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This Letter investigates the transition to synchronization of oscillator ensembles encoded by simplicial
complexes in which pairwise and higher-order coupling weights alter with time through a rate-based adaptive
mechanism inspired by the Hebbian learning rule. These simultaneously evolving disparate adaptive coupling
weights lead to a phenomenon in that the in-phase synchronization is completely obliterated; instead, the an-
tiphase synchronization is originated. In addition, the onsets of antiphase synchronization and desynchronization
are manageable through both dyadic and triadic learning rates. The theoretical validation of these numerical
assessments is delineated thoroughly by employing Ott-Antonsen dimensionality reduction. The framework and
results of the Letter would help understand the underlying synchronization behavior of a range of real-world
systems, such as the brain functions and social systems where interactions evolve with time.
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In the past, the inclusion of higher-order interactions has
not drawn much attention in investigations of the under-
lying dynamics influencing distinct processes taking place
on a variety of complex systems ranging from physical to
biological systems. Nevertheless, many complex systems,
such as the brain networks [1,2] and social interaction net-
works [3,4], have the underlying structure of higher-order
connections, which can be exemplified by simplicial com-
plexes [5,6]. These higher-order interactions can be encoded
by simplicial complexes, which are sets of n-simplexes, filled
cliques of n + 1 nodes, viz., vertices (0-simplex), lines (1-
simplex), triangles (2-simplex), tetrahedrons (3-simplex), etc.
An n-simplicial complex comprises the n-simplexes and the
downward closure (n − 1)-simplexes. Recently, the call for
simplicial complexes in encoding higher-order interactions
in complex systems has led to much interest in untangling
the reciprocation between network geometry and dynamical
processes [7–17]. One phenomenon that naturally arises out
of simplicial complex encoded higher-order interactions is
the abrupt transition to synchronization and desynchroniza-
tion [8,11,18]. Simplicial complexes are a suitable candidate
for capturing the underlying geometry of complex systems;
for instance, they have been used to encode the topological
map of the environment’s geometrical features captured by the
hippocampus [19].

The role of adaptation is instrumental in the growth and
proper functioning of many physical and biological systems.
For instance, there is a widespread perception in neuro-
science that synaptic plasticity among the firing neurons
forms the basis for the learning process and memory stor-
age in the brain [20,21]. It was Hebb [22] who first put
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forth the concept that the simultaneous firing of interact-
ing neurons strengthens the synaptic connectivity between
them [21,23,24]. Spike-timing-dependent plasticity between
firing neurons is one popular approach to understand the im-
pact of synaptic plasticity on various processes transpiring
in the brain [25–27]. Nevertheless, the correlation between
presynaptic and postsynaptic spike timings of the interact-
ing neurons is also encoded in phases of the oscillators to
realize a neural network with synaptic plasticity. Such rate-
based models of synaptic plasticity between the interacting
neurons have divulged riveting structures and processes, for
instance, cluster synchronization [28–33] and abrupt synchro-
nization and desynchronization [34–38] in monolayer and
multilayer networks. In cluster synchronization, a network
is segregated into distinct clusters of nodes in which the
nodes of the same cluster are mutually synchronized; still,
the distinct clusters are not mutually synchronized. A diverse
range of real-world systems exists, such as the cortical brain
network [39], the power grid network [40], consensus dy-
namics [41], and schools of fish and swarms of birds [42],
having cluster synchronization as a key mechanism of their
evolution or functioning. This Letter focuses on the impact
of the simultaneous adaptation of different simplex couplings
on the transition to synchronization and desynchronization
in simplicial complexes. Here, the adaptation of 1-simplex
(dyadic) and 2-simplex (triadic) couplings in a simplicial
complex are inspired by the Hebbian learning rule, i.e., the
dyadic and triadic weights are strengthened (weakened) if the
dyad and triad of the oscillators establishing the respective
connectivities are in phase (out of phase), respectively. Such
a concurrent adaptation in simplicial complexes leads to the
fascinating phenomenon of abrupt antiphase synchronization
while the in-phase synchronization is completely inhibited.
Moreover, the proposed model allows us to determine the
onset of synchronization through the learning parameters. The
rigorous theoretical analysis provided also validates these nu-
merical findings.
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To begin with, the phase evolution of N nondentical Ku-
ramoto oscillators [43] in a simplicial complex under the
impression of the rate-based learning of 1-simplex and 2-
simplex couplings is given by

