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Basin sizes depend on stable eigenvalues in the Kuramoto model
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We show that for the Kuramoto model (with identical phase oscillators equally coupled), its global statistics
and size of the basins of attraction can be estimated through the eigenvalues of all stable (frequency) synchro-
nized states. This result is somehow unexpected since, by doing that, one could just use a local analysis to obtain
the global dynamic properties. But recent works based on Koopman and Perron-Frobenius operators demonstrate
that the global features of a nonlinear dynamical system, with some specific conditions, are somehow encoded in
the local eigenvalues of its equilibrium states. Recognized numerical simulations in the literature reinforce our
analytical results.
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I. INTRODUCTION

Since the pioneering studies of Winfree on biological
rhythms at the end of the 1960s [1], phase oscillators have
been playing a central role in the study of collective behavior.
The most famous derivation, the Kuramoto model [2,3] and its
variants, has been successfully employed to understand prob-
lems related to synchronization in various areas of science.
It includes synchronization in flashing fireflies [4], circadian
rhythms [5], swarming dynamics [6], cardiac pacemaker cells
[7], superconducting Josephson junctions [8], power-grid net-
works [9], and the Millennium Bridge oscillation [10]. In front
of this vast diversity of dynamical systems, emerges a relevant
question that guides this Letter: What are the conditions that
lead each system to the correct operation?

The basin of attraction, the set of initial conditions from
which the solutions converge asymptotically to a given at-
tractor, is an intricate and fundamental concept in dynamics.
Although the definition is straightforward, the boundaries of
the basin as well as its measure may be difficult to study
even in low-dimensional systems and also for such simple
attractors as stable equilibrium states. Since the basin can
include the points quite distant from the attracting set, the size
of the basin, as a general rule, is not determined by the local
properties of the attractor. In dissipative maps and flows, it is
delimited by the complex geometrical configuration of stable
manifolds of unstable invariant sets, which can lead to fractal
boundaries [11]. This feature makes statistics a proper method
to evaluate quantities in a basin of attraction. That approach
has been applied in the Kuramoto model of coupled phase
oscillators, in the context of stable synchronized twisted states
[12–14]. These studies focused on the size of the basin, lately
interpreted in networks as the basin stability: the likelihood
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quantification of returning to the same synchronized state
[15].

In particular, in 2006, Wiley, Strogatz, and Girvan [12]
investigated the Kuramoto model of N identical phase os-
cillators on a ring, each one equally coupled with the R
nearest neighbors on either side [Eq. (1)]. The authors studied,
through numerical experiments and also analytically, for dif-
ferent low values of R some relevant aspects of the so-called
sync basin (the attraction basin of the state of full synchro-
nization for which, in the appropriate corotating reference
frame, all oscillators share the steady phase value). They
showed that for R/N > 0.34, the sync basin is the whole phase
space, except for a set of measure zero. Below this critical
value the stable steady configurations called q-twisted states,
characterized by a constant difference of phases between the
neighboring units, emerge in the phase space. The number of
twists q counts overall rotations around the circle that occur
while passing along the ensemble from the first to the last unit.
The simulations revealed that (i) the probability of the final
twisted state having q twists follows a Gaussian distribution
∼ exp[−q2/(2σ 2)] with respect to the winding number q,
and (ii) the standard deviation σ of this distribution scales as√

N/R, namely σ ∼ 0.2
√

N/R. Remarkably, this finding was
supported by a heuristic argument for such statistical patterns,
leaving rigorous derivations of (i) and (ii) as open questions.

For the next-neighbor coupling (R = 1), this problem was
revisited in Ref. [13] with an accurate numerical method to
measure the volume of the basin for each stable state. The
authors obtained a typical linear size [ατ (q)] for each basin
of attraction of the q-twisted stable state, so that the volume
of the basin of attraction of each stable state is proportional
to Vq ∼ αN

τ (q). In addition to these studies, another impor-
tant step in the knowledge of the basin of attraction of the
Kuramoto model, still locally coupled, was given by Ochab
and Góra [14]. They observed a direct correlation between the
sizes of the basins of attraction and the respective eigenvalues
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of the Jacobian matrices of stable q-twisted states: Solutions
having a maximal negative eigenvalue closer to zero (less
stable) feature smaller basins of attraction than the more stable
solutions for which all eigenvalues are strongly negative. In
general one does not expect that local properties of the equi-
librium states have direct relations with the global properties
of the state space, but that result is consistent with recent
mathematical results about the global properties of certain
nonlinear systems on compact manifolds, which shall be dis-
cussed further and will also serve as the basis for the study
that we present here. Keeping in mind that in the Kuramoto
model the only dynamic action is the attractive or repulsive
interaction between the nodes, and that the most attractive
configuration possesses the largest size basin of attraction, we
delve into this idea and suggest a theoretical description for
the size of the basin of attraction in the Kuramoto model.

