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A theorem that establishes a one-to-one relation between zero-temperature static spin-spin correlators and
coupling constants for a general class of quantum spin Hamiltonians bilinear in the spin operators has been
recently established by Quintanilla, using an argument in the spirit of the Hohenberg-Kohn theorem in density
functional theory. Quintanilla’s theorem gives a firm theoretical foundation to quantum spin Hamiltonian
learning using spin structure factors as input data. Here we extend the validity of the theorem in two directions.
First, following the same approach as Mermin, the proof is extended to the case of finite-temperature spin
structure factors, thus ensuring that the application of this theorem to experimental data is sound. Second, we
note that this theorem applies to all types of Hamiltonians expressed as sums of bilinear operators, so that it can
also relate the density-density correlators to the Coulomb matrix elements for interacting electrons in the lowest
Landau level.
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Understanding the wonders and complexities of the micro-
scopic world requires tackling the notoriously hard quantum
many-body problem. Given the ubiquity of approximate meth-
ods in the state-of-the-art research on quantum many-body
phenomena, the existence of general theorems [1–4] is es-
sential for setting such approximations on firm theoretical
ground.

The present Letter follows a recent work by Quintanilla
[5], which establishes a theorem valid for a general class of
bilinear quantum spin Hamiltonians,

Ĥ =
∑

i, j,α,β

Jα,β
i, j Ŝα

i Ŝβ
j , (1)

where Ŝα
i is the α = x, y, z component of a spin operator

acting on site i in an arbitrary lattice, and Jα,β
i, j are the spin

coupling constants. The general Hamiltonian stated in Eq. (1)
encompasses most physically relevant types of interactions,
notably Heisenberg [6], dipolar, Ising [7], Dzyaloshinskii-
Moriya [8,9] and Kitaev [10] interactions. As a result, a
wide class of canonical quantum spin models (e.g., Ising [7],
Heisenberg [6], XXZ [11], Majumdar-Ghosh [12], Shastry-
Sutherland [13], Haldane [14], Kitaev [10]) are particular
cases of Eq. (1). It should be noted, however, that this class of
Hamiltonians does not cover important quantum spin models
such as the toric code [15] or the bilinear-biquadratic Heisen-
berg model (including the AKLT model [16]), which is known
to describe some physical systems [17].

The theorem proven by Quintanilla [5] for this class
of bilinear spin Hamiltonians asserts that there exists a
one-to-one correspondence between the exchange constants
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Jα,β
i, j and the zero-temperature correlators

ρ
α,β
i, j (T = 0) = 〈�0|Ŝα

i Ŝβ
j |�0〉 (2)

for a physical system represented by the wave function |�0〉,
which corresponds to the nondegenerate [18] ground state of
a Hamiltonian of the form given in Eq. (1). The proof of
Quintanilla’s theorem runs parallel to that of the Hohenberg-
Kohn theorem [1] for density functional theory. Interestingly,
Mermin generalized [2] the Hohenberg-Kohn theorem to
finite temperature, which motivates us to look for a finite-
temperature generalization of Quintanilla’s theorem as well.

In addition to the aforementioned theorem on the bijection
between the exchange constants Jα,β

i, j and the zero-temperature
spin-spin correlators ρ

α,β
i, j (T = 0), Quintanilla also proved [5]

a second theorem that establishes a one-to-one relation be-
tween ρ

α,β
i, j (T = 0) and the ground state wave function |�0〉.

This Letter will focus mainly on the first theorem, given
its potential relevance within the context of the Hamiltonian
learning problem for both the study of complex quantum
condensed-matter systems and the verification of quantum
technologies (cf. [19] and references therein). In any case, we
will also briefly discuss the extension of this second theorem
to finite temperature below.

