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Flow reversal triggers discontinuous shear thickening response across
an erodible granular bed in a Couette-Poiseuille-like flow
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Granular rheology is experimentally investigated in a vertical Couette-Poiseuille-like channel flow of pho-
toelastic disks, where an erodible bed is sheared intermittently by an upward-moving shear band and a
gravity-induced reverse flow. The shear band conforms to the existing nonlocal Eyring-like rheology but the
bed exhibits discontinuous shear thickening from the Bagnold inertial regime near the band-bed interface to the
Herschel-Bulkley plastic regime near the static wall. This newly discovered bed rheology is rate dependent and
is associated with the fragility of the contact networks indicated by the statistics of local stress states inferred
from the material photoelastic responses.
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When a granular material is sheared, shear often localizes
within a narrow band of 5 to 10 grains-diameter next to an
erodible bed of packed grains [1]. Understanding such shear
banding is important to unifying granular rheology across
flowing and static regimes for industrial and geophysical ap-
plications. Conventionally, shear banding in granular flow is
analogous to a continuous liquid-solid phase transition: A
liquidlike shear flow forms at where the material yields, while
the adjacent solidlike bed inhibits shear motion [2,3].

However, a closer examination suggests that an erodible
granular bed is not solid-rigid but fragile: The contact net-
work therein is marginally stable so that small mechanical
disturbances can lead to structural rearrangements [4–7]. Un-
der continuous forward shearing, an erodible bed can creep
with intermittent and random grain motions triggered by the
adjacent flow noises, yielding exponentially decaying profiles
of flow velocity and shear rate into the bed. Such flow features
have been observed in Couette flows [8–10], rotating drum
flows [11], Poiseuille-like channel flows [12,13], split-bottom
flows [14], and wall-confined surface flows [4,5]. Several
nonlocal models have been proposed to capture the creep flow
dynamics based on diffusive grain cooperative mechanisms
[15–19]. Yet the bed rheology may be subtler. Due to the
marginally stable nature, a fragile contact network is highly
anisotropic along a single direction [20], so it can be easily
unjammed by applying reverse strain [21–23]. How the effect
of shear reversal may enrich flow response across the erodible
bed in granular shear banding flows remains to be understood.

In this Letter, we developed a vertical Couette-Poiseuille-
like channel flow of photoelastic disks to study the reverse
shearing effect on the rheology of erodible granular beds.
An upward-moving lateral wall was imposed to drive a wall
shear band next to a bed of disks which intermittently col-
lapsed under gravity to generate reverse shearing within the
material. The shear band flow conforms to the nonlocal
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rheology but, surprisingly, the bed exhibits a discontinuous-
shear-thickening spatial transition from the Bagnold inertial
to the Herschel-Bulkley plastic regime, a newly discovered
fragility phenomenon for the bed rheology. We exploited pho-
toelasticity to study local stress statistics and suggest new mi-
cromechanisms for the shear-thickening behavior in the bed.

The experimental set-up is shown in Fig. 1(a). The ver-
tical flow channel was made of two glass plates of height
H = 70 cm and width W = 11 cm kept at a narrow clear-
ance of 3.3 mm by thin aluminum padding bars. Bidisperse
disks of diameter 7 and 5 mm were cut from photoelastic
sheets (Vishay PS4, Youngs modulus 4 MPa) of thickness
3.05 mm into equal amounts, giving a mean disk diameter
D = 6 mm. The disk density ρ = 1139 kg/m3 was measured.
Rubber toothed belts (semicircular profile with height and
spacing of D/2) were installed at the left and right boundary
walls. The left belt was driven upward by a step motor-pulley
system at a constant speed V0 while the right belt was fixed
to create a static rough wall. The belt speed was controlled
to give a range of the scaled wall speed V ∗

0 ≡ V0/
√

gD =
5.53 × 10−2–1.05 × 100, corresponding to a system inertial
number, Isys ≡ V0D/

