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Consistent Hamiltonian models for space-momentum diffusion
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We develop a unified Hamiltonian approach to the diffusion of a particle coupled to a dissipative environ-
ment, an archetypal model widely invoked to interpret condensed phase phenomena, such as polymerization
and cold-atom diffusion in optical lattices. By appropriate choices of the coupling functions, we reformulate
phenomenological diffusion models by adding otherwise ignored space-momentum terms. We thus numerically
predict a variety of diffusion regimes, from diffusion saturation to superballistic diffusion. With reference to
ultracold atoms in optical lattices, we also show that time correlated external noises prevent superdiffusion from
exceeding Richardson’s law. Some of these results are unexpected and call for experimental validation.
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In recent years a growing number of experimental [1–6]
and theoretical studies [7–12] addressed the problem of
cold atoms diffusing in optical lattices generated by coun-
terpropagating laser beams. Such systems are subjected to
intrinsic damping mechanisms often modeled by power-law
momentum-dependent friction terms. For this reason, the
diffusion of cold atoms has been addressed mostly in the
momentum space. However, a consistent treatment of spatial
diffusion requires a fully Hamiltonian formalism to correctly
account for the coupling of the space and momentum vari-
ables. We do so by adopting a well-established approach
[13,14], whereby a cold atom can be modeled as an open
system nonlinearly coupled to a “heat bath” of classical oscil-
lators, which mimic the light fields. By an appropriate choice
of the coupling functions, we thus generalize known phe-
nomenological space-momentum diffusion models, discuss
their limitations, and point to a richer phenomenology for
further experimental work.

The current models predict three spatial diffusion regimes
for cold atoms: normal, Lévy, and Obukhov-Richardson
diffusion [15]. The last two regimes imply momentum diffu-
sion to explain the superdiffusive mean-square displacements
(MSDs), 〈x2(t )〉 ∼ tα with 1 < α � 3. The question then
rises, whether in a more rigorous Hamiltonian model, inertia
can combine with environmental fluctuations to produce an
even faster time growth of the MSD. As a matter of fact,
MSD measurements in one-dimensional ensembles of ultra-
cold 87Rb atoms return exponents significantly faster than
ballistic diffusion, α = 2 [16–18]. Remarkably, the current
phenomenology also fails to reproduce the opposite limit-
ing situation, namely, diffusion saturation, α = 0 [19–21].
Such a mechanism is expected to play a key role in the
interpretation of polymerization experiments [22–24], that is
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another topic of current interest. In conclusion, at least two
distinct classes of ongoing experiments, i.e., on cold atoms
and polymerization, call for a more consistent approach to
space-momentum diffusion. The multipurpose microscopic
Hamiltonian approach proposed here will be tested against
cold-atom diffusion in optical lattices.

Model. To best model the coupling of spatial and mo-
mentum variables, we started with a heuristic Hamiltonian
consisting of a system part, which depends only on the state
variables (x, p), and a bath part, which depends on both the
state of system and the bath variables {q j, p j}, namely

H (x, p; {qj, p j}) = p2

2m
+ U (x) +

∞∑
j=1

[
p2

j

2mj
+ 1

2
mjω

2
j

×
(

q j − c j

mjω
2
j

F (x, p)

)2]
. (1)

Here, U (x) is a substrate potential and F (x, p) an arbitrary
function of the system variables [13]. To the best of our
knowledge, a few authors did address the case of nonlinear
coupling functions [25–29], but a discussion of their impact
on the asymptotic diffusion of the system is lacking. We also
remark that in Eq. (1) any hypothetical coupling between bath
momenta and the system variables has been eliminated by
means of a suitable canonical transformation [25].