In the following, we start with a brief summary of the Ku-
ramoto model and of recent mathematical results concerning
the global and local properties of certain nonlinear systems on
compact manifolds. Using some approximations, we obtain
an analytical expression that has many similarities with the
basin volume distribution obtained by Ref. [12], mentioned
above. Then our analytical results are compared with the nu-
merical experiments, strengthening the evidence for the strong
correlation between eigenvalues and basin sizes and providing
more arguments towards an explanation of open questions (i)
and (ii). Our approach should work with systems that can be
reduced to the Kuramoto model, as done recently in an experi-
mental network of nanoelectromechanical oscillators [16], but
we expect that our approach can be applied to other systems,
as discussed in our final remarks.

II. THEORETICAL ASPECTS

A. Kuramoto model: Solutions and eigenvalues

Following Ref. [12], we consider here a system of N
identical Kuramoto oscillators on a regular ring where each
oscillator is coupled with equal strength to its R nearest neigh-
bors on either side. In the corotating reference frame the time
evolution of this system is governed by the following set of
ordinary differential equations (ODEs),

θ̇ j = 1

N

j+R∑
k= j−R

sin(θk − θ j ), j = 1, 2, . . . , N, (1)

where the index k is periodic mod N .
As pointed out in Ref. [12], the set of equations (1) is a

gradient system that can be recast as θ̇ = −∇V with, e.g.,
V (θ1, . . . , θN ) = N−1 ∑

i, j cos(θi − θ j ), so that V is bounded
both from below and from above: −N � V � N . Therefore
dV/dt = −(∇V )2 and all trajectories, except for the points
of equilibrium and their stable manifolds, are flowing “mono-
tonically downhill” and asymptotically tend to those of the
equilibria that correspond to the local minima of V . For this
reason, “we need not concern ourselves with the possibility
of more complicated long-term behavior, such as limit cycles,
attracting tori, or strange attractors” for (1) [12].

The system (1) has a family of equilibrium states (in the
rotating frame) featured by the integer winding number q,

θ j = 2πq

N
j + C, (2)

which measures the number of full twists in phase as one
goes around the ring once and can assume the values q =
−m, . . . ,−1, 0, 1, . . . , m with m = N/2 [for odd N , m =
(N − 1)/2], and C is a real constant. The state with q = 0
corresponds to θ j = C,∀ j, i.e., all oscillators synchronize in
phase, while in twisted states (q �= 0), the phase difference
between consecutive oscillators remains 2πq/N . In turn, the
eigenvalues of the Jacobian matrices near those equilibrium
states are real and obey the expression [17]

γ�(q) = − 4

N

R∑
k=1

cos(k q δ) sin2(k � δ/2), (3)

where � = 1, 2, . . . , N − 1 and δ = 2π/N .

B. The stability measure

The Koopman (or composition) operator approach can pro-
vide a global description of dynamical systems in terms of the
time evolution of observables (functions) of the state space. In
this approach a nonlinear dynamical system is represented in
terms of an infinite-dimensional (but linear) operator acting on
a Hilbert space of functions of the system states. The spectral
decomposition of the Koopman operator provides a complete
description of the nonlinear system. Despite being an infinite-
dimensional operator, there are several numerical methods
capable of obtaining finite-dimensional approximations for
Koopman eigenvalues and modes and they have applica-
tions in various real-world problems such as fluid dynamics,
power grids, epidemiology, climatology, etc. (see Ref. [18]
and references therein). In turn, the Perron-Frobenius (or
transfer) operator evolves the densities of trajectories in the
state space. It is also linear and is dual to the Koopman
operator. Both operators share the same spectral properties
and can provide global descriptions of a dynamical system
[18].

Recently, it was demonstrated that for a Morse-Smale gra-
dient flow acting on a smooth, compact, and oriented manifold
with no boundary, the spectrum of the transfer operator is
given by linear combinations of the Lyapunov exponents at
the critical points of the Morse function (i.e., the eigenvalues
of the Jacobian at the fixed points) [19] and it holds globally
on the manifold. This result agrees with the observation that
for a d-dimensional autonomous system with a hyperbolic
fixed point x∗ ∈ X , where X is a compact, connected, and
forward-invariant subset of Rd , the spectrum of the Koopman
operator is given by the eigenvalues of the Jacobian matrix
evaluated at x∗ [20] and also with a relevant property of this
operator: If φ1 and φ2 are Koopman eigenfunctions associ-
ated with the eigenvalues μ1 and μ2, then � = φa

1φ
b
2, with

a, b ∈ R, is also a Koopman eigenfunction with eigenvalue
aμ1 + bμ2.

