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Defect loops in three-dimensional active nematics as active multipoles
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We develop a description of defect loops in three-dimensional active nematics based on a multipole expansion
of the far-field director and show how this leads to a self-dynamics dependent on the loop’s geometric type.
The dipole term leads to active stresses that generate a global self-propulsion for splay and bend loops. The
quadrupole moment is nonzero only for nonplanar loops and generates a net “active torque,” such that defect
loops are both self-motile and self-orienting. Our analysis identifies right- and left-handed twist loops as the
only force- and torque-free geometries, suggesting a mechanism for generating an excess of twist loops. Finally,
we determine the Stokesian flows created by defect loops and describe qualitatively their hydrodynamics.
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Active nematics are a class of materials combining self-
driven, or motile, constituents with the orientational order
of ordinary nematic liquid crystals [1–3]. Examples include
bacterial suspensions [4], bacteria in a liquid-crystal host [5],
cell monolayers [6], tissues [7], and synthetic microtubule
suspensions [8]. The main properties are well established
for two-dimensional active nematics, including their turbulent
dynamics and self-motile topological defects [3]. Interest is
now growing in three-dimensional active nematics, with initial
results on the crossover in behavior of defect lines as a func-
tion of cell gap [9], the onset of the fundamental instability
in channel geometry [10,11], the dynamics and deforma-
tions of droplets [12,13], the characterization and dynamics
of defect loops [14–16], and the statistical properties of the
turbulent state [17]. Defect loops are fundamental objects in
three-dimensional active nematics, analogous to ±1/2 point
defects in two dimensions. They are created spontaneously
and exhibit their own complex dynamics [14,15], which a
local analysis sheds light on by the determination of a self-
propulsion velocity for each point of the loop [16].

The description of defects in two-dimensional active ne-
matics as effective particles with their own dynamics has been
influential [18–24] and it is natural to ask about the extent to
which material properties in three dimensions can similarly
be reduced to an effective description in terms of defect loops.
Although the problem is analogous to that in two dimensions,
there are differences in the topological characterization [25]
and, more significantly, in the geometric diversity of defect
loops. The geometry comes from both the shape of the defect
loop and also the nature of the distortion in the director field
around the loop. Exemplars of this come from cases where
the director distortion through the middle of the loop is of
pure splay, bend, or twist type [15,16] (see Fig. 1). These
have identical properties in passive nematics with one elastic
constant [26] but behave distinctly in active systems, both in
their self-propulsion dynamics [16] and in the abundances of
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different types, with twist defect loops found to be the most
prevalent [15,16].

An initial analysis of active defect loops has been de-
veloped in terms of the local profile and self-propulsion
velocity assigned to each point [16]. Here, we construct a
complementary global description based on an asymptotic
multipole expansion for the director field. We show how the
multipole structure of the active stresses generates a global
self-dynamics for defect loops, involving both translational
and rotational motion. The self-dynamics identifies twist
loops as the only force- and torque-free states, suggesting
a mechanism for the observed bias towards twist loops in
three-dimensional active nematics [15]. Finally, we determine
the fluid flows associated to defect loops; these are long range
with a leading 1/r decay, such that the active hydrodynamics
dominates the interactions between defect loops. We describe
these qualitatively for the stable twist loops.

A minimal model for defect loops in nematics was intro-
duced by Friedel and de Gennes [26], in which the director
rotates within a single plane, which here we take to define the
xz plane, and the director field is

n = cos θ ez + sin θ ex, (1)

with θ increasing by π as you go once around the loop. In the
one-elastic-constant approximation the Frank free energy is
minimized whenever θ is a harmonic function, giving θ = 1

4ω,
where ω is the solid angle function for the loop [16,26–
28]. (In writing this we are taking the far-field orientation
of the director to define the z direction.) This construction is
independent of the shape or relative orientation of the defect
loop and varying the orientation, relative to the plane of the
director field, gives different geometries and local profiles for
the defect loop. We illustrate this for splay, bend, and twist
type loops in Fig. 1.

