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Herd immunity and epidemic size in networks with vaccination homophily
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We study how the herd immunity threshold and the expected epidemic size depend on homophily with respect
to vaccine adoption. We find that the presence of homophily considerably increases the critical vaccine coverage
needed for herd immunity and that strong homophily can push the threshold entirely out of reach. The epidemic
size monotonically increases as a function of homophily strength for a perfect vaccine, while it is maximized
at a nontrivial level of homophily when the vaccine efficacy is limited. Our results highlight the importance of
vaccination homophily in epidemic modeling.
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I. INTRODUCTION

In the paradigmatic susceptible-infectious-recovered
model of infectious disease in a fully mixed population
[1,2], so-called herd immunity is reached when the fraction
πv of the population that is immune to the disease through
vaccination or previous infection is larger than

π c
v = 1 − 1

R0
, (1)

where R0 denotes the basic reproduction number, i.e., the
expected number of secondary cases produced by a typical
infectious individual in a fully susceptible population. Here,
herd immunity means that the disease cannot spread in the
population because each infected individual can only transmit
the infection to less than one other individual on average; that
is, the effective reproduction number Reff = (1 − πv)R0 < 1.
Consequently, not only those who are vaccinated but also the
unvaccinated individuals are collectively protected from the
disease.

This model assumes homogeneous mixing where individ-
uals interact with each other randomly and independently of
their properties, such as their vaccination status. However,
this is a premise that may be too simplistic for modeling
real-world populations, which often exhibit inhomogeneous
mixing patterns that can lead to nontrivial epidemic out-
comes [3–6]. One of the inhomogeneities that would be
particularly relevant to vaccine-induced herd immunity is the
correlation between the vaccination status of interacting in-
dividuals [7–12]. When this correlation exists, the vaccinated
and unvaccinated individuals have different compositions of
vaccinated and unvaccinated neighbors. Let us introduce the
term vaccination homophily to represent mixing patterns that
are assortative with respect to vaccination status, so that
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connections are more probable within the vaccinated and un-
vaccinated populations than between them. In this Letter, we
investigate the effect of vaccination homophily on the herd
immunity threshold and the expected epidemic size.

II. MODEL

To this end, we formulate a random network theory of epi-
demic spreading under homophily with respect to the adoption
of an immunity-inducing vaccine. The links in the network
represent transmissible contacts between individuals, i.e., a
susceptible individual will get infected if connected to an in-
fected individual. We refer to this network as the transmission
network to avoid confusion with the contact network. Each
link in the contact network will let the disease be transmit-
ted through it with a certain probability; the links on which
transmission actually takes place constitute the transmission
network [13,14]. Here, we do not explicitly consider this prob-
abilistic transmission process but rather take the transmission
network as a given.

Within the population, a fraction πv of the population
adopts the vaccine, while the remaining fraction πu = 1 − πv

is not vaccinated. Vaccination homophily can be expressed in
terms of the bias in the probabilities of connections within
the two groups. Let us denote the conditional probability that
a random neighbor of an individual is vaccinated given that
the individual is vaccinated by πvv and, similarly, the condi-
tional probability that a random neighbor of an unvaccinated
individual is not vaccinated by πuu. Assuming that the aver-
age degrees (numbers of connections) of the vaccinated and
unvaccinated populations are equal, the two probabilities are
related as πuu = 1 − (1 − πvv)πv/πu.