On the other hand, one should notice that the set of Ku-
ramoto equations (1) above is a Morse-Smale system with the
Morse function given by the “potential” V (θ1, . . . , θN ), the
critical points of V are the q-twisted states, and the Lyapunov
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exponents (at critical points) are the eigenvalues γ�(q). Then
the mathematical results [19,20] above ensure that the γ�(q),
despite being obtained by local methods, somehow contain
global information of system (1), and we shall use them to
explore the basins of attraction of the q-twisted states. To
represent the stability in all directions of the phase space,
due to a stable q-twisted state, we consider the sum of its
eigenvalues,

γ̂q ≡
N−1∑
�=1

γ�(q), γ�(q) < 0, (4)

which resembles the entropy functional for Morse-Smale dif-
feomorphisms in the framework of the (Gibbs) variational
principle for dynamical systems [21].

Then we define �q, the equilibrium stability measure, as the
sum of the eigenvalues of a stable q-twisted state, normalized
by the most negative γ̂q which in this case is γ̂0:

�q ≡ γ̂q

γ̂0
. (5)

We present in Fig. 1(a) the plot of �q with respect to q
for different network sizes with local coupling (R = 1). The
similarity between the plot of �q and the plot of ατ (q), the
typical linear size of the basin of attraction presented in Fig. 3
(inset) of Ref. [13], is remarkable. Therefore, if �q has a
behavior similar to the linear size of a basin of attraction, it is
reasonable to expect that for a network with N oscillators the
volume of the basin of attraction of a given q-state will behave
as ∼�N

q . In Fig. 1(b) we plot �N
q , for N = 60 and R = 2, which

can be well approximated by a Gaussian curve. To establish
this result, in the next section we show explicitly for low
values of R/N that �N

q can be approximated by a Gaussian
function with respect to the winding number q.

C. Analytic expression for �N
q

Our goal here is to derive an explicit expression for the
standard deviation σ in terms of the number of nodes N and
the connection R of the network.

By using trigonometric identities, Eq. (3) can be rewritten
as

γ�(q) = − 1

N

R∑
k=1

{2 cos(k q δ) − cos[k δ(q + �)]

− cos[k δ(q − �)]}, (6)

and by performing the summations one obtains

γ�(q) = − 1

N

{
sin(Mqπ/N )

sin(qπ/N )
− 1

2

[
sin[M(q + �)π/N]

sin[(q + �)π/N]

+ sin[M(q − �)π/N]

sin[(q − �)π/N]

]}
, (7)

where M ≡ 2R + 1.
Now let us evaluate γ̂q = ∑

� γ�(q). The summation of
the first term on the right-hand side of Eq. (7) is trivial, but
for the second (B+) and the third (B−) terms, the sums are

FIG. 1. (a) Dependence of �q with the winding number q, for
different network sizes. By comparing this plot with that in Fig. 3
(inset) of Ref. [13], one can notice that �q behaves as the linear size
of the basin of attraction of the q states. (b) Plot of �N

q , for N = 60
and R = 2 (black circles), and the fitted Gaussian curve (red line).

approximated by integrals since we are regarding N 
 R, q,

B± =
N−1∑
�=1

1

N

sin [M(q ± �)π/N]

sin [(q ± �) π/N]

≈
∫ 1

0

sin [M(y ± x)π ]

sin [(y ± x) π ]
dx = 1, (8)

where x = �/N , and y = q/N . Then one arrives at

γ̂q ≈ 1 − sin(Myπ )

sin(yπ )
. (9)
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The value of γ̂0 is given by

γ̂0 = lim
y→0

γ̂q = 1 − M = −2R.

In turn, the normalized sum of eigenvalues �q = γ̂q/γ̂0 can be
expanded around y ∼ 0,

�q = − 1

2R

[
1 − sin[(2R + 1)yπ ]

sin[y π ]

]

= 1 − π2

3
(2R + 1)(R + 1)y2 + O(y4)

≈ 1 − β
q2

N
, (10)

where

β = π2

3

(2R + 1)(R + 1)

N
. (11)

For N 
 R, q, the quantity �N
q can be approximated by a

Gaussian function1

�N
q ≈

(
1 − β

q2

N

)N

≈ e−βq2
, (12)

with a standard deviation equal to 1/
√

2β. As a result, the
standard deviation can be written as

σT =
√

N F (R), F (R) =
[

3

2π2(2R + 1)(R + 1)

]1/2

.

(13)

III. COMPARISON WITH AVAILABLE NUMERICAL DATA

To compare this result [Eq. (13)] with the one known from
the literature [12], we restrict ourselves to small values of R,
for which F (R) depends almost linearly with 1/

√
R, and then

one can obtain the following approximation for σT ,

σT ≈ 0.2014

√
N

R
− 0.041 88

√
N, (14)

which has approximately the same scaling law (σ ∼
0.2

√
N/R) of the volume of the basin of attraction obtained

through numerical experiments. It is important to remark that
those experiments were carried out with data sets from dif-
ferent network sizes. But, as we can see, the second term of
Eq. (14) is almost negligible and does not differ much for
small values of N . Therefore, σ can be interpreted as linearly
dependent on

√
N/R as argued in Ref. [12]. Nevertheless,

Eq. (14) indicates that actually σ/
√

N increases (almost) lin-
early with 1/

√
R.

