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Belief propagation for permutations, rankings, and partial orders
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Many datasets give partial information about an ordering or ranking by indicating which team won a game,
which item a user prefers, or who infected whom. We define a continuous spin system whose Gibbs distribution
is the posterior distribution on permutations, given a probabilistic model of these interactions. Using the cavity
method, we derive a belief propagation algorithm that computes the marginal distribution of each node’s position.
In addition, the Bethe free energy lets us approximate the number of linear extensions of a partial order and
perform model selection between competing probabilistic models, such as the Bradley-Terry-Luce model of
noisy comparisons and its cousins.
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Ranking or ordering objects is a natural problem in many
contexts. Mathematically, this task corresponds to finding
“good” permutations of a finite set, or more generally, sam-
pling from a distribution of good permutations. This can be
surprisingly difficult.

For example, suppose we observe a set of pairwise interac-
tions, such as competitions, preferences, or conflicts, each of
which is evidence that one object is ranked above another, and
our goal is to rank them from strongest to weakest. Similarly,
we might want to reconstruct the order in which nodes joined
a growing network [1,2], for instance in an epidemic where
contact tracing suggests links where one individual infected
another. In cases like these, finding a permutation that mini-
mizes the number of violations where the ordering goes the
“wrong” way is NP-hard, i.e., among the hardest optimization
problems in computer science [3]. Even when there exist per-
mutations consistent with all observed interactions, counting
the number of such permutations, or computing the average
position of a given object, is #P-complete [4,5]. Thus all these
problems are believed to take exponential time in the worst
case.

Pairwise comparisons can be represented as a directed
graph G whose edges (i, j) indicate that i ≺ j, i.e., i “beat” j
and is therefore probably ranked above j. We assume a gener-
ative model: given a ground-truth permutation π, we observe
G with probability P(G|π) [6]. If all permutations are equally
likely a priori, and if we observe each i ≺ j independently
with probability f (πi, π j ), the posterior has the form

P(π|G) =
∏

(i, j)∈G f (πi, π j )∑
π′

∏
(i, j)∈G f (π ′

i , π
′
j )

. (1)

The framework of Eq. (1) may seem restrictive, but we will
see that it covers several interesting problems. Specifically,
we consider (i) counting linear extensions of partial orders;
(ii) inferring the order in which a network grew; (iii) finding
minimum feedback arc sets; (iv) parameter estimation and
model selection for rankings.

To advance an analogy with statistical physics, we interpret
Eq. (1) as a Gibbs distribution P(π|G) = e−βH (π)/Z at tem-
perature β−1 with Hamiltonian H (π) = ∑

(i, j)∈G h(πi, π j ). Of
particular interest is the step function Hamiltonian

h(πi, π j ) = �(πi − π j ) =
{

1, πi � π j,

0, πi < π j .
(2)

In this case, the energy H (π) is the number of violations, i.e.,
the number of edges in G that are oriented contrary to the
ordering of the nodes in permutation π [7,8].

We begin our investigation of the Hamiltonian (2) at zero
temperature. If the system is not frustrated, i.e., if there is a π

for which H (π) = 0, then we can view each directed edge
(i, j) ∈ G as a hard constraint that demands πi < π j . This
implies that G is acyclic and defines a partial order, that is,
a structure where we are given that i ≺ j for some pairs i, j.
Partial orders are transitive: i ≺ j and j ≺ k implies i ≺ k.
However, there may be pairs i, j where neither i ≺ j nor j ≺ i
is necessarily true, leaving their relative order ambiguous.
In contrast, a total or linear order is a permutation—every
object has an unambiguous rank, and all pairs of items are
comparable. A linear extension of a partial order is a total
order that satisfies all the constraints of the partial order; it is
is equivalent to a topological ordering of the corresponding
directed acyclic graph. There are typically many such orders.

Counting the linear extensions of a partial order is a well-
known problem in computer science. Counting them exactly
is #P-complete [5], making it as hard as computing spin glass
partition functions or matrix permanents, and almost certainly
requiring exponential time. There are polynomial-time Monte
Carlo algorithms [9–11], but these are fairly slow in practice
[12]. Here we provide a fast approximate algorithm based on
belief propagation and the cavity method in a related spin
system.