The problem of using the connection probabilities πvv

and πuu as measures of homophily is that they are not
orthogonal to πv, so even if we fix the value of πvv,
the strength of homophily varies with different values of
πv. Moreover, the two connection probabilities are cou-
pled in a nonlinear manner, making it difficult to justify
using either of them as a representative measure of the
homophily of the entire network structure. To address
these issues, we adopt the Coleman homophily index,
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originally proposed for social network analysis [15] and
defined by

h = πvv − πv

1 − πv
= πuu − πu

1 − πu
. (2)

This measure has desirable axiomatic properties: (i) it is an
increasing function of both πvv and πuu, (ii) it is symmetric
for the vaccinated and unvaccinated populations, and (iii)
it takes a value of zero when the mixing is homogeneous
(no homophily) and a value of one when all links are in-
side the two groups, that is, πvv = πuu = 1. A negative value
implies that the network is heterophilic in terms of vacci-
nation status. Note that the connection probabilities πvv =
πv + πuh and πuu = πu + πvh must be positive and therefore
the Coleman homophily index is bounded from below as
h � max(−πv/πu,−πu/πv).

We consider the transmission network structure where πv,
h, and the degree distribution P(k) are specified but otherwise
maximally randomized. By letting 〈·〉 denote an average with
respect to P(k), the distribution of the excess degree k̃, i.e., the
number of other neighbors that a randomly chosen neighbor of
a randomly chosen node has, is given by (k̃ + 1)P(k̃ + 1)/〈k〉.
Neglecting the rare cycles, we can identify the basic reproduc-
tion number as the mean excess degree of the transmission
network as R0 = 〈k2〉/〈k〉 − 1 [16–18].

We consider a class of epidemic models where infection
induces complete and permanent immunity, whereas the im-
munity induced by vaccines is generally incomplete. There
are two effects of vaccine protection that are of interest for
modeling herd immunity [19,20]. First, the vaccine can re-
duce the probability that the recipient becomes infected upon
exposure. This reduction is referred to as the efficacy against
susceptibility and denoted by fS [21]. Second, individuals
who are infected despite being vaccinated may have a lower
probability of transmitting the infection to others. We repre-
sent this with the efficacy against infectiousness, fI, defined
as the reduction in the secondary infection rate.

Under this setup, the herd immunity threshold and the
expected final size of a large epidemic can be derived from
the structure of the transmission network alone, without ex-
plicitly considering the epidemic dynamics. In the following,
we leverage the theory of branching processes and percolation
theory to investigate these quantities of interest.

III. HERD IMMUNITY THRESHOLD

For a heterogeneous population consisting of multiple sub-
populations, we can use the next-generation matrix (NGM)
method [22,23] to identify the vaccination threshold π c

v
above which the disease cannot spread. While the NGM
method was originally developed for epidemic dynamics de-
scribed by ordinary differential equations, it can be naturally
interpreted as a description of the local structure of the trans-
mission network by a multitype branching process where
the branching factor is the excess degree of the network.
Let us denote by I (m)

v and I (m)
u the number of infections in

the vaccinated and unvaccinated populations, respectively,
at generation m from an index case (the first infected in-
dividual). Assuming a locally treelike network, we can

FIG. 1. Critical coverage π c
v of a perfect vaccine required for

herd immunity as a function of homophily strength h for different
values of basic reproduction number R0. Positive and negative val-
ues of h imply homophily and heterophily, respectively. The area
shaded in gray represents the parameter region where the network
is unrealizable.

write the following recurrence equations under a mean-field
approximation:

I (m+1)
v = (1 − fS)R0

[
(1 − fI )πvvI (m)

v + πuvI (m)
u

]
, (3)

I (m+1)
u = R0

[
(1 − fI )πvuI (m)

v + πuuI (m)
u

]
, (4)

where πuv = 1 − πuu and πvu = 1 − πvv are the conditional
probabilities that a link from one group points to the other. By
writing I(m+1) = AI(m), where I(m) = (I (m)

v , I (m)
u )ᵀ and

A = R0

(
(1 − fS)(1 − fI )πvv (1 − fS)πuv

(1 − fI )πvu πuu

)
,

we see that the infection eventually dies out after a finite
number of generations if all the eigenvalues of the NGM A
have an absolute value of less than one. That is, at the critical
point, the spectral radius ρ(A) = 1.