Discussion. Before proceeding to the extension of Quin-
tanilla’s first theorem to the case of finite temperature, we
begin by introducing some relevant concepts and notations.
The thermal spin correlators at temperature T are defined as

ρ
α,β
i, j (Ŵ ) := Tr

(
Ŵ Ŝα

i Ŝβ
j

)
, (3)

where Ŵ = ∑
n

e−βEn

Z |�n〉〈�n| is the density operator, Z =∑
n e−βEn is the partition function, {En} and {|�n〉} are the

eigenenergies and eigenstates of a Hamiltonian Ĥ of the form
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given in Eq. (1), and β−1 = kBT . Expanding Eq. (3) in the
Hamiltonian eigenbasis gives

ρ
α,β
i, j (Ŵ ) = 1

Z

∑

n

e−βEn〈�n|Ŝα
i Ŝβ

j |�n〉. (4)

Setting T = 0, or β → ∞, in Eq. (4) results in Eq. (2), as ex-
pected. Spin-spin correlators can be measured experimentally
using neutron diffraction [20,21].

In the following we show that the mapping between the
coupling constants Jα,β

i, j and the finite-temperature correlators
[cf. Eq. (4)] is bijective. We restrict ourselves to finite temper-
atures, since for T → ∞ all but local 〈Ŝz

i Ŝz
i 〉 correlators vanish

(cf. Appendix).
The proof follows in a similar vein to the zero-temperature

one by Quintanilla [5], but the Rayleigh-Ritz variational prin-
ciple is replaced by the Gibbs-Bogoliubov inequality [2,22]
for the Helmholtz free energy. Let a system described by a
Hamiltonian Ĥ be in contact with a thermal bath at tempera-
ture T . The Helmholtz free energy of such system is

F (Ŵ ) = −kBT ln Z = 〈Ĥ〉Ŵ − T S[Ŵ ], (5)

where 〈Ô〉Ŵ = Tr(Ŵ Ô) = 1
Z

∑
n e−βEn〈�n|Ô|�n〉 is the ex-

pectation value of some operator Ô at finite temperature

and S[Ŵ ] = −kBTr(Ŵ ln Ŵ ) is the von Neumann entropy.
The Gibbs-Bogoliubov inequality sets an upper bound on the
Helmholtz free energy,

F (Ŵ ) � 〈Ĥ〉Ŵ ′ − T S[Ŵ ′], (6)

for any positive semidefinite operator Ŵ ′ of appropriate di-
mensionality. The equality in Eq. (6) only occurs either when
Ŵ = Ŵ ′ or T → ∞. A proof of the Gibbs-Bogoliubov in-
equality can be found in [2].

The proof of Quintanilla’s first theorem at finite temper-
ature proceeds by reductio ad absurdum. We consider two
different Hamiltonians of the form given in Eq. (1), Ĥ and Ĥ ′.
Their corresponding coupling constants, Jα,β

i j and J ′α,β
i j , cannot

therefore be all equal in pairs. Since the coupling constants
determine the energies and eigenstates, they determine Ŵ and
Ŵ ′ as well, the equilibrium density operators for Ĥ and Ĥ ′, re-
spectively. We then assume that both Ŵ and Ŵ ′ are associated
with the same finite-temperature spin-spin correlators,

ρ
α,β
i, j [Ŵ ] = ρ

α,β
i, j [Ŵ ′], (7)

for all i, j, α, β. We can use the Gibbs-Bogoliubov inequality
to write the following expression for the Helmoltz free energy
of the unprimed system:

F (Ŵ ) =
∑

i, j,α,β

Jα,β
i j ρ

α,β
i, j [Ŵ ] − T S[Ŵ ] �

∑

i, j,α,β

Jα,β
i j ρ

α,β
i, j [Ŵ ′] − T S[Ŵ ′] =

=
∑

i, j,α,β

(
Jα,β

i j − J ′α,β
i j

)
ρ

α,β
i, j [Ŵ ′] + F (Ŵ ′). (8)

We can now exchange the roles of Ŵ and Ŵ ′ to obtain an identical expression for the primed system:

F [Ŵ ′] �
∑

i, j,α,β

(
J ′α,β

i j − Jα,β
i j

)
ρ

α,β
i, j [Ŵ ] + F (Ŵ ). (9)