√
gW 3 = 7.7 × 10−5–1.5 × 10−3, in the

quasistatic regime [24,25]. A LED light panel was placed
behind the flow channel for illumination. A pair of circular
polarizers were placed in front of and behind the channel to
visualize the stress-induced photoelastic fringe patterns [26].
A high-speed camera (PCO.dimax HS) was focused at the
channel midheight to create a square observation window of
18.4D-sidelength (the red-dashed frame) to minimize bound-
ary effects. The camera shutter speed was set to satisfy frames
per second �10V0/D to capture approximately 10 images per
moving-wall displacement of D. For each V ∗

0 , the system was
run for 2 h, and then 45 000 consecutive images were recorded
for analysis.

Setting a Cartesian reference frame at the left moving wall
(x = 0), we employed the circular Hough transform method
to locate disks in each image and traced their displacements
in consecutive time step to calculate individual disk velocities
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FIG. 1. (a) Experimental set-up marking the region of interest. (b) Typical evolution of instantaneous vertical velocity profiles v(x, t )
during a flow reversal process at V ∗

0 = 5.53 × 10−2. Top and bottom insets: Instantaneous photoelastic image before and after the contact
network rearranged during the reversal. (c) Spatiotemporal diagrams for v(x, t ). (d) Scaled flow reversal frequency profiles under different V ∗

0 .
Inset: Scaled mean FF (V+) and RF (V−) velocity profiles.

by the forward-difference scheme. We defined a retangular
coarse-graining region of height 18D and width 2D to av-
erage the vertical velocities of the enclosed disks and then
horizontally shifted the region by 0.4D to produce the in-
stantaneous flow velocity profile v(x, t ). Figure 1(b) shows
the time evolution of v/V0 in one typical process of continual
forward-reverse shearing as the material was dragged by the
upward-moving wall and then collapsed under gravity. The
upper inset displays a photoelastic snapshot during the for-
ward shearing, showing the network of stress-bearing contacts
developed over the nearly static granular bed. When the wall
disturbances accumulated to some extent, the bulk collapsed
and underwent reverse shearing that relaxed the network, as
shown in the dimmer snapshot in the lower inset (see also the
supplemental movies [27]). Such intermittent forward-reverse
flow events are presented in the spatiotemporal diagrams in
Fig. 1(c) for V ∗

0 = 5.53 × 10−2, 3.15 × 10−1, and 1.05 × 100.
To quantify the flow reversal intermittency, we define a

forward flow (FF) state for v(x, t ) > 0 and a reverse flow
(RF) state for v(x, t ) < 0 to count reversal transition at x
when v(x, t ) changes from the FF (RF) to the RF (FF) state.
The total number of local reversal transitions, Nr (x), over
the whole observation period, T , is used to evaluate a flow
reversal frequency fr (x) = Nr (x)/T . Figure 1(d) displays the
scaled profiles of frD/V0, showing that fr is comparable with
the disk rearrangement frequency at the moving wall, V0/D,
while the scaled magnitude decreases with the increase of V ∗

0 .
In addition, we evaluated the time-averaged mean of the FF
(RF) velocity, V+ (V−), in the inset of Fig. 1(d), showing a
collapsed V+/V0 trend, but the magnitude of V−/V0 decreases
as V ∗

0 is increased. The diminishing of the scaled fr and V−
indicates a more continuous flow at a higher driving speed,
due presumably to a stronger inertial effect on weakening the
contact networks.

By averaging v at each x for all times, we obtained the
steady-state velocity profiles V (x) scaled by V0 in Fig. 2(a).

