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Streamer formation processes trigger intense x-ray and high-frequency radio emissions in a
high-voltage discharge
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For a laboratory discharge initiated in a long air gap by a microsecond megavolt pulse, we simultaneously
register wideband high-frequency microwave and hard-x-ray emissions and thoroughly analyze the temporal
relationship of the emissions depending on the discharge evolution. The temporal structure of microwave
radiation is found to consist of numerous short intense bursts with high-frequency components. We directly
show that x-ray and microwave emissions can appear almost synchronously in the discharge but only when a
complex net of countless plasma channels forms and spans the entire discharge gap. The channel formation is
closely related to the intense development of multiple streamers.
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I. INTRODUCTION

The origin of the intense microwave and x-ray emis-
sions during the development of laboratory and atmospheric
discharges is still poorly understood while being highly im-
portant in advancing nuclear physics, astrophysics, and gas
discharge physics [1–6]. The modern studies associate the
sources of high-energy and microwave emissions with local
areas wherein the head-on collisions of counterstreamers oc-
cur [7]. Upon collision, the counterstreamers are assumed to
produce a region with enhanced electric field, where electrons
can be accelerated to high energies, as well as trigger the
microwave emission having frequencies above 1 GHz due to
very rapid current variations [8,9]. This issue, however, is still
the subject of discussion. Theoretical investigations indicate
that the head-on collision of counterstreamers collapses dur-
ing a time period much shorter than 1 ns, thereby significant
x-ray emissions are unlikely to be produced [10–12]. On
the contrary, the results of [13] pointed to the existence of
potential or ionization waves propagating along the streamer
channels from the zone of the streamer collision. Such waves
are capable of increasing the conductivity of the streamer
channels and producing electric fields in the counterregion
large enough to accelerate electrons to relativistic energies.
Recently, in addition to the bremsstrahlung of high-energy
runaway electrons [14], a synchrotron radiation mechanism
was proposed in [15]. According to this mechanism, x-ray,
γ -ray, and microwave emissions can be generated due to fast
electromagnetic surface waves moving at a relativistic veloc-
ity along a zigzag path of the discharge channel. Importantly,
both proposed mechanisms require extended plasma chan-
nels that would guide electromagnetic waves. Thus, a certain
correlation between the appearance of x-ray and microwave
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emissions during the discharge development should exist, be-
ing driven by the intense streamer formation and collision
processes.

In this paper we investigate the development of a laboratory
discharge initiated in a long air gap by a microsecond mega-
volt pulse. The discharge formation is accompanied by x-ray
and high-frequency radio emissions which we register in the
experiments together with the short-exposure images of the
discharge glow. Our findings directly show that the intense de-
velopment of numerous streamers in the entire discharge gap
triggers the generation of the x-ray and microwave emissions.

II. EXPERIMENTAL SETUP

The setup (Fig. 1) employed in the study involves a high-
voltage generator [16] which provides a 1-MV voltage pulse
(negative polarity) with a duration of approximately 1 μs
and a rise time of about several hundred nanoseconds. The
pulse is supplied to an open gap with a length of 50 cm.
The experiments are carried out in air at normal conditions.
The discharge gap is formed by a “needle-inside-cone”-type
cathode and a hemispherical wire mesh anode. The discharge
voltage is controlled by using the capacitive-resistive voltage
divider, with its temporal resolution being better than several
nanoseconds.

The x rays from the discharge are registered by two scin-
tillation detectors (SD1 and SD2) placed near the discharge
gap as shown in Fig. 1. The detectors are sensitive photomul-
tiplier tubes (1000–5000 A/lm) coupled with fast scintillators
[p-terphenyl+1,4-bis(5phenyloxazol-2-yl)benzene] and have
a temporal resolution of about several nanoseconds. The scin-
tillator properties provide an extremely short delay (less than
100 ps) between the instants an x-ray quantum (with a char-
acteristic energy much less than 1 MeV) is absorbed inside
the scintillator and the scintillator substance starts to glow.
The detector SD1 has a high aperture and sensitivity and is
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FIG. 1. Schematic representation of the experimental setup. Inset
1 presents the simulated frequency characteristic of an ultrawideband
antenna. Inset 2 shows the integral image of the discharge in the gap

used to register x rays in a wide energy range. This detector
is covered with a 10-μm aluminum foil additionally shielded
with a light-tight paper and has a low threshold energy (Eν ∼
20 keV). The detector SD2 is covered with a 1-mm-thick
lead filter. In terms of x-ray absorption [17], such a filter
has a characteristic threshold energy Eν ∼ 100 keV. All the
detectors are precalibrated following the procedure described
in [16]. The signals from the x-ray detectors are registered by
digital oscilloscopes (1 GHz, 5 GSa/s).