By reparameterizing the connection probabilities with πv

and h, the critical vaccine coverage needed for herd immunity
is given by

π c
v = 1 − εR0h

(1 − ε)(1 − h)

(
1 − 1

R0

)
, (5)

where we define ε = (1 − fS)(1 − fI ) and require ε � 1/R0.
For ε > 1/R0, the vaccination threshold disappears and herd
immunity becomes unattainable. For a perfect vaccine with
fS = 1 and/or fI = 1, we have

π c
v = 1

1 − h

(
1 − 1

R0

)
, (6)

which reduces to the well-known threshold of Eq. (1) for
homogeneous mixing with h = 0.

Equation (6) indicates that if the homophily strength h
increases, so does the vaccine coverage π c

v required for herd
immunity (see Fig. 1). In other words, the presence of ho-
mophily makes herd immunity harder to reach. Notably, the
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threshold occurs at π c
v = 1 for

h � 1

R0
, (7)

implying that above this critical strength of homophily, one
cannot attain herd immunity at all unless the entire population
is vaccinated. That is, no matter how small the unvaccinated
population is, there will always be a nonzero probability of a
large epidemic within this population.

Finally, we note that the above discussion applies to any
degree distribution P(k) with mean excess degree R0.

IV. EPIDEMIC SIZE

When the vaccine coverage is below the threshold, an
outbreak can result in an epidemic that infects a substantial
fraction of the population. The size of such an epidemic
coincides with the size of the giant component of the trans-
mission network because all the individuals in a connected
component will be infected if the index case belongs to the
same component [13,17]. Let us denote the probability that
a link pointing to a vaccinated node does not lead to the
giant component by φv and the equivalent probability for an
unvaccinated node by φu. These probabilities are subject to
the following consistency equations:

φv = fS + (1 − fS)g1( fI + (1 − fI )(πvvφv + πvuφu)),

(8)

φu = g1(πuvφv + πuuφu), (9)

where g1(x) = ∑∞
k=1 kP(k)xk−1/〈k〉 denotes the probability

generating function of excess degree. Having solved the above
consistency equations for φv and φu, we can compute the size
of the vaccinated and unvaccinated populations contained in
the giant component as

sv = (1 − fS)πv[1 − g0( fI + (1 − fI )(πvvφv + πvuφu))],

(10)

su = πu[1 − g0(πuvφv + πuuφu)], (11)

respectively, where g0(x) = ∑∞
k=0 P(k)xk is the probability

generating function of the degree distribution P(k). The total
size of the giant component is the sum of these two fractions
s = su + sv.

As an illustration, let us solve the above equations for a
random network with a Poisson degree distribution P(k) =
〈k〉ke−〈k〉/k!. For this network, the excess degree distribu-
tion is identical to the degree distribution and hence 〈k〉 =
R0. Given this degree distribution, we get g0(x) = g1(x) =
exp[−R0(1 − x)]. In the thermodynamic limit and in the ab-
sence of homophily (h = 0), this random network model with
the Poisson degree distribution reduces to the Erdős-Rényi
(ER) random graph ensemble, which is equivalent to homo-
geneous mixing. In other words, our model represents the
simplest deviation from the ER model through the addition
of homophily that biases the randomness of links.

First, let us consider the case of a perfect vaccine, for which
φv = 1. Equation (9) now becomes

φu = exp[−R0πuu(1 − φu)], (12)

which has an analytical solution:

φu = −W (−R0πuu exp(−R0πuu))
R0πuu

. (13)

Here, W (·) denotes the Lambert W function, which is the
inverse function of f (w) = wew. The giant component size
is then calculated from Eq. (11) as

s = su = πu{1 − exp[−R0πuu(1 − φu)]}, (14)

where all infections are restricted to the unvaccinated
population.