For each V ∗
0 , V/V0 displays a thin upward flow layer for

0 < x � 3D and a wide downward flow segment over 3D �
x < W . Figure 2(b) focuses on the downward velocity pro-
files, showing clear rate dependence of the profile curvature
on V ∗

0 . To capture the velocity curvature, we computed
the local shear rate γ̇ (x) ≡ dV/dx using the central difference
scheme and normalized it with V0/D. Figure 2(c) shows the
segment of negative γ̇ next to the moving wall, where its
magnitude decays monotonically with x and vanishes around
x ≈ 6D. Then γ̇ flips the sign and grows toward the static wall
with much smaller magnitudes [Fig. 2(d)]. We identify the
negative-γ̇ segment as a shear band and the much weaker but
wider positive-γ̇ segment as a slowly deforming granular bed.
The shear band width, evaluated at the band-bed interface,
x = δi where γ̇ = 0, grows from around 5.5D to 7D when
V ∗

0 is increased [Fig. 2(e)]. We observe that γ̇ in the bed also
decays monotonically over a similar distance of 6D from the
static wall but, surprisingly, saturates to a plateau in the core
and drops sharply to zero at the interface. The span of the
shear-rate plateau and its normalized magnitude decrease with
the increase of V ∗

0 . This rate-dependent shear-rate plateau phe-
nomenon is distinct from the commonly reported quasistatic
shear band dynamics for which the shear rate asymptotically
vanishes from a flow source and the profile shape is indepen-
dent of the flow rate [5,6,9,10,12,13].

Some may associate this shear-rate plateau with the core
plug of two-dimensional (2D) Poiseuille-like granular chan-
nel flows [12,28] in which the core region exhibits a solid
fraction φ above the value of 2D random close packing,
φrcp ≈ 0.84, to inhibit shear motion. We estimated the steady-
state solid fraction, φ(x), by averaging the portion of the
total disk area in each coarse-graining region over all t
in Fig. 2(f). It shows that φ over the shear-rate plateau
is higher than the values in the shear band and near the
static wall but below φrcp. When V ∗

0 is increased, an in-
crease in the plateau’s φ is observed, associated with the
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FIG. 2. (a) Time-averaged scaled velocity profiles, where the
downward flow segments are enlarged in (b); [(c) and (d)] scaled
shear rate profiles within the shear band and the bed, respectively;
(e) scaled shear band widths versus V ∗

0 ; (f) solid fraction profiles; and
(g) scaled shear stress profiles. The symbols correspond to different
V ∗

0 given in Fig. 1(a).

diminishing of the scaled shear-rate plateau magnitude in
Fig. 2(d).

To study the flow rheology, we evaluated the local shear
stress τ by integrating the steady momentum balance equa-
tion in the vertical direction y, ∂xτ = −ρφ(x)g, subject to
a shear-free condition τ = 0 at the interface x = δi (where
γ̇ = 0). Note that the gradient of normal stress along y in
this momentum balance is examined to be negligible due to
the large height-to-width aspect ratio (see the details in sup-
plementary material [27]), as in other channel flow analysis

[12]. Figure 2(g) shows |τ | appears linear in x for all V ∗
0 ,

indicating a negligible influence of the spatial variation of
φ on τ . Figure 3(a) plots |τ | versus the corresponding |γ̇ |
over the shear band (0 < x < δi), displaying a pseudoplastic
behavior (shear-thinning, |dτ/d γ̇ | < 1) for all V ∗

0 . The data
can be nicely fitted to

|γ̇ | = aV0

D

[
exp

(
−τc − |τ |

δτ (x)

)
− exp

(
−τc + |τ |

δτ (x)

)]
, (1)

if we follow the nonlocal rheology to understand the
shear-band plastic behavior as the result of an Erying-like
stress-activation process [12,16,17,29,30]. Here aV0/D rep-
resents an attempt frequency, and τc = |τ (xmw)| is a critical
yield stress characterized by the moving-wall shear stress with
xmw = 1.2D. The first (second) exponential term describes
a Boltzmann-like probability of a forward (backward) shear
event as a stress barrier τc − |τ | (τc + |τ |) is overcome by
stress fluctuations δτ generated from the yielded wall region.
We propose δτ (x) = bτc exp[−(x − xmw)/l] by assuming the
fluctuation strength scales with the yield stress and decays
exponentially from the yielded region. How Eq. (1) is ma-
nipulated to fit the |τ | − |γ̇ | data is given in Supplemental
Material [27]. The insets of Fig. 3(a) show the fit parameters
a ≈ 0.28, b ≈ 0.4, and the decay length l ≈ 5.5D which are
independent of V ∗

0 . The satisfactory data fit demonstrates that
the Eyring activation process underlies the shear-band rheol-
ogy, suggesting an Eyring-like plastic regime.

