay consistent with
the expectations for the steady state population from a CNT
free-energy model. At φ = 1.0, � f (n, φ) is independent of
g, so the small decrease in the steady state population at the
transition state as g increases is the result of changes in the free
energy at other points on the surface. However, increasing g
directly lowers � f (n, φ) for the disordered clusters, making
these states more accessible, and causing Nn,φ,ss to increase
by many orders of magnitude. Figure 2(b) shows the large
excess of disordered clusters relative to ordered clusters for
intermediate cluster sizes.

We measure the steady state forward growth rate through
the critical cluster, Ig

n∗,φ∗,ss, and because the two-dimensional
nature of free-energy surface means clusters can nucleate
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FIG. 2. Steady state cluster populations, Nn,φ,ss, as a function of n
in the surface-mediated ordering model with different values of g for
(a) ordered clusters, φ = 1.0, and (b) disordered clusters, φ = 0.01.
The dashed line represents the ordered cluster for comparison.

without passing through the critical cluster, we also measure
the total steady state forward rate entering the free-energy
crystal basin, Ic

n,φ,ss, where, for simplicity, the crystal basin
is defined as the rectangular region n > n∗, φ > 0.9. Fig-
ure 3(a) shows that Ig

n∗,φ∗,ss and Ic
n,φ,ss decrease by factors

of approximately 10 and 2, respectively, as g increases. The
effect is independent of the nature of the microscopic kinetics,
although there is a small but growing difference in Ic

n,φ,ss

FIG. 3. (a) (Ig
n∗,φ∗,ss and Ic

n,φ,ss as a function of g for SMO and UO
microscopic ordering kinetics. (b) CNT, equilibrium, and steady state
cluster populations obtained from Eq. (5) compared to the numerical
simulation steady state.

FIG. 4. Relative transient cluster populations for n = 64 sized
clusters as a function of time in the SMO model with different
values of g (similar results for the UO model not shown). (a) Ordered
clusters φ = 1.0. Inset shows τlag as a function of g for uniform and
surface-mediated ordering. (b) Disordered clusters φ = 0.01.

for the SMO and UO kinetics at large g, which suggests it
arises from the changes in the free-energy surface and the
accompanying increase in the accessibility of the disordered
cluster states. One way to understand the rate decrease is to
note that the increased number of precritical clusters reduces
the liquid monomers available for cluster formation. The equi-
librium number of critical clusters is given by (see SM for
derivation)

Neq
n∗,φ∗ = N0 exp[−β�G(n∗, φ∗)], (5)

where N0 = N/(1 + ∑n∗
n=1 n

∫ 1
0 exp[−β�G(n, φ)dφ]) is the

number of liquid monomers. The steady state cluster pop-
ulation is obtained as Nn∗,φ∗,ss ≈ Neq

n∗,φ∗/2 [24]. Figure 3(b)
shows Eq. (5) accurately predicts Nn∗,φ∗,ss. As g increases,
making the disorder clusters more accessible, the integral
over exp[−β�G(n, φ)] increases, leading to a decrease in N0,
while the equilibrium number of clusters predicted by CNT
remains constant. Increasing the accessibility of the disor-
dered cluster states also influences the transient nucleation
behavior, with Fig. 4(a) showing that the transient cluster
population, relative to steady state value, for the critical cluster
grows at earlier times for larger g, leading to lower lag times,
τlag (see inset). To understand this, we follow the transient
cluster populations of the disordered clusters as a function
time. Figure 4(b) shows that Nn,φ,t for large disordered clus-
ters in the SMO model actually overshoot their steady state
populations at times an order of magnitude earlier than the
critical clusters, then decay towards the steady state at longer
timescales. However, for g = 0.2 these large disordered popu-
lations are very small and the cluster population is restricted to
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FIG. 5. Contour plots showing ln Nn,φ,t and vector plots of the forward rates for (a)–(d) SMO with g = 0.2, (e)–(h) SMO with g = 0.64,
and (i)–(l) UO with g = 0.64, at times t ≈ 1, 10, and 25 s and τlag for coulombs, left to right, respectively. The vector components, Ig

n,φ,t and

Io
n,φ,t , are normalized relative to |In,φ,t | =

√
(Ig

n,φ,t )
2 + (Io

n,φ,t )
2.

a narrow channel for small disorder clusters, so clusters order
before they grow [Figs. 5(a)–5(d)] in a CNT-like process.
With g = 0.64, large excess populations of disordered clusters
form at early times that then flow on to other regions of the
free-energy surface through an increased number of accessible
cluster states [Figs. 5(e)–5(h)] to decrease τlag.