Figures 2(a)–2(d) show the solution of Eq. (14). The main
observation is that the expected epidemic size always in-
creases with homophily strength h. The difference in epidemic
size under strong and weak homophily is especially significant
when the vaccine coverage πv is not small. As an example, for
a disease with R0 = 1.5, the homogeneous mixing assumption
leads to the prediction that the vaccination threshold is 33%.
However, even if the vaccine coverage is well above this
threshold, strong homophily can still let the disease spread
in the unvaccinated population and infect up to 58% of it [see
Fig. 2(b)].

In the case of imperfect vaccines, the coupled consistency
equations are not analytically tractable. The solution of Eq. (9)
is given by

φu = −W (−R0πuu exp[−R0[1 − (1 − πuu)φv]])
R0πuu

, (15)

whereas for fS < 1 and fI < 1, Eq. (8) leads to

φu = 1

1 − πvv

(
1 − πvvφv + 1

(1 − fI )R0
log

φv − fS

1 − fS

)
.

(16)

We can numerically solve for φv by equating the right hand
sides of Eqs. (15) and (16). Plugging the results into Eqs. (10)
and (11) yields the giant component size.

In what follows, we present the results for fI = 0 and
only vary the efficacy against susceptibility, fS, for the sake
of simplicity. Figures 2(e) and 2(f) show the epidemic size
under the coverage of an imperfect vaccine. As expected,
a smaller efficacy leads to a larger epidemic and a higher
vaccination threshold. Unexpectedly, contrary to the case of
perfect immunization, the epidemic size first grows and then
shrinks with increasing homophily. This can be attributed to
the following competing mechanisms affected by increased
levels of homophily: (1) Similarly to the case of a perfect vac-
cine, more unvaccinated individuals will be infected as they
are connected to fewer immune individuals and more densely
within themselves, making them less protected by the herd
immunity effect. (2) An imperfect vaccine leaves a part of the
vaccinated population susceptible to breakthrough infections.
In the weak homophily regime, more vaccinated individuals
may contract the disease due to the larger epidemic in the
unvaccinated population. The risk of breakthrough infection
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FIG. 2. Epidemic size in Poisson networks as a function of homophily strength h and vaccine coverage πv. Top row: Two-dimensional
heat maps representing the epidemic size. The solid red line in each panel denotes the vaccination threshold. We represent contours of the
epidemic size at 0.1 intervals by different colors and solid black lines. Bottom row: Epidemic size divided by the size of the unvaccinated
population. Theoretical predictions (in lines) are compared with the giant component sizes obtained by simulating networks of size N = 105

(in symbols). The details of the network simulation can be found in the Supplemental Material [24]. (a) and (b) show the results for R0 = 1.5
and a perfect vaccine, (c) and (d) are for R0 = 3 and a perfect vaccine, and (e) and (f) are for R0 = 3 and an imperfect vaccine with fS = 0.75.
If the vaccine is perfect, only the unvaccinated individuals contract the disease; thus, the vertical axis in (b) and (d) corresponds to the fraction
of the unvaccinated population that will be infected. The cross symbols in (f) indicate the maximum of each curve. Note that the homophily
strength at which the epidemic size takes the maximum is independent of πv.

decreases as they become less connected with the unvacci-
nated population in the strong homophily regime. Figure 3(a)
gives an example of the two competing processes, where given
πv = 0.8, R0 = 3, and vaccine efficacy fS = 0.75, the final
epidemic size varies between 13% and 24%, reaching its peak
around h = 0.62.

As a consequence of the competition, the total number
of infected individuals is maximized, in general, at a non-
trivial level of homophily h∗, which depends on fS and
R0 but not on the vaccine coverage πv. The smaller the
R0 and higher the value of fS, the higher the strength
of homophily h∗ that leads to the worst overall outcome
[see Fig. 3(b)]. In other words, a highly infectious disease

FIG. 3. Effects of vaccination homophily for imperfect vaccines.
(a) The sizes of vaccinated population sv and unvaccinated popula-
tion su in the epidemic of size s. The parameters are R0 = 3, πv =
0.8, fS = 0.75. (b) The homophily strength h∗ maximising s as a
function of fS and R0.

countered by a vaccine with low efficacy spreads maxi-
mally in a population with a medium level of vaccination
homophily, while less infectious diseases generally benefit
from higher levels of homophily, especially if the vaccine
efficacy is high. The maximum impact of homophily on epi-
demic size is further discussed in the Supplemental Material
[24].