By contrast, the data in the bed region (δi < x < W ) unveil
three distinct flow regimes [Fig. 3(b)]. Near the band-bed
interface, the flow is Bagnold, τ = ABagγ̇

2 (the dashed lines),
characterizing a grain-inertia-dominated flow process in an
inertial regime [31–35]. The coefficient ABag decreases by an
order of magnitude with V ∗

0 [Fig. 3(c)]. Near the static wall,
the data, however, show a power-law relation, τ = APγ̇ α (the
solid lines), with α decreasing slightly from 0.5 to 0.35 and AP

from 8 to 6 with the increase of V ∗
0 [Fig. 3(c)]. This behavior

corresponds to the Herschel-Bulkley plastic rheology at large
shear limit, giving a HB plastic regime [33–35].

Intriguingly, the Bagnold inertial regime is bridged to the
HB plastic regime through a noticeable jump of τ at a critical
γ̇ , corresponding to the plateau value in Fig. 2(d). The flow
curve resembles the discontinuous shear thickening (DST) in
dense suspensions and other dry granular systems [34,36–
40]. In continuous forward shearing, DST results from the
sudden formation of persistent contact networks when the
system is loaded above an onset stress at which enduring
frictional contacts span the system [37–42]. However, DST
in our system may result from different contact network dy-
namics in the presence of reverse shearing. As illustrated in
Fig. 1(b), reverse shearing continually relaxes stress-bearing
contacts around the shear band, yielding a doward inertial
flow under gravity to erode the bed. Yet the inertial erosion
is concurrently suppressed by the remaining contact networks
that stand persistently from the static wall. The encounter
between the liquidlike and solidlike responses hence causes
shear to thicken into the bed. This thickening phenomenon
provides a direct rheological evidence of a fragile erodible
bed in which an unjammed and a jammed state can coexist,
echoing the result of strain-controlled shear tests [21,22].

L052901-3



KENG-LIN LEE AND FU-LING YANG PHYSICAL REVIEW E 105, L052901 (2022)

FIG. 3. Rheological relations for shear stress τ versus shear rate γ̇ in (a) the shear band (0 < x < δi) and (b) the bed (δi < x < W ). Solid
lines in (a): the Eyring model in Eq. (1) with the fitting parameters given in the insets. (c) The fitting parameters for the Bagnold and the HB
model shown in (b).

With the aid of fitting to the aforementioned τ -γ̇ relations,
we identified the span of each flow regime under different
V ∗

0 to construct a flow-regime map in Fig. 4. Although the
two wall plastic regimes appear comparable in size (≈6D)
for all V ∗

0 , the rise of V ∗
0 causes the inertial regime to expand

but the DST regime to shrink noticeably. Interestingly, at the
highest V ∗

0 = 1.05, the DST regime nearly vanishes so that
the inertial and the plastic regimes bridge smoothly, featur-
ing continuous shear thickening (CST) [see also Fig. 3(b)],
similarly to the flow curves reported in volume-controlled
homogeneous shearing systems [33,35]. We speculate that the
DST-CST transition arises from a collision-induced slippage
effect [43–45]: Increasing the driving speed creates significant
collisional noises to activate slip events at persistent contacts
developed from the static wall, weakening the dramatic shear
thickening in the intermediate region. This speculation is sup-
ported by the core compaction in Fig. 2(f), indicating that the

FIG. 4. Flow-regime map. The open circles threaded by the solid
line presents the shear-band width data in Fig. 2(e).

bed disks near the band can slip past one another more easily
at higher V ∗

0 to explore denser configurations, resembling
bulk compaction at high shear rates in rheometer experiments
[43,44]. The slippage mechanism can also account for the
significant drop in ABag with V ∗

0 [Fig. 3(c)] as more slip events
in a faster flow weaken the ability of inertial disk motion to
transport momentum.