Permutation-valued states cause several challenges for the
cavity method. First, a priori the entropy grows superex-
tensively as ln n! ∼ n ln n, creating a rather odd thermody-
namic limit. Secondly, since each site can be in one of n
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FIG. 1. The convex polytope corresponding to the partial order
3 ≺ 1, 3 ≺ 2, i.e., the subset of the unit cube where x3 < x1 and
x3 < x2. It contains two simplices corresponding to the linear exten-
sions 3 ≺ 1 ≺ 2 and 3 ≺ 2 ≺ 1, and it has total volume 2/3! = 1/3.

different states, we have something like a q-state Potts model
where q = n, making the fields n-dimensional. Thirdly, no
two sites can have the same state. This creates a global cou-
pling, violating the local treelikeness that the cavity method
assumes.

We can address all these problems with a rescaling to
continuous variables. Rather than treat each πi as an integer
from 1 to n, we associate it with a real number xi in the unit
interval. A state is a point in the n-dimensional unit hypercube,
x ∈ [0, 1]n, which corresponds to the permutation given by the
sorted order of its components. Since the xi are distinct with
probability 1, this removes the global coupling between sites.

Under this rescaling, the set of linear extensions of a
given partial order becomes a convex polytope whose facets
correspond to its constraints. Figure 1 shows the polytope
corresponding to the partial order 3 ≺ 1, 3 ≺ 2, which has
facets x3 < x1 and x3 < x2. This partial order has two linear
extensions, 3 ≺ 1 ≺ 2 and 3 ≺ 2 ≺ 1.

Although our variables xi live in the unit interval as op-
posed to the circle or sphere, we think of this rescaled model
as a continuous spin system in the spirit of the XY model or
the classical Heisenberg model [13]. At zero temperature, the
partition function Z is the volume of the polytope of linear
extensions. Since each permutation corresponds to a simplex
with volume 1/n!, this gives

Z = lim
β→∞

∫
[0,1]n

∏
(i, j)∈G

e−β�(xi−x j )dx

= no. of linear extensions

n!
, (3)

and because every linear extension is equally likely, the en-
tropy is simply S = ln Z . As we discuss below, this rescaling
from {1, . . . , n} to the unit interval allows us to define a
sensible thermodynamic limit where Z behaves as a simple
exponential and S is linear in n.

Since counting linear extensions is #P-complete, so is com-
puting Z or S exactly. We will use the cavity method to
approximate them. We start by pretending that the graph of
comparisons is a tree—that it has no cycles even when the
directions of the edges are erased. The distribution of the spins

can then be factorized as

P(x|G) =
∏

(i, j)∈G μi j (xi, x j )∏
i μi(xi )di−1

. (4)

Here μi(xi ) is the marginal probability density for the spin at
node i, μi j (xi, x j ) is the joint marginal for the spins at nodes
i and j, and di is the degree of node i, i.e., the number of
objects to which it is compared. The entropy S = −〈ln P〉 is
then given by the Bethe entropy

SBethe =
∑

(i, j)∈G

Si j −
∑

i

(di − 1)Si, (5)

where Si = −〈 ln μi〉 and Si j = −〈 ln μi j〉 are the entropies of
the one- and two-point marginals, respectively.

These marginal distributions can be computed using belief
propagation [14,15]. For each neighboring pair (i, j), we ask
what j’s marginal would be if i were absent. We denote this
cavity marginal μ j→i(x), and we think of it as a “message” or
“belief” that j sends to i. It depends in turn on the messages
that j receives from its neighbors k other than i. Note that if i
and j are compared, messages go in both directions along the
edge (i, j).

For linear extensions, μ j→i(x j ) is proportional to the prob-
ability that xk < x j (xk > x j) for all k 
= i such that k ≺ j
(k � j). Using the cumulative distribution functions

Mj→i(x j ) =
∫ x j

0
μ j→i(y)dy, (6)

we can write this as

μ j→i(x j ) ∝
∏
k≺ j
k 
=i

Mk→ j (x j ) ×
∏
k� j
k 
=i

(1 − Mk→ j (x j )), (7)

where we normalize so that
∫ 1

0 μ j→i(x j )dx j = 1. The one-
point marginals are computed similarly, but using all of j’s
neighbors,

μ j (x j ) ∝
∏
k≺ j

Mk→ j (x j ) ×
∏
k� j

(1 − Mk→ j (x j )), (8)

and the two-point marginal for an edge i ≺ j is

μi j (xi, x j ) ∝ μ j→i(x j ) μi→ j (xi ) �(x j − xi ). (9)

Note that we assume a uniform prior on the hypercube, and
therefore a uniform prior on permutations.

This suggests an algorithm for counting linear extensions:
solve the belief propagation equations (7) by iterating until
we reach a fixed point, and compute the entropy S = ln Z
in Eq. (5). If the graph of comparisons has loops, this algo-
rithm is not exact, but the Bethe entropy is often an excellent
asymptotic approximation to the true entropy. In particular, so
long as the graph is sparse and locally treelike (with few short
loops), we expect the resulting estimate of Z to be correct up
to subexponential terms.