θ̇i = ωi + λ1

〈k[1]〉
N∑

j=1

Ai j sin(θ j − θi ) + λ2

2!〈k[2]〉
N∑

j,k=1

× Bi jk sin(2θ j − θk − θi ), (1)

where θi(ωi ), i = 1, . . . , N denotes the instantaneous phases
(intrinsic frequencies) of an ith oscillator in the simplicial
complex. λ1 and λ2 are the coupling strengths of 1-simplex
and 2-simplex interactions, respectively. We conserve the
global coupling of the 1-simplex and 2-simplex interactions
in the complex by setting λ = λ1 + λ2, irrespective of their
topology assimilated in A and B. This choice, for any given λ,
allows us to maintain the dominance of one type of simplex
interaction over the other type through a propensity parameter
p ∈ [0, 1] such that λ1 = (1 − p)λ = qλ and λ2 = pλ. The
number of edges or triangles in the complex a node is part
of, is defined as 1- or 2-simplex degrees, i.e., k[1]

i = ∑N
j=1 Ai j

or k[2]
i = 1

2!

∑N
j,k=1 Bi jk , respectively. 〈k[1]〉 and 〈k[2]〉 denote

mean 1- and 2- simplex degrees, respectively. The 1- and 2-
simplex coupling interactions are rescaled by the respective
mean degrees so as to bring the respective effective connec-
tivities on an equal footing and assist p in tuning the relative
strengths of 1- and 2-simplex interactions:

Ȧi j = α cos(θ j − θi ) − μAi j,

Ḃi jk = β cos(2θ j − θk − θi ) − νBi jk . (2)

We construct a 2-simplicial complex by identifying unique
triangles and unique edges closing the triangles from a ran-
dom 1-simplicial network. The collective phase evolution and
weight adaptation of the adaptive 2-simplicial complex are
then governed by Eqs. (1) and (2). To capture the formation
of m-clusters in the network, we define an m-cluster or-
der parameter zm = Rmei�m = 1

N

∑N
j=1 eimθ j , m = 1, 2, where

Rm and �m are the amplitude and argument, respectively,
of the m-cluster order parameter. R1 quantifies one-cluster
synchronization whereas R2 quantifies two-cluster synchro-
nization [44].

We numerically evolve Eqs. (1) and (2) to capture the
microscopic dynamics of 1- and 2-simplex weights and
route to synchronization. All the results presented for a ran-
dom 2-simplicial complex are for N = 103, 〈k[1]〉 = 14, and
〈k[2]〉 = 10 with uniform randomly drawn natural frequencies
ωi ∼ U (−	,	), where 	 = 1. All the initial 1-simplex (2-
simplex) weights are equal and determined by Ai j (0) = 1/L
[Bi jk (0) = 1/T ], where L (T ) are the number of 1-simplex
(2-simplex) connections in the complex. At first, λ is adiabati-
cally increased until a large λ and then adiabatically decreased
until λ = 0. The phase and weight dynamics [Eqs. (1) and (2)]
are then simultaneously simulated on the 2-simplicial com-
plex and the order parameters are computed for each λ.