To provide more insights into the rheological response, we
study the local stress statistics by exploiting the photoelastic
images to compute a gradient-square parameter G2(x, t ) =∑

(∇I )2 to infer instantaneous local stress magnitude [8,26].
Here ∇I is the pixelwise gradient of the light intensity field
at t [8,26], and the sum is made over the coarse-graining
region centered at x. We evaluate the local probability dis-
tribution function, P( f ), for a normalized stress parameter
f = G2/〈G2〉, where 〈G2〉 is the mean of G2 over all x
and t . Figure 5 shows P( f ) for (a) V ∗

0 = 5.53 × 10−2 and
(b) 6.6 ×10−1, where δI-DST and δDST-P denote the boundaries
between the three regimes and xsw = 17.4D is the data loca-
tion closest to the static wall. Intriguingly, the cross-flow P( f )
intersect nicely at f = 1, separating the local stress into strong
( f > 1) and weak ( f < 1) states. For strong stress, P( f )

FIG. 5. Probability distribution functions of the normalized
stress state P( f ) across the flow for (a) V ∗

0 = 5.53 × 10−2 and
(b) V ∗

0 = 6.6 × 10−1. P( f ) on the walls and the flow regime bound-
aries are marked by thick colored lines while the thin lines denote
P( f ) within the flow regimes. The insets show P( f ) in the strong-
stress state ( f > 1).
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decays nearly exponentially with f , with the decay breadth
diminishing from the moving to the static wall. The broad
P( f ) near the moving wall indicates large stress fluctuations
as the material yields under forward shearing. The spatially di-
minishing decay breadth further supports the proposed δτ (x)
trend in the Erying model (1).

The shape of P( f ) for weak stress states ( f < 1), however,
varies in a complex way across the flow regimes. Within the
shear band (green lines, 0 < x < δi), P( f ) grows logarith-
mically as f tends to zero, and the slope steepens near the
band-bed interface (thick red line, x = δi). This shape feature
clearly demonstrates a fragile mechanical response that, dur-
ing the reverse shearing, stress-bearing contacts around the
band region are dramatically relaxed, especially close to the
interface where contacts are too far to be effectively reju-
venated by the subsequent wall shearing. Across the inertial
regime (thin red lines, δi < x < δI-DST), P( f ) decreases and
flattens at vanishing f . The flattening reflects a small but
growing stress contribution when the inertial flow shears and
erodes the bed. As entering the DST regime (blues lines,
δI-DST < x < δDST-P), P( f ) is peaked at a finite f which grows
as approaching closer to the HB plastic regime (gray lines,
x > δDST-P). Such a peak characteristic reflects a certain por-
tion of stresses resulting from persistent contact networks that
stand on the static wall for much longer periods than the
wall shearing time, as inferred previously from the rheological

result [also visualized in the lower photoealstic images in
Fig. 1(b)].

At the higher V ∗
0 in Fig. 5(b), P( f ) across the shear

band and the inertial regime (0 < x � δI-DST) broadens and
develops higher values at weak stress states. This result sup-
ports our earlier argument that enhancing wall shearing yields
stronger collision-induced fluctuations to weaken the persis-
tent contact networks and hence to result in the DST-CST
transition.

To conclude, this work presents a Couette-Poiseuille-like
granular flow experiment in which intermittent shear rever-
sal developed across a wall shear band and the adjacent
erodible bed. While the nonlocal Eyring-like model [Eq. (1)]
can capture the rheological response in the shear band, the
bed exhibits a complex rate-dependent shear-thickening be-
havior due to the fragility of the contact networks. This is
surprisingly in contrast to the rate-independent creeping bed
behavior in continuous forward shearing flows, suggesting
that the unique shear reversal generates an internal fluidization
process other than boundary shearing. As this internal process
introduces new time and length scales, the nonlocal rheology
models require further investigation.
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