An ultrawideband antenna with an expanding coplanar gap
(Vivaldi-type antenna [18]) is placed at a 3 m distance (in
the Fraunhofer zone) from the discharge gap to register high-
frequency radio emissions. The antenna is vertically polarized
and is installed on dielectric tripods. A voltage standing wave
ratio (VSWR) of the antenna falls within 1–2 at frequencies
of 1–10 GHz and increases sharply in a low-frequency range
(less than 1 GHz; see inset 1 of Fig. 1). The antenna signals
are recorded by a LeCroy WM8620A oscilloscope (6 GHz,
20 GSa/s). The antenna reliably detects microwave emissions
having frequencies within approximately 1–6 GHz.

When registering various electromagnetic emissions, we
image the discharge morphology by employing a scientific
complementary metal-oxide-semiconductor (sCMOS) gated
intensified camera (PCO dicam C1) coupled with a Canon
EF 85-mm f /1.8 objective. The camera has a multiple-alkali-
metal photocathode (S20) and an output phosphor window
(P46) and is covered with a bandpass optical filter (300–400
nm). With the camera gate being 55–60 ns, the discharge is
imaged at an angle of approximately 60◦–70◦ with respect to
the gap axis (see the view of the discharge gap in inset 2 of
Fig. 1).

III. RESULTS

Figure 2 presents the chronology of the discharge develop-
ment. The discharge images (frames 1–6 with a color scale)
are recorded in independent shots within different time pe-
riods (marked in Fig. 3) of the discharge development with
a short exposure time. Notably, an extended horizontal black
line, which manifests in each frame, is associated with a struc-
ture element of the return current circuit that blocks a part of
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FIG. 2. Discharge images (frames 1–6) obtained in independent shots within different time periods of the discharge development.
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FIG. 3. Superimposed voltage waveforms and x-ray and mi-
crowave signals obtained in many discharge events. Digits 1–6 in
the top panel indicate the time periods corresponding to the exposure
of each frame 1–6 in Fig. 2.

the discharge glow, entailing a shadow effect. Figure 3 shows
superimposed voltage waveforms as well as x-ray and mi-
crowave signals obtained in 20 discharge events. The horizon-
tal arrows in the top panel of Fig. 3 point to the corresponding
scales of the voltage and x-ray signals. When imaging the
discharge, we find that each discharge structure in frames 1–6
is characteristic of a particular time period of the discharge
evolution. The good repeatability of the discharge develop-
ment in time and space from shot to shot is stipulated by the
stable temporal characteristics of the employed high-voltage
generator (all voltage waveforms reveal similar behavior) and
the unchanged key conditions of the experiment.

Once the high-voltage pulse is applied to the gap, the for-
mation of an initial corona starts around the cathode cone edge
and at the cathode needle (see frame 1 in Fig. 2). The corona
develops and gives rise to many thin streamers propagating
from the cathode with an average velocity of the order of 108

cm/s (see frame 2 in Fig. 2). The streamers propagate in a
wide solid angle and form a complex net of bright plasma
channels that are branched in some areas. The streamer heads
turn out to be at long distances from the cathode corona, which
is well resolved against the propagating streamers in frame 2.
With the employed exposure time, the glowing streamer tails
seem to be extended, although this effect is probably due to
blurring of the moving streamer heads during the exposure
[19]. When a part of propagating streamers come close to
the anode surface (see frame 3 in Fig. 2) we detect very fast
development of streamers originating at the anode surface;
these streamers propagate much faster (greater than 109 cm/s)
than the anode-directed ones.

Statistics show that the discharge stages, during which
we register the cathode corona (frame 1), the propagating
anode-directed streamers (frame 2), and the streamers quickly
developing from the anode (frame 3), are not accompanied by
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FIG. 4. Voltage waveform and x-ray and microwave signals ob-
tained in a single discharge event corresponding to frame 4 in Fig. 2.
The signals are shown for the time period corresponding to the frame
exposure.

either x-ray or microwave emissions. This is clearly seen in
the superimposed signals in Fig. 3. The x-ray and microwave
emissions appear only some time (approximately 10 ns) after
the fast origination of the streamers at the anode. The x-ray
generation starts synchronously with the microwave emission
or later, but never before. The appearance of microwave or
x-ray emissions always falls within the discharge stage when
a complex net of plasma channels forms in the entire discharge
gap. As an example, let us consider a single discharge event
corresponding to frame 4 in Fig. 2. The obtained voltage, mi-
crowave, and x-ray signals are shown in Fig. 4. The horizontal
arrows in the bottom panel of Fig. 4 point to the corresponding
scales of the x-ray signals. Also in the bottom panel, the time
period (62 ns) is marked, during which the discharge glow is
registered. Here the onsets of the intense x-ray and microwave
emissions fall within the frame exposure time.

Frame 4 shows countless bright plasma channels covering
a large zone of the discharge gap from the cathode cone edge
to the anode surface. Many channels have a beadlike structure
and stochastically wander in space as well as branch. Such
discharge morphology is characteristic of extended streamer
and corona discharges [19–22]. By taking into account the
differences in the discharge structure in frames 3 and 4 in
Fig. 2, one can assume that, during a time period of about
10 ns, the rate of the streamer multiplication sharply increases
in the entire discharge gap. Streamers originate at the surface
of both electrodes and probably in the bulk of the discharge
gap. For instance, secondary streamers can develop in local
discharge zones corresponding to the branching points of pri-
mary anode- and cathode-directed streamers [20]. The plasma
system in frame 4 is supposed to be characterized also by
multiple head-on collisions of counterstreamers.