First, we discuss the nature of the transition when the
dyadic and triadic weights are static, i.e., only Eq. (1) is
evolved, taking Ai j = 1 and Bi jk = 1 into account. Such static
Ai j and Bi jk lead to a first-order (abrupt) transition to in-
phase (single-cluster) synchronization (R1) with associated
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FIG. 1. Antiphase synchronization stems from adaptive cou-
plings: R1 − λ (top row panels) and R2 − λ (bottom row panels)
profiles corresponding to the static couplings (Ai j = 1 and Bi jk = 1)
and the adaptive couplings [Eq. (2)] with learning rates α = β = 1,
respectively, in the random 2-simplicial complex.

hysteresis, as shown in Fig. 1 (top row panels). The dyadic
interactions are known to promote synchronization, while the
triadic interactions are not. Hence when p < 0.5, the domi-
nating dyadic interactions overcome the frustration induced
by the triadic ones and lead to synchronization at relatively
lower values of λ with a rather reduced hysteresis width. The
hysteresis is lost when dyadic interactions are much stronger
than the triadic ones for lower values of p. For p > 0.5, the tri-
adic interactions dominate, leading to significant frustration,
eventually leading to abrupt synchronization at large λ with
broader hysteresis. For p = 1, however λ f → ∞, as the only
interaction type existing among the oscillators, is the triadic
one that does not lead to synchronization for any λ > 0 [8].

Nevertheless, incorporating adaptive 1-simplex and 2-
simplex couplings [Eq. (2)] and the phase evolution [Eq. (1)]
leads to the finding that the in-phase synchronization (R1)
is completely subsided; instead, a first-order antiphase (two-
cluster) synchronization R2 emanates with an increase in λ

[see Fig. 1 (bottom row panels)]. Although the nature of the
abrupt R2 transition for different values of p is analogous to
that of the abrupt R1 transition of the static case, the onset of
the abrupt R2 occurs at relatively larger values of λ than that
of R1. Note that the adaptive pure 2-simplex couplings (when
p = 1) do not lead to either in-phase or antiphase synchro-
nization with an increase in λ [45], whereas the adaptive pure
1-simplex couplings (when p = 0) lead to a second-order an-
tiphase synchronization while in-phase synchronization does
not occur [45]. One remarkable feature of the emergent abrupt
antiphase (R2) synchronization and desynchronization is that
their respective onsets are entirely manageable through the
learning parameters α, β, μ, and ν. Further, the impact of
dyadic and triadic learning rates on the characteristics of the
R2 transition is illustrated in Fig. 2. It unveils that the slower
learning rates α = β prolong the outset of an abrupt transition
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FIG. 2. Slow α = β and β > α prolong the onset of transition:
R2 − λ synchronization profiles for the random 2-simplicial complex
with adaptive couplings when α = β � 1 and β > α (=0.3).

to a higher λ f . In addition, β > α also triggers the abrupt
transition at a relatively higher λ f .

Further, we shed light on the distribution of stationary
phases, the adaptive dyadic and triadic weights in the inco-
herent and coherent states (see left panels of Fig. 3). In the
coherent state for λ > λ f , the stationary Ai j (Bi jk) are segre-
gated into two clusters. Hence the distribution P(Ai j ) [P(Bi jk )]
manifests bimodal peaks at −α/μ (−β/ν) and α/μ (β/ν),
with a few Ai j and Bi jk settling on around 0. The correspond-
ing phases are also set apart into bimodal peaks at a difference
of π , thereby P(θi ) exhibits antiphase clusters. Nevertheless in
the incoherent state for λ < λ f , P(Ai j ) [P(Bi jk )] follows a beta
distribution with peaks at −α/μ (−β/ν) and α/μ (β/ν) and
dips at 0 (0). Moreover, Ȧi j = 0 and Ḃi jk = 0 yield the dyadic
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FIG. 3. Steady-state attributes: Distributions P(Ai j ), P(Bi jk ), and
P(θi ) of the stationary Ai j , Bi jk , and θi, respectively. Also, Ai j and
Bi jk are plotted against 	θi j and 	θi jk , respectively. All the results
are carried out for the random 2-simplicial complex with α = β = 1
and μ = ν = 1.