Summing Eqs. (8) and (9) yields

F [Ŵ ] + F [Ŵ ′] �
∑

i, j,α,β

(
J ′α,β

i j − Jα,β
i j

)(
ρ

α,β
i, j [Ŵ ] − ρ

α,β
i, j [Ŵ ′]

) + F [Ŵ ] + F [Ŵ ′]. (10)

Using Eq. (7) turns Eq. (10) into F [Ŵ ] + F [Ŵ ′] � F [Ŵ ] +
F [Ŵ ′]. The equality holds only in the two trivial limits of
infinite temperature or Ĥ = Ĥ ′. For finite temperature and
Ĥ �= Ĥ ′, we can replace the symbol � by a strict inequality,
thus arriving at a contradiction: F [Ŵ ] + F [Ŵ ′] < F [Ŵ ] +
F [Ŵ ′]. It follows, then, that the initial assumption stated in
Eq. (7) must be false, in which case we can conclude that
the finite-temperature correlators are single-valued functions
ρ

α,β
i j [Ŵ ] of the equilibrium density operator Ŵ , which is, in

turn, uniquely determined by the coupling constants {Jα,β
i j } of

the model, so that ρ
α,β
i j (Jα,β

i j ) is injective.

Proving the injectivity of ρ
α,β
i j (Jα,β

i j ) suffices to show it
is bijective (i.e., a one-to-one mapping) since ρ

α,β
i j (Jα,β

i j ) is
surjective by construction, assuming, of course, that the phys-
ical system under study can be described by a Hamiltonian
of the form given in Eq. (1). Indeed, given a model defined
by a set of coupling parameters {Jα,β

i j }, we can always deter-

mine, at least in principle, the respective equilibrium density
operator Ŵ , which can then be used to compute the finite-
temperature spin-spin correlators {ρα,β

i j } per Eq. (4). This is
entirely analogous to the trivial surjectivity of the mapping
of the ground state wave functions onto the set of number
densities in the proof of the Hohenberg-Kohn theorem [23]:
every number density must be associated with a given wave
function. Interestingly, the one-to-one relation between the
ground state wave function and the external potential in spin-
density-functional theory is not guaranteed to hold [24].

The final step amounts to recognizing that bijectivity is
a sufficient condition for a function to be invertible. Hence,
the coupling constants {Jα,β

i j } are themselves single-valued
functions of the finite-temperature correlators {ρα,β

i j }, which
concludes the generalization of Quintanilla’s first theorem to
the case of finite temperature. Importantly, this result involves
not only the ground state manifold (regardless of its degener-
acy) but excited states as well.
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As in the case of the Hohenberg-Kohn theorem, the present
theorem does not give a systematic method to obtain the
functional that relates the coupling constants Jα,β

i j to the
correlators ρ

α,β
i j . Hence, Quintanilla’s first theorem does not

produce a practical short-term advantage to tackle quantum
spin Hamiltonians. Nevertheless, this theorem does provide
a solid theoretical basis for a novel approach to the important
problem of determining the parent Hamiltonian of experimen-
tal systems.

Artificial intelligence methods have been used to infer spin
couplings out of experimentally determined spin correlators
in spin-ice compounds [25]. The process includes the training
of an artificial neural network (ANN) based on classical spin
model simulations. In a similar vein, ANNs have been trained
to infer spin couplings out of specific heat measurements [26].
We note that our finite-temperature theorem provides not only
a firm foundation but also a practical advantage to infer spin
couplings out of spin correlators, as it opens the possibility of
training an ANN with simulations of quantum spin models.
As noted by Yu et al. [26], this process is actually simplified
at large temperatures. The computational resources needed to
carry out exact diagonalizations of spin Hamiltonians scale
exponentially with the system size. At high temperatures,
however, the spatial range of spin correlators is expected to
be shorter, which provides a natural cut-off for the size of
the simulation cells [26]. We also note that the training could
be supported by digital quantum simulations of quantum spin
models [27] on noisy intermediate-scale quantum computers
[28] using hybrid variational algorithms [29]. This approach
may be used to accurately determine the spin Hamiltonian
of Kitaev materials, such as RuCl3 [30,31]. Likewise, it may
assist in the characterization of state-of-the-art quantum tech-
nologies [19,32–35].