The relevant canonical equations of motion are readily
obtained from Eq. (1). The set of inhomogeneous linear differ-
ential equations for the bath variables can be solved exactly.
Substituting the solutions for the bath variables into the equa-
tions of motion for the system (see the Supplement Material
[30] for details), we finally arrive at the following nonlinear
generalized Langevin equation (GLE),

ṗ = −∂xU + G(t )∂xF, ẋ = p/m − G(t )∂pF, (2)

G(t ) = −
∫ t

0
�(t − s)[∂xF ẋ(s) + ∂pF ṗ(s)]ds + ε(t ), (3)
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with ∂ψ denoting the partial derivative with respect to ψ =
x, p. The zero-mean valued colored noise ε(t ) depends on
the bath preparation and is related to the memory kernel
�(t ) through the fluctuation-dissipation relationship (FDR),
〈ε(t )ε(t ′)〉 = kBT �(t − t ′), where kB is the Boltzmann con-
stant and T the bath temperature. The reduced system of
Eqs. (2) and (3) is thus the result of a systematic elimination of
the bath degrees of freedom; the standard GLE is recovered by
choosing for F (x, p) a linear function of the system coordinate
x [13].

To focus on the interplay of space and momentum diffu-
sion, we consider here the Markovian limit of Eqs. (2) and
(3) with �(t ) = 2δ(t ). Under this simplifying assumption, the
internal noise ε(t ) is replaced by the white noise ξ (t ) and
the particle dynamics is governed by two Langevin equations
(LEs), one for each canonical coordinate, x and p [30], i.e.,

ṗ = −(1 − ∂xF ∂pF )∂xU − (∂xF )2 p/m + ∂xFξ (t ), (4)

ẋ = (1 + ∂xF ∂pF )p/m − (∂pF )2∂xU − ∂pF ξ (t ). (5)

Equations (4) and (5) exhibit a few unanticipated x-p cou-
pling terms. The time derivative ẋ is not easy to evaluate,
because the momentum p enters the Hamiltonian not only
through the kinetic energy, but also through the coupling
function F (x, p). As a consequence, the usual definition of
velocity, ẋ = p/m, no longer holds and the spatial diffusion
coefficient cannot be derived from the generalized Green-
Kubo relation. To appreciate the implications of the above
reduced LEs, we refer to the recent nonlinear friction model
with F = F (ẋ) proposed by Smith and co-workers [29] to
study Lévy walks in Sisyphus cooling. In their heuristic work,
both the momentum-dependent cooling force and the x-p
crossing terms are amiss.

Nonlinear frictions. The occurrence of nonlinear dissipa-
tive forces was explained by Klimontovich in his theory of
nonlinear Brownian motion [31]. Here, to avoid technical
complications, we restrict our analysis to particle diffusion in
the absence of substrate potentials, that is, for U (x) = 0.

First, we investigate the remarkable kinetics of the particle
subjected to a momentum-dependent friction with coupling
function F (x, p) = f1(p)x = γ0[1 + (p/ps)2]

μ

2 x. ps is the
momentum unit and γ0 the tunable friction strength. Equa-
tions (4) and (5) now read

ṗ = −m−1 f 2
1 (p)p + f1(p)ξ (t ),

ẋ = m−1 p + p f1(p)∂p f1(p)x − ∂p f1(p)xξ (t ). (6)

These LEs can be advocated to model (i) for μ = −1, Sisy-
phus cooling of atoms trapped in an optical lattice [1], and
(ii) for μ = 1, particle dynamics in frictional environments at
higher velocities [31]. Our numerical results yield polymer-
ization for the former and diffusion for the latter. Both are
effects of the driving force acting on the spatial coordinate
x generated by the momentum-dependent coupling function
F (x, p) [see the second term on the right-hand side of Eq. (6)
for x]. In passing we notice that p is distributed according to
a modified Boltzmann statistics with finite variance [32]. For
μ < 0 (μ > 0) 〈p2〉 is larger (smaller) than mkBT ; a smaller
momentum variance leads to a faster spatial diffusion.

FIG. 1. (a) 〈p2〉, Cxp, and (b) 〈x2〉 vs t for a free particle, ini-
tially at rest, and subject to momentum-dependent friction f1(p) with
μ = −1 and different γ0. In both panels, the results obtained by
integrating the full Eq. (6) (black squares) are compared with those
obtained from the same equation after discarding the x-p corrections,
i.e., setting ẋ = p/m (red squares). Other simulation parameters are
kBT = 1, m = 1, and ps = 1.