The global orientation of a defect loop, and hence its
geometric type, is encoded in the structure of the multipole ex-
pansion for its solid angle function. The multipole expansion
is known from applications in magnetostatics [29,30] and vor-
tex hydrodynamics [31]; in the Supplemental Material [32],
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FIG. 1. Defect loops of (a) splay, (b) bend, and (c) twist type. In each case the director field is shown (blue cylinders) on a slice through the
defect loop; the color map shows the structure of the solid angle function. The defect loop is colored according to the torsion of the curve; red
where it is maximally negative and blue where it is maximally positive. The insets give a simplified representation of the defect loops, showing
only the variation of the director field through the center of the loop. The arrows indicate the multipole frame—in green the d3 direction of
the dipole vector and in red the d1 and d2 directions coming from the quadrupole tensor. (d) Comparison of the full solid angle function (right
half) with the multipole approximation (3) (left half); the multipole approximation accurately captures the solid angle from distances only
moderately larger than the loop size.

which includes Ref. [33], we present a brief derivation that
depends only on the defect loop K . Retaining only the dipole
and quadrupole terms the multipole expansion is

ω(x) = 1

2

∫
K

εi jky jdyk ∂i
1

r

− 1

3

∫
K

εikl y jykdyl ∂i∂ j
1

r
+ · · · , (2)

where y is a point of the loop K , r = |x|, and we are
taking the position of the defect loop (x = 0) to be the
location of its “center of mass” (assuming a uniform den-
sity). The dipole moment is a vector whose direction gives
the principal orientation of the defect loop. The quadrupole
moment is a traceless, symmetric rank 2 tensor, giving a
secondary orientation. The expressions in (2) hold for any
shape of defect loop, but for our current focus we calcu-
late them explicitly only for the representative curve y(u) =
(a0 cos u, a0 sin u, 1

6τ0a2
0 sin 2u) corresponding to a loop that

is approximately a circle of radius a0. The parameter τ0 cap-
tures the nonplanarity of the loop and is the amplitude of its
torsion. This yields

ω(x) = πa2
0∇d3

1

r
+ πa4

0τ0

6
∇d1∇d2

1

r
+ · · · , (3)

where {d1, d2, d3} are the Cartesian basis vectors for the
coordinate system adapted to the defect loop. The direc-
tion of the dipole is the basis vector d3 and its magnitude
is the “area bound by the loop.” The quadrupole tensor is
πa4

0τ0

12 [d1d2 + d2d1] and is proportional to τ0 so that it vanishes
for planar loops without torsion. The directions d1, d2 corre-
spond to those of “principal torsion”; specifically, the torsion
is τ ≈ −τ0 cos 2u and takes its maximal negative value along
the directions ±d1 and its maximal positive value along ±d2.
This multipole frame is illustrated in Fig. 1 and used in all
figures.

In an active nematic, the activity imparts additional mate-
rial stresses −ζnn, where ζ is a phenomenological coefficient
that is positive in extensile materials [1–3]. For simplicity
of presentation we will assume ζ > 0 in what follows, as
is the case in the experimental system [15]. On large scales
active nematics are unstable [34] and exhibit a state of active

turbulence [4,35,36]. However, on intermediate scales a de-
scription can be given using the local nematic alignment. This
is what is implied in the description of the local flows and self-
propulsion velocities of topological defects and defect loops
[16,19,20,22,24]. Our analysis similarly applies on these in-
termediate scales. Despite only working at moderate distances
the multipole expansion still accurately captures the structure
of the solid angle function, and hence of the director field.
This is illustrated in Fig. 1(d), where we see good agreement
even at distances only moderately larger than the defect loop
size.

The active stresses generate self-dynamics for the defect
loop, which we characterize first by the contributions that they
make to the force and torque on a spherical volume centered
on the loop. At distances large compared to the size of the
loop (r � a) the active stress can be approximated by

−ζnn = −ζezez − ζω

4
[ezex + exez] + · · · , (4)

and using this the contribution to the force is

F =
∫

−ζnn · dA,

= ζπ2a2
0

3
[(ez · d3)ex + (ex · d3)ez], (5)

with the integral taken over a spherical surface entirely en-
closing, and centered on, the defect loop. This force depends
on the surface over which the integral is taken, since the active
stress is neither compactly supported nor divergence free, but
for the multipole analysis a spherical surface is natural and
the result (5) is then independent of the radius and determined
by the dipole part of the solid angle (3). Similarly, the active
stress contribution to the total torque acting on the defect loop
is given by

T =
∫

x × (−ζnn) · dA,

= −ζπ2a4
0τ0

30
{ex[d1 · (exey + eyex ) · d2]

+ 2ey[d1 · (ezez − exex ) · d2]

− ez[d1 · (eyez + ezey) · d2]}, (6)
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FIG. 2. (a) Active forces and torques experienced by generic
splay, bend, and twist defect loops. The external green and red arrows
indicate the force F (5) and torque T (6), respectively. The torque
depends on the structure of the quadrupole tensor and is shown here
for representative cases. (b) Stable left- and right-handed twist loops.
Note that the principal torsion directions are oppositely oriented in
the two cases.

where again the integral is taken over a spherical surface
enclosing the entire loop and is independent of its radius; it
is determined by the quadrupole part of the solid angle (3).
We reiterate that the torque is proportional to the magnitude
of the torsion of the loop and hence dependent on its nonplanar
shape.