Writing the system of equations in Eq. (7) is one thing,
but solving it is another, since it consists of a large system of
nonlinear differential equations. Some further insights, how-
ever, reduce the complexity considerably. First, note that for
any partial order, the true marginal distribution μi(x) is a
polynomial of degree at most n − 1. To see this, recall that
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number of Chebyshev coefficients

FIG. 2. Entropy per site for random graphs. The number of linear extensions scales as n!esn in the sparse case where s < 0, so after
rescaling the spins to the unit interval as in Eq. (3), the entropy is negative. (a) Values of sann and sBethe in random graphs of mean degree λ,
estimated by belief propagation on random graphs of size n = 104 under the assumption that ln Z is normally distributed. The dashed line is
the analytic result Eq. (10) for sann, showing that our results are consistent with theory. The solid line is the value for sBethe given by population
dynamics. (b) Mean-squared error between sBethe and the exact value of s = 1

n ln Z computed by exhaustive enumeration on random graphs of
size n � 50 and mean degree λ = 2. Even when we approximate the messages with d = 32 Chebyshev coefficients, sBethe rapidly converges
to s, showing that the cavity method is asymptotically exact. (c) Mean-squared error for our estimate of sBethe as a function of the number d
of Chebyshev coefficients used in our approximation, for random graphs with n nodes and mean degree λ. The error is calculated relative to
d = 32. There is a clear dependence on λ but not on n, and the estimate converges exponentially as d increases.

the unit hypercube can be divided into n! simplices, each of
which corresponds to one permutation. If i’s position in this
permutation is t , then t − 1 of the other spins x j must be less
than xi, and the other n − t spins must be greater. The prob-
ability density for xi is thus proportional to xt−1(1 − x)n−t ,
a so-called Bernstein polynomial. Summing over all allowed
permutations, μi(x) is a linear combination of such polyno-
mials. Similarly, the messages μ j→i(x) are polynomials of
degree at most n − 2.

This would allow us to solve Eq. (7) by finding at most n −
1 polynomial coefficients for the right-hand side. However,
this would require O(n) computation for each edge. Happily,
this is unnecessary: we can approximate the messages as
polynomials of lower degree using Chebyshev polynomials
[16] Tk (x), up to some maximum degree d , writing μ j→i(x) ≈∑d−1

k=0 c k
j→iTk (x). We initialize the messages to uniform distri-

butions T0 = 1, i.e., c j→i = (1, 0, . . . , 0). We then iteratively
update c j→i and ci→ j for all edges (i, j) using Eq. (7).

Since the Chebyshev polynomial of degree k on [0,1] can
be written Tk (x) = cos kθ , where x = (1 + cos θ )/2, we can
compute each update using the fast Fourier transform. On
sparse graphs, where the degree distribution has finite mean
and variance, the computation time for an entire sweep is
linear in the number of edges, and we typically converge
to a fixed point in O(ln n) sweeps. In practice, we obtain
excellent results even when the polynomial degree d is con-
siderably smaller than n (see Fig. 2), allowing our method to
scale easily to hundreds of thousands of nodes on a desktop
computer.

As an initial test of our methods, suppose G is a directed
version of an Erdös-Rényi graph Gn,p where each pair of
nodes is compared with probability p. To create a valid partial
order, we label the nodes 1, . . . , n with a ground-truth per-
mutation π , and we orient the edges to agree with π . This
model of a random partial order was studied in [17]. For
sparse graphs with average degree λ, i.e., in the limit n → ∞
and p = λ/n, by applying results in Ref. [17] we derive the

annealed entropy per site,

sann = lim
n→∞

ln〈Zn〉
n

= 1 − ln λ +
∫ 1

0
ln(1 − e−λx )dx, (10)

so the expected number of linear extensions is 〈n!Zn〉 =
n!ensann up to subexponential terms.

Note the unusual scaling of this problem. In sparse graphs
where λ = O(1) and there are O(n) edges, each edge excludes
a constant fraction of permutations, so the number of linear
extensions is n! multiplied by a simple exponential esn with
s < 0. After rescaling to the unit interval as in (3), the total
volume Z is esn, giving a valid thermodynamic limit where the
entropy is extensive. In contrast, in dense graphs with O(n2)
edges, almost all of the n! possible permutations are excluded,
and the number of linear extensions is a simple exponential
[17].