and triadic stationary weights

Ai j = α

μ
cos(	θi j ), Bi jk = β

ν
cos(	θi jk ), (3)

where 	θi j = (θ j − θi ) and 	θi jk = (2θ j − θk − θi ). Equa-
tions (3) corroborate the numerical revelations of Fig. 3. In
the coherent state, the steady-state extrema Ai j → ±α/μ and
Bi jk → ±β/ν correspond to 	θi j → 0, π and 	θi jk → 0, π ,
respectively. Also the steady-state Ai j → 0 and Bi jk → 0 are
associated with 	θi j → π/2, 3π/2 and 	θi jk → π/2, 3π/2,
respectively. Nevertheless, in the incoherent state, the uni-
formly distributed stationary phases require 	θi j and 	θi jk to
draw the phases from the full range [0, 2π ). Thereby the sta-
tionary Ai j and Bi jk acquire the weights from the full intervals
[−α/μ, α/μ] and [−β/ν, β/ν], respectively.

Ott-Antonsen reduction. To seek analytical insight of the
underlying higher-order dynamics, we turn our focus to an all-
to-all connected 2-simplicial complex modeled as

θ̇i = ωi + qλ

N

N∑
j=1

Ai j sin(θ j − θi ) + pλ

N2

N∑
j,k=1

Bi jk

× sin(2θ j − θk − θi ). (4)

As per Ott et al. [46], the long-time evolution of the order
parameter for a system involving adaptive coupling obeys the
single differential equation achieved using the Ott-Antonsen
ansatz [47] as the precise time dependence of the adap-
tive coupling would not matter in this analytical treatment.
Hence we employ Ott-Antonsen dimensionality reduction to
the steady-state collective dynamics of Eqs. (2) and (4). The
steady-state collective dynamics can only be achieved when
the phases, the dyadic and triadic weights, simultaneously
achieve their respective steady states. The evolution of the
phases can be described, after plugging into the steady-state
expressions for Ai j and Bi jk , as

θ̇i = ωi + aqλ

2N

N∑
j=1

sin(2θ j − 2θi ) + bpλ

2N2

N∑
j,k=1

× sin(4θ j − 2θk − 2θi ), (5)

where a = α/μ and b = β/ν. Note that the footprints of both
Ai j and Bi jk are assimilated into Eq. (5) in the form of higher
modes of phases in the attractive dyadic and triadic couplings,
respectively. The phase evolution can be reexpressed further
in terms of the m-cluster order parameters

θ̇i = ωi + 1
4i [He−2iθ − H∗e2iθ ],

H = aqλz2 + bpλz∗
2z4. (6)

Considering the system in the continuum limit N → ∞, the
collective state of the oscillators at a time t can be de-
lineated by a continuous density function ρ(θ, ω, t ) such
that ρ(θ, ω, t )dθdω denotes the fraction of oscillators with
their phases and intrinsic frequencies lying in the ranges
of [θ, θ + dθ ] and [ω,ω + dω], respectively. In addition,
the density function ρ(θ, ω, t ) satisfies the normalization
condition

∫ 2π

0 ρ(θ, ω, t )dθ = 1 and the continuity equa-
tion ∂tρ(θ, ω, t ) + ∂θ [ρ(θ, ω, t ) v(θ, ω, t )] = 0 as the num-
ber of oscillators remains conserved. Also, the m-cluster order
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parameter can be expressed as zm = ∫∫
dωdθeimθρ(θ, ω, t ).

Since ρ(θ, ω, t ) is a 2π -periodic function with respect to θ , it
can be expressed as a Fourier expansion of the form

ρ(θ, ω, t ) = 1

2π

[
1 +

{ ∞∑
n=1

fn(ω, t )einθ + c.c.

}]
, (7)

where c.c. stands for the complex conjugate of the preceding
terms. Ott-Antonsen pointed out that all Fourier coefficients
can be classified to Poisson kernels of the form fn(ω, t ) =
[ f (ω, t )]n, where | f (ω, t )| 	 1 is necessary for the conver-
gence of the series. After plugging into the expressions for
v = θ̇ [Eq. (6)] and f (θ, ω, t ) [Eq. (7)], all Fourier modes
then reduce to the same constraint for f , satisfying the single
complex-valued differential equation

∂ f 2

∂t
+ 2iω f 2 + 1

2
[H f 4 − H∗] = 0, (8)

zm = G f ∗m =
∫ ∞

−∞
dωg(ω) f ∗m(ω, t ), m = 2, 4, (9)

where the integral operator G ≡ ∫ ∞
−∞ dωg(ω).