If the defect loop was a rigid body, its self-dynamics would
follow from the resistance matrix relating the force and torque
to the translational and rotational velocities. However, we
can also expect internal dynamics affecting its shape and
form, which in turn control the dipole and quadrupole mo-
ments. Nonetheless, even without knowledge of the internal
dynamics, qualitative features of the global dynamics can be
extracted from the structure of the force and torque and, in
particular, the defect loop geometries for which they vanish.
We consider the force first for the three representative loops
of splay, bend, and twist type.

For the splay loop (d3 = ez) the force is directed along ex;
for the bend loop (d3 = ex) it is directed along ez; and for
the twist loop (d3 = ey) it vanishes. This is illustrated by the
large green arrows in Fig. 2(a). Assuming a leading diagonal
response, we expect the splay loop to move along x, the bend
loop to move along z and the twist loop to remain station-
ary. On dimensional grounds the magnitude of the resistance
should scale as μa0, where μ is the viscosity, so that the defect
loop velocity scales as ζa0/μ and therefore increases linearly
with the size of the defect loop. In Ref. [16] the dynamics
of these three geometries of defect loop were determined by
assigning a local self-propulsion velocity to each point of
the loop on the basis of its local director profile and exactly
the same predictions obtained and confirmed by numerical
solution of the full hydrodynamic equations.

We turn now to the torque (6) and the rotational motion
of the defect loop. The torque is illustrated for the splay,
bend, and twist loops by the large red arrows in Fig. 2(a).
For the splay loop (d3 = ez), taking the general orientation
d1 = cos γ ex + sin γ ey for the quadrupole moment (out-of-
plane buckling) the torque is

T = −ζπ2a4
0τ0

30
[ex cos 2γ + ey sin 2γ ], (7)

and acts to reorient the defect loop from splay type to either
bend or twist type. If we take the frictional resistance to scale
as μa3

0 on dimensional grounds, then the rotational velocity
will scale as ζa0τ0/μ and again increases linearly with the
size of the defect loop. The situation is entirely analogous for
bend loops (d3 = ex), which experience a torque reorienting
them into twist or splay geometry. For twist loops (d3 =
ey), taking a general orientation d1 = cos γ ez + sin γ ex the
torque is

T = ζπ2a4
0τ0

15
sin 2γ ey, (8)

and is purely about ey so that they retain their twist char-
acter. The torque vanishes when γ = 0, π

2 and is restorative
around γ = π

2 , identifying this as a stable orientation for
the defect loop. Of course, there are also twist loops with
d3 = −ey; the torque they experience has a parallel descrip-
tion except that now the stable orientation corresponds to
γ = 0 (d1 parallel to ez). These two stable states differ in
the handedness of the twist rotation in the director passing
through the defect loop; the case d3 = ey corresponds to right-
handed twist (dextro twist loop), while d3 = −ey corresponds
to left-handed twist (laevo twist loop). They are illustrated in
Fig. 2(b).

The existence of stable states and a general drive to
convert other geometries towards these suggests that the self-
dynamics will create a bias in the occurrence of different
types of loops, favoring the stable twist forms. Observations
in experiments and simulations [15] have found a prevalence
of twist loops and it is natural to speculate that the active
dynamics we have described may contribute to explaining
this. In the absence of chirality (as in our analysis) one ex-
pects equal numbers of right- and left-handed twist loops,
although statistics for this from experiment or simulation are
not currently available. However, as the biopolymers that go
into active nematics are chiral it is possible there will be an
imbalance in the proportion the two types.

We now determine the far-field structure of the fluid flows
generated by defect loops and show that they confirm the self-
dynamics described above. To do so, we adopt the strategy of
seeking a solution of the Stokes equations with active nematic
force term given by the director field of a defect loop [16].
These are ∇ · u = 0 and

−∇p + μ∇2u = ζ∇ · (nn) = ζ

4
[ex ∂z + ez ∂x]ω, (9)

taking the linearized form of the active stresses. The multi-
pole expansion for the solid angle (3) is given in terms of
derivatives of the generating monopole 1/r and the resulting
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FIG. 3. The asymptotic flows induced by defect loops. The dipole contribution for each defect loop geometry is shown in the main panel,
with the quadrupole flows shown as insets. For splay (a) and bend (b) loops the dipole and quadrupole flows show directed and rotational
flows, respectively, corresponding to the net active forces and torques experienced by the defect loops. (c) A stably oriented right-handed twist
loop. The stability of this configuration is reflected by the lack of propulsive or rotational flows; the dipole flow is predominantly extensional
as described in the text.