We conjecture that the cavity method is asymptotically ex-
act in sparse random graphs: namely, that the typical quenched
entropy is given by the Bethe entropy, limn→∞ 1

n 〈ln Zn〉 =
limn→∞ 1

n SBethe = sBethe(λ). To test this conjecture, and to
measure the quality of our Chebyshev approximation, we
used population dynamics [15] to derive a fixed-point dis-
tribution of messages on sparse infinite graphs to estimate
sBethe, and we also carried out belief propagation on finite
graphs.

By running belief propagation on multiple realizations of
finite random graphs, we estimated the mean μ and variance
σ 2 of ln Z . On the physical assumption that ln Z is normally
distributed (which was proved for the dense case in [17] and is
easy to prove for the sparse case when λ is sufficiently small),
we have sBethe = μ/n and sann = (μ + 1

2σ 2)/n.
Figure 2(a) shows that the resulting estimates of sann re-

produce the analytic result Eq. (10), showing that our method
is consistent with theory. We also find that sBethe from belief
propagation on finite graphs agrees closely with the prediction
from population dynamics.
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(a) (b)

FIG. 3. In (a) we show a randomly grown network with Poisson
out-degree. In (b) we show the posterior marginals for four represen-
tative nodes, colored to match (a), comparing those obtained by our
method with the exact results of exhaustive enumeration. Despite the
presence of short cycles, our belief propagation approach approxi-
mates the marginals quite closely, matching not just the means but
the shapes of these distributions.

We compared sBethe with the exact entropy s =
1
n ln(no. of linear extensions/n!), using a dynamic program-
ming algorithm to enumerate permutations exhaustively, on
random graphs of size up to n = 50. Figure 2(b) shows that
sBethe converges quickly to the true entropy as n increases,
as n−α , where α ≈ 5/3, suggesting that the cavity method is
asymptotically correct.

The results of Figs. 2(a) and 2(b) were obtained using
Chebyshev polynomials of degree d = 32. While the exact
marginals have degree n − 1, we observe exponential conver-
gence in the number d of coefficients used in our Chebyshev
approximation. As Fig. 2(c) shows, if we fix the average
degree λ of the graph, our estimate of sBethe converges rapidly
as d increases, and the error does not depend on n. Thus our
approximation of the messages with low-degree polynomials
is also highly accurate.

Although counting linear extensions of a partial order is an
established problem in computer science, it is less familiar in
physics. It is not so far removed, however, from inference in
growing network models [1,2] such as preferential attachment
[18,19], which are among the most widely studied models in
the physics of complex networks. If Gt is the network at time
t , these models specify a transition probability P(Gt+1|Gt )
along with an initial condition G0. Since we often only ob-
serve a snapshot of the network, or its final state, an interesting
problem is to reconstruct the history of the network, i.e.,
the order in which its nodes were added. For trees, one can
calculate the full distribution of possible “histories” by which
an observed graph could have grown [20]. Our methods here
provide an approximate solution for general graphs.

If the network’s edges are directed, pointing from each
new node to the node it attached to, they constitute a partial
order with which the network’s history must be consistent.
We can then use Eq. (8) to compute the posterior distribution
of each node’s arrival time. We show an example in Fig. 3.
This graph is sufficiently small (n = 10) that we can compare
our method with an exhaustive enumeration of all n! possible
orderings. As shown in panel (b), the marginals we obtain are
very accurate despite the presence of short loops. Thus we can
efficiently approximate not just the mean arrival time of each
node, but its posterior distribution as well.

Next we turn to the frustrated case, where G contains
directed cycles such as 1 ≺ 2 ≺ 3 ≺ 1. In this case, no permu-
tation satisfies all the constraints, and the data are inconsistent
with β = ∞. At finite β, Eq. (7) becomes

μ j→i(x) ∝
∏
k 
=i

∫ 1

0

μk→ j (y) e−βg jk�(x−y)

e−β�(x−y) + e−β�(y−x)
dy (11)

=
∏
k 
=i

∫ 1

0

μk→ j (y) e−βg jk�(x−y)

1 + e−β
dy, (12)

where g jk = 1 if k ≺ j and −1 if k � j. The marginals are
again polynomials of degree at most n − 1 since the density is
a function only of x’s permutation; we calculate these integrals
as before using Chebyshev polynomials.