For the sake of completeness, we also discuss the extension
of Quintanilla’s second theorem to nonzero temperature. The
original version at T = 0 states that the ground state wave
function |�0〉 is uniquely determined by the spin-spin corre-
lators ρ

α,β
i, j (T = 0). We note that this second theorem is not a

mere corollary of the first, as the search for the ground state
wave function, given the spin-spin correlators, is carried out
in a Hilbert space encompassing all spin states of appropriate
dimensionality, including those that are not eigenstates of a
bilinear Hamiltonian of the form stated in Eq. (1).

At T �= 0, the relevant physical description of the system
is in terms of the density operator Ŵ = ∑

n
e−βEn

Z |�n〉〈�n|.
Following the argument of the proof at T = 0, we consider
a given Hamiltonian of the form defined in Eq. (1), the equi-
librium state of which is determined by the density operator
Ŵ at some temperature T . By hypothesis, we assume there
is some other density operator Ŵ ′ �= Ŵ such that both are
associated with the same spin-spin correlators, as in Eq. (7).
The Helmholtz free energy of the system considered can be
expressed as

F [Ŵ ] =
∑

i, j,α,β

Jα,β
i j ρ

α,β
i, j [Ŵ ] − T S[Ŵ ] <

< F [Ŵ ′] =
∑

i, j,α,β

Jα,β
i j ρ

α,β
i, j [Ŵ ′] − T S[Ŵ ′], (11)

where the Gibbs-Bogoliubov inequality was used in the sec-
ond step. As discussed above, a strict inequality can be
assumed if one ignores the trivial case of T = ∞. Using
Eq. (7) to simplify the inequality above gives T S[Ŵ ] >

T S[Ŵ ′]. Setting T = 0, we retrieve the result previously de-
rived by Quintanilla [5], since we arrive at a contradiction
(0 > 0).

For T > 0, however, the entropic term does not vanish.
Hence, a contradiction can be avoided if the von Neumann
entropy of Ŵ ′ is lower than that of Ŵ . The translation of Quin-
tanilla’s second theorem to finite temperature is therefore a
weaker version of the zero-temperature counterpart: It merely
asserts that, having obtained a density operator estimate Ŵ
from a machine-learning model that fits the experimentally-
obtained finite-temperature two-point correlators ρ

α,β
i, j , there

is no other density operator Ŵ ′ of equal or greater entropy
that fits the data as well as Ŵ . In other words, the system is
only guaranteed not to be more disordered than the current
prediction.

Returning to the first theorem, we note that, in all of the
above we never make use of the fact that Ŝα

i are spin operators.
Hence, the theorem applies to any Hamiltonian that can be
expressed as a bilinear sum of operators,

Ĥ =
∑

a,b

Ja,bÔaÔb, (12)

where Ja,b describe couplings between operators Ôa and Ôb,
with a and b general labels. For example, Hamiltonian (12)
includes the relevant case of interacting electrons that occupy
a flat band or a single Landau level, with Ô being the elec-
tronic density operator and Ja,b being the Coulomb interaction
projected onto the lowest Landau level [36].

The first theorem stated and proven above can be rephrased
as follows. The couplings Ja,b are a single-valued functional of
the thermal correlators:

ρa,b = 1

Z

∑

n

e−βEn〈�n|ÔaÔb|�n〉. (13)

Thus, the theorem establishes a one-to-one correspondence
between the finite-temperature density-density correlations
and the representation of the Coulomb matrix elements in the
lowest Landau level. Experimentally, the scattering of charged
particles is a natural probe of density-density correlation func-
tions [37], but in practice it is problematic in the presence of
strong magnetic fields. Still, density-density correlators can
be probed in the case of atomic quantum gases, for which
synthetic magnetic fields can be created [38]. We note that,
most certainly, the functional relation between density-density
correlators and Coulomb matrix elements will include an
explicit dependence on the number of electrons in the system,
as it is well known that the electronic properties of the two-
dimensional electron gas in the lowest Landau level depend
strongly on the filling factor [39].