flow is therefore the same derivatives of the fundamental flow
in response to this monopole, which provides a convenient
representation for the solution [37]

p = ζ

4

(
πa2

0∇d3 + πa4
0τ0

6
∇d1∇d2 + · · ·

)
xz

r3
, (10)

u = ζ

16μ

(
πa2

0∇d3 + πa4
0τ0

6
∇d1∇d2 + · · ·

)

×
{

ex

[
z

r
+ x2z

r3

]
+ ey

xyz

r3
+ ez

[
x

r
+ xz2

r3

]}
. (11)

We remark that the fundamental solution—the part in curly
braces in (11)—does not decay with distance; this is the active
flow that would result from a localized (monopole) reorienta-
tion of the director field in an otherwise uniformly aligned
nematic and the nondecay may be viewed as a signature
of the fundamental instability of active nematics [34]. The
flow generated by a defect loop does decay but only slowly,
with the leading dipole contribution falling off as 1/r. These
flows are shown in Fig. 3 for splay, bend, and twist type
loops. For the splay and bend loops there is a clear directed
flow, consistent both with the nonzero force (5) and with the
global self-propulsion of these loops found previously [16].
The insets in Fig. 3 show the quadrupole contribution to the
flow; again, for the splay and bend loops there is a rotational
character consistent with the nonzero torque (6) and indicating
a corresponding rotation of the defect loop. The flow gen-
erated by the stable twist loop [Fig. 3(c)] is predominantly
extensional in the xz plane of the director and shows neither a
directed nor a rotational component. In each Cartesian plane
the flow is normal to the plane and with an alternating sign
in each quadrant. In the xz plane this amounts to the buckling
flow found in Ref. [16]. Along the x and z axes the flow shows
local circulations, while along the y axis it has a hyperbolic
structure.

The multipole flow captures the global self-propulsion and
rotation, however, it does not reproduce the detailed variation
in local self-propulsion velocity at each point of the loop
associated with the varying director profile [16]. This suggests

that a matched asymptotics between the multipole and local
calculations may yield a more complete analysis. Such an ap-
proach should also allow for the back effects of active stresses
and flows on the shape of the defect loop (size a0 and torsion
τ0) to be included, for instance through an overdamped curve
dynamics.

The slow decay (∼1/r) of the active flows generated by
defect loops suggests that hydrodynamic interactions may be
particularly strong and important. The strength can be com-
pared with the elastic dipole-dipole interactions mediated by
the director field [38], which fall off more rapidly as 1/r3.
The leading character of the hydrodynamic interactions is that
each loop is advected and rotated by the flow(s) generated
by the other(s). As an example, we consider qualitatively the
advective interactions between stable twist loops (d3 = ±ey).
The dipole part of the flow (11) is even under x → −x and
has different signs for the right- and left-handed loops. As a
result, two twist loops of the same handedness advect each
other with the same velocity, creating a collective motility
reminiscent of that for pairs of scallops or dumbbells [39,40].
In contrast, two loops with opposite handedness advect each
other with equal but opposite velocities. The integral curves
of the dipole part of (11) form closed loops that do not visit
the origin, suggesting that this contribution to the hydrody-
namic interaction may lead to a periodic motion of two loops
of opposite handedness—a type of “waltzing”—rather than
simple attraction or repulsion, although it is likely that the
actual dynamics will be far less regular than this heuristic
picture and may be significantly affected by any large-scale
turbulence.

We have provided a global description of nematic de-
fect loops in terms of a multipole decomposition of the
director field. This complements the previous local analy-
sis [16] and also shows the importance of nonplanarity of
defect loops in leading to net active torques. We find that
twist loops are the only geometry with vanishing force and
torque, providing a possible explanation of their preponder-
ance in active nematics [15]. There are many immediate
directions for development, including extending the analysis
to more general shapes of defect loops, or multiple loops,
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and connecting this global description with the local analysis
of Ref. [16] to incorporate the change in internal structure,
or shape, of the defect loop to potentially develop a form
of matched asymptotics. Also of interest will be to con-
sider defect loops with nonzero topological charge and in

confinement [14], and the effects of chiral active stresses
[41].

This work was supported by the U.K. EPSRC through
Grant No. EP/N509796/1.
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