Figure 5 also highlights the interplay between the free-
energy surface and the microscopic kinetics in determining
the nature of the nucleation mechanism, which in the present
system yields the three nucleation pathways. With g = 0.2,
both the SMO [Figs. 5(a)–5(d)] and UO models exhibit the
same CNT-like nucleation mechanism because both the free-
energy surface and the microscopic kinetics of the SMO
model favor ordering at small clusters. When g = 0.64, the
free-energy surface favors formation of large disordered clus-
ters, and we see large populations of disordered clusters form
at early times, but the subsequent evolution of the clusters is
determined by the microscopic kinetics. The ordering kinet-
ics is suppressed for larger disordered clusters in the SMO
model because defects must diffuse to the surface before
they can rearrange to the stable state. As a result, we see a
pseudo-two-step nucleation pathway [Figs. 5(e)–5(h)] where
the large disordered clusters do not play a role as direct in-
termediates and the growth rate, Ig

n,φ,t , for these disordered
clusters becomes negative as the clusters shrink to smaller
sizes before ordering. In contrast, the ordering process for the
large disordered clusters in the UO model is determined by
the free-energy surface, which is downhill for n > n†, and
the large disordered cluster tends to order directly towards

crystal in a two-step nucleation process. The more direct route
over the free-energy surface for the disordered clusters in the
UO model may also account for the model’s shorter lag times
compared to those in the SMO model.

The results presented here have been obtained from the
simple model defined in Eq. (1). While we have argued
that the reported behavior is generic, it would be useful to
confirm this with treatment of nucleation based on a more
explicit model that covers a broader range of nucleation phe-
nomena. Iwamatsu [9] models two-step nucleation, where
nucleation proceeds through the initial formation of clusters
of a metastable intermediate phase, as a core-shell nuclei with
the metastable state wetting the stable phase core so that the
mole fraction of the stable state in the cluster, or the size of
the core, becomes an additional degree of freedom. The model
exhibits a phase transition from a cluster rich in the metastable
state to a cluster dominated by the stable state at a particular
n†, similar to the order-disorder transition observed in our
model, and has been shown to provide an accurate descrip-
tion of the nucleation process in an Ising model with nearest
and next-nearest interactions [12]. In the SM, we examine
the nucleation properties of the Iwamatsu model in two case
studies, including its application to the lattice model of Poole
et al. (see Figs. S4–S8). As the stability of the intermediate
phase (g in our model) is increased, making the disordered
clusters more accessible, there is a decrease in N0 and the
number of equilibrium critical clusters. This is the same effect
observed for our model in Fig. 3(b). However, in the Iwa-
matsu model, the thermodynamic state of the system begins to
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directly influence the properties of the critical nucleus causing
the model free energy to decrease. The equilibrium number
of critical clusters, which ultimately gives the nucleation rate,
then includes competing contributions from the expanding
metastable basin and the decreasing free energy of the critical
nucleus [28,29]. Furthermore, a recent numerical study [30]
of two-step vapor-crystal condensation in water, below the
triple point, exhibits transient nucleation behavior similar to
that observed here in Figs. 5(i)–5(l).

In conclusion, we have shown that the inclusion of addi-
tional order parameter(s) describing the clusters coupled with
a free energy that promotes the sampling of this expanded
configuration space will produce, quite generally, a reduction
in the steady state nucleation rate by reducing the amount
of available monomer. Here, we only included one defect
type. Increasing the number of different types of defects and
disorder available to the crystal would expand the number of
available precritical states, which could lead to further slow-
ing of the nucleation rate that has implications for the glass

forming ability of a material. Beyond this generic impact, we
have shown how the details of the ordering kinetics in the
subcritical clusters can significantly alter the transient nu-
cleation kinetics. This is of particular importance in the
analysis of molecular dynamics simulations of crystal nucle-
ation where the transients will dominate over the accessible
observation time. Furthermore, while large disordered clusters
have been observed, for example in protein crystallization
[31,32], its not clear if they are directly involved in the nucle-
ation pathway [33–35]. Our work suggests that the nature of
the microscopic growth and ordering kinetics might provide
insight into the role these large disordered clusters play in
nucleation.
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