In the above discussion, we presented the results for the
case where the transmission network has a Poisson degree dis-
tribution and the efficacy against infectiousness fI = 0. These
conditions can be altered. In the Supplemental Material [24],
we calculate the epidemic size for transmission networks with
more realistically heterogeneous excess degrees that follow
the negative binomial distribution. We also discuss the case
where both fS and fI are varied. In both cases, the epidemic
outcomes are qualitatively similar to those obtained for Pois-
son networks and vaccines that purely affect susceptibility,
except for the fact that the homophily level at which the epi-
demic size is maximized is no longer independent of vaccine
coverage.

V. CONCLUSIONS AND DISCUSSION

We have studied the effect of vaccination homophily, i.e.,
assortative mixing by vaccination status, on the herd immunity
threshold and the expected epidemic size. In human soci-
ety, vaccination homophily can emerge due to the presence
of confounding factors, such as age [5], geography [25,26],
socioeconomic status [27], and personal and religious beliefs
[28], that influence both the likelihood of interaction between
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individuals and the likelihood of them being in a common
vaccination status. It can also occur as a consequence of
behavioral contagion [29,30] or inequality in the access to
the vaccine. Our analysis is built on a model that embodies
a minimalistic departure from the traditional assumption of
homogeneous mixing and shows that the vaccination thresh-
old for herd immunity is higher for stronger vaccination
homophily. This suggests that herd immunity is more difficult,
if not impossible, to achieve in the presence of vaccination
homophily. It also implies that the well-known formula of
Eq. (1) underestimates the vaccination threshold by not taking
homophily into account.

We also show that the behavior of epidemic size as a func-
tion of homophily varies depending on the vaccine efficacy
against susceptibility; when the efficacy is high, homophily
monotonically amplifies the epidemic, while the epidemic size
peaks at a nontrivial level of homophily when the efficacy is
low. This is due to the competition between the herd immunity
effect by homogeneous mixing and the epidemic containment
by segregation. We can identify the parameter values for
which homophily has a large impact on the epidemic size,
which will have direct implications for the design of inter-
vention strategies.

Apart from vaccination homophily, another important type
of inhomogeneity in networked epidemics is degree hetero-
geneity; namely, real-world epidemics often exhibit a large
variance in the number of secondary infections, whose dis-
tribution can be modeled by a negative binomial distribution
[4,6]. The herd immunity threshold given by Eq. (5) is not
affected by the overdispersion of the distribution, but the

epidemic size depends on the full shape of the distribution
and therefore differs from the one for a Poisson network, as
shown in the Supplemental Material [24].

Recently, we became aware of two other research works
[31,32] that report results in line with what we have described
here. They found qualitatively similar effects of homophily
on epidemic size for scale-free networks [31] and empir-
ical contact networks [32]. This further corroborates the
generalizability of our theoretical findings to networks with
heterogeneous degree distributions [33].

As a final remark, we note that our approach has a broader
scope. In this Letter, we focused on homophily by vaccination
status; however, our framework is general enough to account
for homophily by adherence to other epidemic interventions
that reduce the susceptibility or infectiousness of individuals,
such as the practice of social distancing [34], use of protec-
tive equipment [31], and adoption of digital contact tracing
[35,36]. It can also be applied to the analysis of herd immunity
in the case where the past infection (and consequent disease-
induced immunity) is localized to a subpopulation [37] and in
the case where the mixing pattern is assortative by risk factors
of the disease [38].
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