Stability of the incoherent state. The trivial solution
f (ω, t ) = 0 always exists for Eq. (8) that corresponds to
an incoherent state ρ(θ, ω, t ) = 1

2π
in Eq. (7). Linearizing

Eq. (8) around f (ω, t ) = 0, we obtain the following linear
equation for the perturbed density η(ω, t ):

∂η2

∂t
+ 2iωη2 = aqλ

2
Gη2. (10)

Let γ be the eigenvalues of Eq. (10) such that η(ω, t ) =
η0(ω) eγ t . Then, employing the integral operator G on both
sides of Eq. (10) reduces it to

1

λ
= aq

4

∫ ∞

−∞
dω

g(ω)

γ + iω
. (11)

Since Re[γ ] = 0 at the critical coupling strength λ = λ f , the
incoherent state loses stability for γ = 0 + ε′ + iy, where 0 <

ε′ 	 1. Equation (11) now reads as

1

λ
= aq

4
lim
ε′→0

∫ ∞

−∞
dω

g(ω)

ε′ + iω + iy
. (12)

Solving Eq. (12) for g(ω) = 	
π[ω2+	2] results in

λ f = 4	

aq
= 4μ	

α(1 − p)
. (13)

Equation (13) unveils that the transition to synchronization is
solely caused by the presence of dyadic interactions through
parameter p and dyadic rates α and μ and the triadic inter-
actions do not play any role in the onset of synchronization.
Also, p = 1 yields λ f → ∞, i.e., the incoherence does not
lose stability for any λ > 0 [45].

Solution of coherence. The evolution of the order parame-
ter R2 can be worked out for a Lorentzian distribution with
mean ω0 and half width 	, i.e., g(ω) = 	

π[(ω−ω0 )2+	2] . The
order parameter in Eq. (8) can be derived using Cauchy’s
residue theorem by closing the contour to an infinite-radius
semicircle in the negative-half complex ω plane, resulting
in z2 = f ∗2(ω0 − i	, t ) and z4 = f ∗4(ω0 − i	, t ) = z2

2. Next,

FIG. 4. Analytical vs numerical corroboration of R2: R2 − λ pro-
files of the all-to-all connected 2-simplicial complex simulated for
Lorentzian g(ω) with 	 = 0.1, N = 104, μ = 1, ν = 1. Left panel:
Different values of p when α = β = 1. Right panel: Different values
of α = β when p = 0.9. The solid and dashed lines are the respective
theoretical traces of R+

2 (stable) and R−
2 (unstable) solutions obtained

using Eq. (18). The dotted lines are analytical predictions [Eq. (13)]
of λ f .

assessing Eq. (8) at ω = ω0 − i	 and then taking a complex
conjugate, one gets

2ż2 − 4iω0z2 + 4	z2 + λz2
2[aqz∗

2 + bpz2z∗
4]

− λ[aqz2 + bpz∗
2z4] = 0. (14)

Next, inserting z2 = R2ei�2 and then equating the real and
imaginary parts on both sides of the equation gives

2Ṙ2 + 4	R2 + λR2
(
R2

2 − 1
)(

aq + bpR2
2

) = 0, (15)

�̇2 = 2ω0. (16)

Hence the dynamics of R2 and �2 are decoupled. �2 con-
stantly evolves and is equal to twice the mean of g(ω). The
steady-state evolution of Eq. (15) yields an equation that is
cubic in R2. Thus, R2 = 0 is always an equilibrium whose
stability is not affected by the presence of a higher-order inter-
action. The nonlinear terms stemming from the higher-order
interaction in

4	

λ
= −bpR4

2 + (bp − aq)R2
2 + aq (17)

may give rise to one or two synchronous solutions with the
following positive roots for R2,