In Fig. 1 we plotted the time-dependence of momentum,
〈p2(t )〉, and space variance, 〈x2(t )〉, and the space-momentum
cross-correlation function, Cxp = 〈x(t )p(t )〉/

√
〈x2(t )〉〈p2(t )〉,

in view of an experimental validation of the model [6]. Our
numerical results are compared with those obtained by ignor-
ing the cross terms of Eq. (6), i.e., imposing ẋ = p/m as often
done in the literature. This “simplification” of Eq. (6) leads
invariably to normal diffusion laws with α = 1. By contrast,
the curves 〈x2(t )〉, obtained by integrating the full Eq. (6),
approach an horizontal asymptote, which can be lowered by
increasing the friction strength γ0. We anticipate here that
when modeling cold-atom diffusion, γ0 quantifies the depth
of the optical lattice potential [11]. The additional force term
in Eq. (6) can only be responsible for this instance of no-
diffusion dynamics of a force-free particle [33]. Indeed, the
multiplicative noise in the same equation would enhance the
diffusivity of the particle [34,35]. Within our self-consistent
Hamiltonian approach, the asymptotic MSD of a free particle
coupled to a heat bath with momentum-dependent friction
is thus determined by conflicting corrections to its space-
momentum dynamics, none of which can be discarded a
priori.

Spatial-dependent friction is also a key ingredient in many
studies on the XY model [36], diffusion of colloidal parti-
cles [37], nuclear fission [38], etc. In contrast with earlier
heuristic treatments, which had recourse to either nonlinear
coordinate-dependent frictions [39] or coordinate-dependent
diffusion coefficients [34,40], we discuss here the outcome
of a self-consistent approach, where the process is driven
simultaneously by space-dependent friction and multiplicative
noise. In the framework of our Hamiltonian scheme, one can
set ∂xF = f2(x) = γ0[1 + (x/xs)2]

μ

2 , with xs = 1 and γ0 and
μ free model parameters, to recover the LE [41],

ṗ = −m−1 f 2
2 (x)p + f2(x)ξ (t ), ẋ = p

m
. (7)

Of course, the coupling function may have a more compli-
cated form than the power law assumed here. Note that models
with power-law space-dependent diffusivity [37] have been
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widely employed, e.g., to characterize the response of a single
particle to femto-Newton forces [42]. Moreover, GLEs with
power-law time-memory functions have also been proposed
[20].

For our choice of f2(x), we reformulate the LE (7) as

m[1 + (x/xs)2]−
μ

2 ẍ = −γ0[1 + (x/xs)2]
μ

2 ẋ + ξ (t ), (8)

and estimate the asymptotic MSD for large displacements in
two limiting cases:

(i) μ = 1. Squaring the solution, x
√

1 + (x/xs)2 +
xs ln[x/xs +

√
1 + (x/xs)2] = 2γ −1

0

∫ t
0 ξ (t ′)dt ′, of the over-

damped limit of Eq. (8), γ0

√
1 + (x/xs)2ẋ = ξ (t ), and im-

posing the Gaussian approximation, 〈x4(t )〉 = 3〈x2(t )〉2, yield
〈x2(t )〉 ∼ √

t . This subdiffusion law has been widely investi-
gated in various contexts, such as stochastic single files [43]
and chaotic dynamical systems [44].

(ii) μ = −1. The approximate identity,
〈(x/xs)

√
1 + (x/xs)2〉 + 〈ln[x/xs +

√
1 + (x/xs)2]〉 =

(2kBT/m)t2/x2
s , which holds in the underdamped limit under

the further equilibration condition, 〈ẋ2(t → ∞)〉 = kBT/m,
points to a ballistic diffusive law, 〈x2(t )〉 ∼ t2. This result
can be explained by noticing that as MSD grows, the friction
decreases (frictionless limit), and the effective particle mass
m/ f2(x) increases. Moreover, in contrast with Ref. [41],
the ballistic diffusion recovered here has no effect on the
geometric entropic forces.