In Fig. 2 we can observe a qualitative agreement (same
scaling σ ∼ 0.2

√
N/R) between the theoretical standard de-

viation Eq. (13) and numerical experiments for different
network sizes, with R/N � 0.1. A good agreement between
theory and experimental results can be better visualized by
adding a constant ε ≈ 0.028 (on an ad hoc basis) to F (R) in

1Since β is O(1/N ), formally as N → ∞, the limit of (1 −
βq2/N )N is 1. On the other hand, for large but finite N , �N

q ≈
(1 − βq2/N )N can be well approximated by exp(−βq2).

FIG. 2. Standard deviation of the distribution of volumes of
basins of attraction, divided by

√
N . The blue, red, green, magenta,

and black marks refer, respectively, to numerical experiments per-
formed in networks with N = 20, 40, 60, 80, and 100 with R/N �
0.1. The solid black line is the theoretical result given by Eq. (13).
Gray dashed line: A good agreement between our results and exper-
imental data could be obtained by adding a constant ε ≈ 0.028 to
F (R).

Eq. (13), as illustrated by the gray dashed line in Fig. 2. Then,
based on the eigenvalues of equilibrium states, a good esti-
mate for the standard deviation of the distribution of volumes
of basins of attraction can be written as

σ√
N

= F (R) + ε. (15)

IV. FINAL REMARKS

Based on recent mathematical results that establish rela-
tionships between global and local properties of nonlinear
flows on compact manifolds [19,20] and also on the observa-
tion that the size of the basin of attraction of a q-twisted state
is correlated with its eigenvalues [14], we define the stability
measure �q as proportional to the sum of eigenvalues of the q
states and observe that �q [our Fig. 1(a)] behaves similarly to
the linear basin size ατ (q) (see the inset of Fig. 3 in Ref. [13]).
Then, for small q, R � N , we found an analytic expression for
�N

q , a Gaussian distribution for q with a standard deviation
that scales as ∼0.2

√
N/R, the same behavior obtained by

numerical simulations in Ref. [12]. This indicates that �N
q is

successful in capturing how the basin volumes are distributed
according to the size N and the topology R of the network.

A priori it is not expected that global dynamical properties
can be obtained from local characteristics, such as the Jaco-
bian eigenvalues. But our results indicate that some global
properties of the system (1) are somehow reflected or encoded
in the (local) eigenvalues of the equilibria and are compatible
with results about the global dynamics of Morse-Smale gra-
dient systems [19]. On the other hand, we suspect that some
facts contribute to �N

q having many characteristics identical
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to the distribution of the basins of attraction of the q-twisted
states. The phase space of the system (1) is as follows:

(1) A compact (N-torus) and smooth manifold because,
as pointed out in Ref. [12], the system (1) features gradi-
ent dynamics with trajectories flowing monotonically over
a potential surface and asymptotically reaching fixed points,
both in forward and backward time. No complicated behavior
(limit cycles, attracting tori, strange attractors, etc.) occurs.

(2) Most likely the basins are well-defined regions in the
phase space, separated by smooth high-dimensional hyper-
surfaces: segments of codimension-1 stable manifolds of the
equilibria that possess just one positive Jacobian eigenvalue.
These segments are matched on codimension-2 stable mani-
folds of the equilibria with two positive eigenvalues, and so
on. Moreover, in high-dimensional convex bodies the bulk of
the volume lies in the immediate vicinity of the boundaries:
For a 40-dimensional sphere with radius R or a cube with
the size 2R the thin boundary layer 0.9R < |r| < R contains
over 98% of the volume. Therefore, regions of the phase space
adjacent to the basin boundaries are responsible for the dom-
inating part of the basin volume. Such geometry favors the
long-distance linear behavior. We do not expect these results
to replay in systems with complicated basins of attraction
delimited by fractal, riddled, or Wada boundaries.

Our approach has revealed that certain global phenom-
ena in networks of phase oscillators can be understood by

local studies where the dynamics is strongly dominated by
attractive and repulsive interactions between the nodes. In
such systems the action of the eigenvalues predicting the
dynamics protrudes over large distances from the equilib-
rium state, whether an attractor, a saddle, or a repeller, as
shown in Ref. [17]. Therefore, we hope that this study can be
extended to other network systems with similar features (high-
dimensional, with phase space that is a compact manifold,
etc.) mainly for the case of Morse-Smale gradient systems
with a finite number of hyperbolic equilibrium states.
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