The Hohenberg-Kohn theorem [1], and Mermin’s finite-
temperature extension [2], became extremely useful when
approximate versions of the density functional, such as the
Kohm-Sham local density approximation [40], were devel-
oped. We hope that this paper will inspire the quest for such
approximate functionals within the context of quantum spin
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Hamiltonian learning based on spin structure factors. We also
note the existence of a theorem relating the ground state en-
ergy to the magnetization density in Heisenberg models [41];
its connection with our work remains to be explored.

Conclusion. We have demonstrated a theorem that estab-
lishes a one-to-one relation between interaction couplings
and finite-temperature correlators in a general class of bi-
linear Hamiltonians. Our work generalizes a recent result of
Quintanilla [5] in two ways. First, our theorem establishes
the validity of Quintanilla’s result for arbitrary temperatures.
Second, we note that the theorem is applicable beyond the
realm of spin systems. Our theorem puts the recent work that
uses artificial intelligence to determine spin couplings [25] on
firm theoretical footing and may provide a route to settle dis-
putes about the nature of spin couplings in quantum materials,
such as Kitaev materials, and to characterize state-of-the-art
quantum technologies.
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APPENDIX: INFINITE-TEMPERATURE SPIN-SPIN
CORRELATORS

The spin-spin correlators ρ
αβ
i j (Ŵ ) at a nonzero temperature

T are given by Eq. (4). Setting T → ∞, or β → 0, gives
e−βEn = 1 for all eigenenergies {En}, in which case

ρ
αβ
i j (T → ∞) = 1

Z

∑

n

〈�n|Ŝα
i Ŝβ

j |�n〉 ≡ 1

Z
Tr

(
Ŝα

i Ŝβ
j

)
.

Being a scalar, ρ
αβ
i j (T → ∞) is invariant under a change of

basis. Since the density operator Ŵ now only contributes a
constant prefactor 1

Z , we can replace the Hamiltonian eigen-
basis {|�n〉} with the product basis {⊗i |Si〉}, where we define
the quantization axis such that Ŝz

i |Si〉 = Si|Si〉 at every site i,
with Si ∈ {−S,−S + 1, ...,−1, 0, 1, ..., S − 1, S} for a local
spin-S. Computing the trace in this product basis gives

ρ
αβ
i j (T → ∞) = δαzδβz

(2S + 1)2

S∑

Si,S j=−S

〈Si|Ŝα
i |Si〉〈S j |Ŝβ

j |S j〉,

where the Kronecker deltas follow from the fact that the only
spin component with nonzero entries along the diagonal is Ŝz,
so for any choice other than (α, β ) = (z, z) the correlator van-
ishes. The prefactor results from the fact that the trivial sums
over the remaining N − 2 spins-S give a factor (2S + 1)N−2,
which cancels with the partition function Z = (2S + 1)N .

Considering, for the moment, the nonlocal case i �= j, we
realize that for every configuration where 〈Si|Ŝz

i |Si〉〈S j |Ŝz
j |S j〉

takes a value c, there is another one taking the symmetric
value −c. In other words, any term 〈S|Ŝz

i |S〉〈S′|Ŝz
j |S′〉 is can-

celed out by another term 〈−S|Ŝz
i | − S〉〈S′|Ŝz

j |S′〉. Hence, all
nonlocal spin-spin correlators vanish at infinite temperature:

ρ
αβ
i j (T → ∞) = δi jδαzδβz

2S + 1

S∑

Si=−S

〈Si|(Ŝz
i )2|Si〉.

The remaining sum can be computed explicitly:
∑S

Si=−S S2
i =

S(S+1)(2S+1)
3 . Replacing in the expression above yields

ρ
αβ
i j (T → ∞) = δi jδαzδβz

S(S + 1)

3
.

Of course, this result is valid for any Hamiltonian, since nei-
ther the eigenspectrum nor the eigenstates appear in any step
of this calculation at infinite temperature.
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