To gain further insight into the nonlocal spatiotemporal
contributions to the free-particle diffusion, we ran a Monte
Carlo simulation of the GLEs (2) and (3) [30] with a tunable
friction exponent μ and non-Ohmic memory function �(t )
[45,46]. Extensive simulations confirm the analytical predic-
tions we extracted from Eq. (7) for μ = ±1; more in general,
anomalous diffusion with any exponent 0 <α� 2 can be asso-
ciated with an appropriate power law of the space-dependent
friction [47–50]. This provides an alternative approach to
anomalous diffusion.

Application to cold-atom diffusion. When modeling cold
atoms diffusing in dissipative optical lattices, the classical heat
bath of Eq. (1) is meant to reproduce the diffusive effects of
counterpropagating laser fields [8]. Most semiclassical LEs
proposed in the current literature on this topic [7–12] can be
rewritten as ṗ = F (p) + √

2D(p) ξ (t ), ẋ = p/m, with cool-
ing force F (p) = −ᾱp/[1 + (p/ps)2], diffusion coefficient
D(p) = D1 + D2/[1 + (p/ps)2], and an appropriate choice of
the parameters D1, D2, and ᾱ [1]. In our approach, the friction
term F (p) would correspond to choosing F (x, p) = x f1(p)
with μ = −1. For D2 = ᾱkBT , the momentum-dependent dis-
sipation and fluctuation terms in the first LE do satisfy the
FDR [51], as they do in our Eq. (4). However, in sharp contrast
with Eq. (5), no x-p cross terms were ever added in the LE
for x, ẋ = p/m. Within the Hamiltonian framework advocated
here, this may work only for fast particles (i.e., large mo-
menta), where ∂ f1/∂ p 	 0.

More importantly, the additional white noise with strength
D1 in the phenomenological LE for p is not associated with
any dissipative term. To restore full consistency within our
Hamiltonian scheme, a nonequilibrium term −xHe(t ) ought
to be added to the Hamiltonian of Eq. (1) [35], the sim-

FIG. 2. 〈x2〉 vs t obtained by numerically integrating Eqs. (9)–
(11) for D2 = 0 and (a) D1 = 0.5 and different τc; (b) τc = 10 and
different D1. All other parameters are as in Fig. 1(a). The dashed
curve in (a) was obtained by neglecting the x-p cross terms; α in
(b) is the fitting exponent of the asymptotic diffusion law 〈x2〉 ∼ tα .
Other simulation parameters are m = 1, ᾱ = 1, and ps = 1. Averages
were taken over 104 trajectories with random initial conditions and
integration time step 10−2.

plest choice being He(t ) = η(t ), with η(t ) a zero-mean valued
Gaussian external noise [30].

Superdiffusion of cold 87Rb atoms in optical lattices has
been investigated experimentally [5]. It was observed that, as
the lattice wells get deeper, the atom diffusion grows more
sensitive to the time correlation of two competing fluctuat-
ing mechanisms, that is, spontaneous photon emission and
photon absorption from the counterpropagating laser beams.
To account for this effect, we model the external noise η(t )
by an Ornstein-Uhlenbeck process with correlation time τc.
By eliminating the bath variables from the corresponding full
Hamiltonian, Eq. (1), we obtain the self-consistent set of LEs
[30],

ṗ = − ᾱ

1 + (p/ps)2
p +

√
ᾱ

1 + (p/ps)2
ξ (t ) + η(t )

+ ᾱpx

p2
s [1 + (p/ps)2]2

η(t ), (9)

ẋ = p

m
− ᾱpx

p2
s [1 + (p/ps)2]2

p +
√

ᾱpx

p2
s [1 + (p/ps)2]3/2

ξ (t )

+
(

ᾱ(px)2

p4
s [1 + (p/ps)2]3

)
η(t ), (10)

η̇ = − 1

τc
η(t ) + 1

τc
ξ̃ (t ), (11)
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FIG. 3. Anomalous diffusion exponent α vs D1 for different dy-
namical regimes of Eqs. (9)–(11) numerically integrated in Fig. 2.

where 〈ξ̃ (t )〉 = 〈ξ (t )〉 = 0, 〈ξ̃ (t )ξ̃ (t ′)〉 = 2D1δ(t − t ′), and
〈ξ (t )ξ (t ′)〉 = 2D2δ(t − t ′).