The generation of x-ray and microwave radiation most
often starts with an increase in the discharge voltage from
0.8 to 1 MV (see Figs. 3 and 4). The x-ray emission is
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FIG. 5. (a) Weighted moving average PWMA(t ) (over 1 ns) of
instantaneous power calculated for the microwave signal in Fig. 4
within 325–550 ns. (b) Map illustrating the evolution of the mi-
crowave spectrum in the frequency range of 1–6 GHz. The map
intensity characterizes the values of the average instantaneous power
P f (t ) of the analyzed microwave signal in the time and frequency
domain (t, f ).

characterized by photons with energies probably no higher
than a few hundred keV. In contrast to the detector SD2
(Eν ∼ 100 keV), the sensitive detector SD1 (Eν ∼ 20 keV)
registers x rays in each discharge event. Therefore, in our case,
the majority of high-energy photons have energies no higher
than several tens of keV. Almost all detected x-ray flashes
fall within the discharge stage, during which the intense de-
velopment of bright plasma channels in the entire discharge
gap occurs (see frames 4 and 5 in Fig. 2). The x-ray flashes
are also detected in the late discharge stage accompanied by
the formation of bright leader channels originating from the
cathode needle and the anode surface (see frame 6 in Fig. 2).
Herein multiple less bright plasma channels closing the heads
of the opposite leader channels can be distinguished. As the
oppositely directed leaders develop and approach each other,
the power of the microwave radiation gradually decreases and
the x-ray generation vanishes.

The temporal structure of the microwave signals turns out
to be interesting. Let us consider this feature on the exam-
ple of a single discharge event discussed above. Figure 5(a)
demonstrates the linearly weighted moving average PWMA(t )
of instantaneous power obtained for the microwave signal in
Fig. 4 within 325–550 ns. The curve PWMA(t ) is iteratively
calculated over 1 ns with a step of 50 ps (with the energy
conservation taken into account) and illustrates the trend in the
signal power over time. Figure 5(b) presents the map illustrat-
ing the evolution of the microwave spectrum in the frequency
range of 1–6 GHz. The map intensity characterizes the values
of the averaged instantaneous power P f of the microwave
signal in the time and frequency domain (t, f ). The techniques
used for obtaining the moving average and microwave spec-
trum map are described in detail in the Supplemental Material

[23]. It can be seen that the high-frequency radio emission
is characterized by multiple single bursts concentrated within
three key time intervals: ∼325–390 ns, ∼390–450 ns, and
∼470–550 ns. The first time interval contains the most in-
tense microwave bursts. Bursts follow each other with a time
step of a few nanoseconds, with the duration of most single
bursts being about 1 ns. This is clearly seen in the inset of
Fig. 5(a). The first intense bursts in Fig. 5(a) fall within the
time interval coinciding with the start of the x-ray generation
(see Fig. 4) and the appearance of a complex net of plasma
channels in the gap (see frame 4 in Fig. 2). The spectrum of the
intense microwave bursts is characterized by the frequencies
in the range of 1–3 GHz. The highest values of the spectral
power of single bursts are reached at 1–2 GHz. With a typical
duration of the intense microwave bursts being about 1 ns,
the bursts themselves contain higher-frequency components
of the original signal, in some cases, up to 4–5 GHz. Thus,
the high-frequency part of the microwave emission is almost
completely concentrated inside single intense bursts.

IV. DISCUSSION

Our findings show that the appearance of the intense x-ray
and high-frequency radio emissions is closely related with the
formation of multiple streamers producing a complex net of
plasma channels across the entire discharge gap. We assume
that the multiple streamer formation triggers more complex
wave subprocesses in the current-carrying plasma channels
between the cathode and anode. The channels with moderate
electron densities (e.g., of the order of 1010–1013 cm−3, which
is typical of the streamer channels [24]) can act as single
plasma waveguides along which sets of surface and bulk elec-
tromagnetic waves can propagate (at almost the speed of light
in vacuum) [25]. Such waves can also emit microwave radia-
tion, with their appearance being driven by, e.g., the head-on
collisions of counterstreamers. By enhancing the local electric
field, the wave fronts propagating along the channels can also
lead to electron acceleration and, under certain conditions,
this acceleration can be of a resonant character [25]. The
proposed hypothesis and obtained results correlate with both
the bremsstrahlung of high-energy runaway electrons and the
synchrotron mechanism of the x-ray and microwave genera-
tion discussed in [13,15]. These mechanisms can be universal
for numerous discharge systems wherein runaway electron
beams, x rays, and microwave flashes are observed [20,26–
32]; however, it cannot be proved without direct correlation
studies of the discharge zones producing microwave and x-ray
emissions. Nevertheless, we consider the described concept
to be promising and requiring rigorous investigation since the
intense x-ray and microwave generation fundamentally occurs
within the discharge stage during which a complex net of
plasma channels is formed and spans the entire discharge gap.
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