The ground states of the Hamiltonian (2) are permutations
that minimize the number of violated constraints. These are
known as minimum violation rankings [7,8]. Like counting
linear extensions of a partial order, finding these rankings
is computationally hard. It is equivalent to the classic NP-
complete “minimum feedback arc set” problem of making a
directed graph acyclic by removing as few edges as possible
[3]. Intuitively, this is because the landscape of rankings can
be glassy, with multiple widely separated peaks. For instance,
given the comparisons 1 ≺ 2 ≺ · · · ≺ n, along with n ≺ 1 and
1 ≺ (n − 1), then there are two minimum violation orderings,
one where n is first and another where it is last.

One strategy to find the frustrated ground states is to
perform belief propagation at low temperature, where they
dominate the Gibbs distribution. If we wish to find a single
ground state regardless of its probability, we can use greedy
decimation, removing the edge (i, j) most likely to be violated
according to μi j and iterating. Belief propagation for this
problem was previously studied, using a discrete model, in
Ref. [21]. We ran both our procedures on 40 random directed
graphs with n = 1000 and mean degree λ = 8 at e−β = 2−10,
and we compared with nine other scalable methods from
computer science [22,23]. Both belief propagation algorithms
obtained the smallest number of violations; ours is somewhat
faster, perhaps because we use a continuous model and low-
degree polynomials.

We turn next to parameter estimation. If we do not know
how noisy comparisons are, we should use the data to estimate
β. The total probability that a model will generate G, averaged
over all permutations π, is

P(G) = 1

n!

∑
π

∏
(i, j)∈G

f (πi, π j )

=
∫

[0,1]n

∏
(i, j)∈G

e−β�(xi−x j )

1 + e−β
= Z (β ). (13)

Using the thermodynamic relation Z = eS−U , we approximate
Z (β ) from the Bethe entropy and the energy, where the cavity
approximation for the energy is

U = −
∑

(i, j)∈G

∫ 1

0

∫ 1

0
μi j (x, y) ln f (x, y)dx dy. (14)

If we have no prior information about β, we can determine its
most likely value by maximizing Z (β ).
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Finally, we discuss model selection. How can we choose
between two different model classes, i.e., two different Hamil-
tonians? We might want to choose between the step-function
model, where the probability that i ≺ j or i � j depends only
on the relative order of these two items, and a model where
these probabilities depend on how far apart they are, for exam-
ple the Bradley-Terry-Luce (BTL) model [24] (which actually
dates back to Zermelo [25]), or SpringRank [26]. Let us con-
sider BTL—a popular model of user preferences, similar to
Elo Chess ratings where the probability a user prefers i to j or
that i will beat j in a chess game is a logistic function,

f (xi, x j ) = eβ(xi−x j )

eβ(xi−x j ) + eβ(x j−xi )
= ri

ri + r j
, (15)

where ri = e2βxi . In general, the continuous ranks in this
model are allowed to range over the real line. We can scale
them to the unit interval, and thus use our Chebyshev ap-
proximation, by varying β. This corresponds to assuming a
uniform prior of width β on xi. To analyze the model, we
simply replace �(x − y) with x − y in the belief propaga-
tion equations, Eq. (11). We can use the orthogonality of the
Chebyshev polynomials to efficiently compute the integral as
a matrix product.

Given the observed comparisons, which of these two
models should we prefer? Both the models have one free
parameter, and so a simple approach is to prefer the model
with the largest maximum likelihood.

Using our methods, we computed the maximum likelihood
values for ATP tennis tournament matches for the ten years

2010–2019 [27]. On average, there were n = 435 players. The
average degree, i.e., the average number of games each player
played, was number of interactions λ = 11.0. We found, in-
terestingly, that the BTL model is only preferred over the step
function model in one of the ten years (2010). In other years,
the data are better explained by the step function model—
where the probability that a weaker player beats a stronger
one is fixed, rather than depending on the difference in their
ranks.

To summarize, we have shown how natural problems in-
volving permutations, rankings, and orderings can be treated
as continuous spin systems. This includes counting linear ex-
tensions of a partial order, inferring the order in which nodes
joined a growing network, and finding minimum-violation
rankings. We discussed both models where probabilities
depend only on the ordering, and those such as the Bradley-
Terry-Luce model where they depend on differences in rank.
We derived an efficient belief propagation algorithm using
low-degree polynomials to compute marginals and entropies,
and we found that it is accurate on both sparse random graphs
and some graphs with short loops. By using the Bethe free
energy as an estimate of the log-likelihood, it can also perform
parameter estimation and model comparison, and it can be
readily applied to real-world data.

This work was supported by NSF Grant No. BIGDATA-
1838251. We thank Jiaming Xu and Jean-Gabriel Young for
helpful conversations. Code implementing our methods is
available in [28].
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