Due to the presence of strongly nonlinear coupling terms,
we had recourse to a Monte Carlo algorithm to integrate
Eqs. (9)–(11) [30]. Assuming large p values such as in the
earlier literature [7–12], we imposed D2 = 0 for ᾱ constant
and varied the parameters D1 and τc of the external noise.
In Fig. 2 we illustrate the dependence of the MSD curves
〈x2(t )〉 on the correlation time τc. We found that the fitting
diffusion exponent α is insensitive of τc for ᾱτc > 1. For the
sake of a comparison, we also reported the results obtained
from the same equations after discarding all the x-p dependent
terms. The D1 dependence of the fitting diffusion exponent of
Fig. 2(b) is summarized in Fig. 3 for three distinct dynamical
regimes modeled by Eqs. (9)–(11). We notice immediately
that there exists a threshold value Dth of the constant D1 below
which diffusion is suppressed. This threshold mechanism is
due to the trapping effect exerted by the additional harmonic
force in Eq. (10): Diffusion sets in only for suitably large
D1 values, when the amplification action of the multiplica-
tive noise prevails. Furthermore, our data clearly show that
when the x-p cross terms in Eq. (9) are neglected, the large-
momentum dynamics of the particle becomes frictionless;
hence, Richardson’s law with α = 3. However, upon retaining
all x-p correlated terms appearing in Eqs. (9) and (10), the
particle MSD seems to exceed Richardson’s law. However,
this effect sets in at large D1, only for vanishingly small values
of τc (white noise limit), where values α � 4 have been ob-
served. Examples of superdiffusion beyond Richardson’s law
have been reported for lipid bilayer membranes and actively
moving biological cells [52].

Comparison with experiments. Experiments on cold-atom
diffusion in optical lattices have clearly demonstrated that
the anomalous diffusion exponent α is controlled by the

FIG. 4. Diffusion of cold atoms in an optical lattice: α vs opt

(see text). Results obtained by numerically integrating Eqs. (9)–(11)
for D1 = 1 and τc = 10, with (circles) and without x-p cross terms
(squares). Other simulation parameters are m = 1, and ps = 1.

depth of the optical potential opt. In particular, for deeper
lattices, α may grow significantly larger than 2 [5]. Earlier
theoretical works suggest that decreasing opt is equivalent to
increasing the intensity of the external fluctuations D1. This
connection becomes apparent in our model. The numerical
integration of Eqs. (9)–(11) yields the phase diagram of Fig. 3,
with two sharp transition at D1 = 0.2 and D1 = 1.0, in close
agrement with other theoretical models [9,11,15]. Moreover,
from Eq. (9) one extracts an explicit expression for the op-
tical potential, namely, (p) = ∫ p

ᾱp′d p′/[1 + (p′2/p2
s )] =

opt ln[1 + (p/ps)2], where opt = ᾱp2
s/2. The diffusion ex-

ponent α as a function of opt is displayed in Fig. 4 for
one parameter choice of Fig. 2(b). The relevance of the x-p
cross terms is remarkable at large opt values. Recalling that
the diffusion law in our model is not very sensitive to the
correlation time τc of the external noise, we conclude that our
approach can nicely interpret recent experimental findings [5].

In summary, we have developed a consistent Hamiltonian
approach to model the nonlinear coupling of a particle to a
heat bath. The coupling function is a function of the parti-
cle coordinates, position and momentum, depending on the
process at hand. By systematically eliminating the bath de-
grees of freedom, we have recovered various self-consistent
Langevin equations, which resemble phenomenological equa-
tions already utilized in the literature of diffusive processes,
except for the presence of additional (and so far overlooked)
space-momentum cross terms. We hope the present numerical
investigation of the effects of such “missing” terms can inspire
further experimental validation work.
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