R±
2 =

√√√√bp − aq ±
√

(bp − aq)2 + 4bp
(
aq − 4	

λ

)
2bp

. (18)

R+
2 (R−

2 ) represents a stable (an unstable) branch of a syn-
chronous state. The validation of analytical predictions for the
order parameter R2 [Eq. (18)] with its numerical estimations
for different sets of parameters is presented in Fig. 4. In the
case of a forward transition, in the incoherent state R2 = 0
until λ = λ f = 4	

aq is reached. At λ = λ f , R2 abruptly jumps

to R+
2 (λ f ) =

√
1 − aq

bp [while R−
2 (λ f )= 0] and the incoherent

state (R2 = 0) loses its stability through subcritical pitchfork
bifurcation. Nevertheless, for the set of parameters {a, b, p}
for which R+

2 (λ f ) =
√

1 − aq
bp = 0 at λ = λ f , the incoherent
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FIG. 5. Bistability domains: Phase diagrams in the (α − β ), (p −
α), and (p − β ) planes depicting the regions of bistability for the all-
to-all connected 2-simplicial complex simulated for Lorentzian g(ω);
	 = 0.1, N = 103, μ = 1, and ν = 1. The dotted region manifests
nonbistability.

state (R2 = 0) loses its stability through supercritical pitchfork
bifurcation and the transition to synchronization takes place
via a second-order route.

In the case of a backward transition, R−
2 (saddle point) and

R+
2 (node point) exist in the hysteresis region. As soon as

the backward critical coupling strength λ = λb is reached, R+
2

and R−
2 collide and annihilate each other through saddle-node

bifurcation. Thus the stability of the coherent state is totally
destroyed and the only remaining solution is R2 = 0. Hence
the constraint dλ/dR2 = 0 is satisfied at λ = λb, which leads

to R2(λb) =
√

1
2 (1 − aq

bp ) from Eq. (17). Substituting the value

of R2 back into Eq. (17) supplies us with

λb = 16	bp

[aq + bp]2 = 16	pβνμ2

[αν(1 − p) + βμp]2 . (19)

For that matter, the outset of abrupt desynchronization is char-
acterized by both the dyadic and triadic learning rates.

In Fig. 5, we provide a broad picture of the regions of
bistability and nonbistability stretched over the (α − β ), (p −
α), and (p − β ) planes [48]. The regions illustrated by the
slanted green lines represent the bistability region. aq �= bp
and aq < bp are necessary for the existence of bistable solu-
tions exhibiting a hysteresis. The yellow dotted region depicts
the nonbistable region corresponding to aq = bp [49]. For
aq = bp, Eqs. (13) and (19) give λ f = λb, R+

2 (λ f ) = 0, and
R2(λb) = 0, which conform to a second-order transition to
synchronization.

Conclusion. In this Letter, the nature of the transition to
synchronization is explored on 2-simplicial complexes where
the triadic couplings and the downward closing dyadic cou-
plings evolve in time according to the respective rate-based
plasticity inspired by the Hebbian learning rule. Strikingly,
such coevolving dyadic and triadic couplings completely
diminish single-cluster synchronization and instead trigger
two-cluster synchronization in simplicial complexes. It is
unveiled that the onset of antiphase synchronization only
depends on the dyadic interaction (learning rate) and the
higher-order interaction does not play a role. On the other
hand, both dyadic and triadic interactions (learning rates)
affect the onset of antiphase desynchronization. Further, the
numerical findings related to the antiphase order parame-
ter and the forward and backward critical transition points
have been validated with the respective analytical predic-
tions by employing the Ott-Antonsen ansatz. It is also shown
that the steady dyadic (triadic) weights in the synchronous
state form two clusters of equal and opposite magnitudes
along the lines of the oscillators forming the antiphase
clusters.

The simplicial structures involving the simultaneous adap-
tation of pairwise and higher-order interactions would help
elucidate the underlying mechanism of cluster formation in
the brain functional networks, such as antiphase patterns in
the cortical neural network.

S.J. acknowledges support through DST POWER Grant
No. SERB/F/9035/2021-2022.
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