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Geometric bounds on the power of adiabatic thermal machines
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We analyze the performance of slowly driven meso- and microscale refrigerators and heat engines that operate
between two thermal baths with a small temperature difference. Using a general scaling argument, we show
that such devices can work arbitrarily close to their Carnot limit only if heat leaks between the baths are fully
suppressed. Their power output is then subject to a universal geometric bound that decays quadratically to zero
at the Carnot limit. This bound can be asymptotically saturated in the quasistatic limit if the driving protocols
are suitably optimized and the temperature difference between the baths goes to zero with the driving frequency.
These results hold under generic conditions for any thermodynamically consistent dynamics admitting a well-
defined adiabatic-response regime and a generalized Onsager symmetry. For illustration, we work out models of
a qubit-refrigerator and a coherent charge pump operating as a cooling device.
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Introduction. Dimensionless figures of merit, such as the
efficiency of a heat engine or the coefficient of performance
(COP) of a refrigerator, provide convenient measures for the
performance of thermal machines. These figures are subject
to universal bounds, which follow directly from the first and
the second law of thermodynamics and are known as Carnot
bounds [1]. To attain its Carnot bound, a thermal machine has
to work without producing any net entropy. This condition
is generally assumed to be met only if the machine does
not exchange any heat with its environment or if it operates
infinitely slowly. In both cases the generated output per time
is zero. Hence, the Carnot limit can be reached only at the
price of vanishing power.

The questions of (i) how the tradeoff between power and
efficiency can be formulated quantitatively for meso- and
microscale thermal machines, and (ii) whether it can be over-
come in special situations, have attracted significant interest
over the past decade [2–12]. As a result, a variety of tradeoff
relations that bound the power of different types of machines
in terms of a dimensionless figure of merit were discovered,
first in linear-response [13–18] and then far from equilibrium
[19–29]. Since such bounds must go beyond the first and the
second law, which due to the lack of a fundamental timescale
do not provide any constraint on power, they have to be de-
rived from the underlying dynamics of the system. As a result,
different bounds hold for Markov jump processes [19–22], un-
derdamped Fokker-Planck dynamics [19], Lindblad dynamics
[23,25] or coherent transport [26–28].

For adiabatic thermal machines, which use a working
system that is driven by slow periodic variations of exter-
nal control parameters, thermodynamic geometry provides a
promising avenue towards a unified picture. This framework
was originally developed for macroscopic systems [30–33]
and later extended to classical meso- and microscale systems
[34–37] as well as the quantum regime [38–40]. The key idea

is that the time-dependent state variables of the working sys-
tem, e.g., the entries of a density matrix, which in general have
to be found by solving a nonautonomous set of differential
equations, become functions of the control variables and their
time derivatives if the driving is slow on some characteristic
timescale of the system. Quantities such as work or entropy
production, which depend on these state variables, can thus
be related to geometric objects such as vector fields or metrics
in the space of control parameters. Once the dynamics of
the system has been specified, the coefficients defining these
objects can be calculated by means of adiabatic perturba-
tion theory [41–43]. Any relation between the quantities of
interest, however, that follows from general symmetries or
purely geometric arguments, holds universally for any kind
of thermodynamically consistent dynamics.

The geometric approach has led to notable insights on the
principles that govern the performance of adiabatic thermal
machines [44–55]. Recent results include explicit optimiza-
tion schemes for different types of devices [56–63] as well
as geometric tradeoff relations between the efficiency, power
yield [46] and power fluctuations [51] of cyclic heat engines
that are driven by continuous temperature variations. These
tradeoff relations show that, close to the Carnot limit, the
power of such devices is bounded by a linear function of their
efficiency, which goes to zero at the Carnot value.

In this article, we consider a complementary setting, where
an adiabatic machine works between two thermal baths with
fixed temperatures. The thermodynamic geometry of this
setup, which covers both heat engines and refrigerators, is
usually developed by treating the temperature difference be-
tween the reservoir and the environment as a first-order
perturbation along with the driving rates [56]. Here, we argue
that this approach is no longer sufficient if the machine op-
erates close to the Carnot limit. Specifically, we show that, in
this regime, the performance of a generic machine is governed
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by second-order corrections in the temperature difference be-
tween the baths. This effect leads to a new family of geometric
tradeoff relations implying a quadratic rather than a linear
decay of power at the Carnot bound.

Universal bound on power. This behavior can be derived
from a general scaling argument. To this end, it is convenient
to introduce generalized fluxes Jx and affinities Ax such that
the average rate of entropy production can be expressed in the
standard form σ = JxAx, where summation over identical in-
dices is understood throughout [64]. The fluxes Jx correspond
to output and input of the machine, and the affinities Ax rep-
resent the thermodynamic forces that drive the system away
from equilibrium. For an adiabatic-response theory, natural
choices of these variables are [28,42,56]

Jw = W, Jq = Q/τ, Aw = βe/τ, and Aq = βe − βr.

(1)

Here, τ denotes the cycle time; βe and βr are the inverse tem-
peratures of the two baths, to which we refer as environment
and reservoir; and W and Q are the applied work and the heat
uptake from the reservoir per operation cycle. Boltzmann’s
constant is set to 1 throughout. From here on we use Jw and
W interchangeably.

We now focus on refrigerators. That is, we assume that
βr � βe and W, Q � 0 so that the machine absorbs work
from the external driving and extracts heat from the cold
reservoir. The performance of such a device is described by
the COP ε ≡ Q/W , which is bounded by the Carnot value
εC ≡ βe/(βr − βe). To determine under what conditions ε ap-
proaches εC, we divide the work input into an isothermal part
and a correction stemming from the temperature difference
between the reservoirs,

J iso
w ≡ Jw|Aq=0 ≡ KwwAw and Jw − J iso

w ≡ KwqAq. (2)

Analogously, the heat flux can be divided into a quasistatic
contribution and a finite-rate correction,

Jqs
q ≡ Jq|Aw=0 ≡ KqqAq and Jq − Jqs

q ≡ KqwAw. (3)

The coefficients Kxy are functions of the affinities, which in
general assume finite values in the limit Ax → 0. Furthermore,
the second law requires that Kww, Kqq � 0, and time-reversal
symmetry implies that the cross-coefficients obey the Onsager
symmetry

Kqw|Ax=0 = −Kwq|Ax=0 (4)

in zeroth order with respect to the affinities. This symmetry
holds for arbitrary driving protocols as long as the system is
not subject to external magnetic fields breaking time reversal
symmetry, which we assume here.

The normalized COP can now be written in the form

ε

εC
= − JqAq

JwAw

= − Kqw + Kqq(Aq/Aw )

Kwq + Kww(Aw/Aq )
. (5)

Since the isothermal work in general will not vanish, it is
natural to assume that Kww > 0. Due to the Onsager symmetry
(4), the expression (5) then converges to 1 in the quasistatic
limit Aw → 0 if Kqq = 0 and Aq ∝ Aα

w with 0 < α < 1. Close
to this limit, we can generally assume that τ is much larger
than the typical relaxation time of the system. Provided that

the quasistatic heat flux, Jqs
q , vanishes, the Carnot bound is

attained asymptotically as both affinities go to zero with Aw

vanishing faster than Aq, whereby both ε and εC diverge.
The quasistatic heat flux corresponds to the heat exchanged
between reservoir and environment in a quasistatic cycle di-
vided by the period. We refer to this quantity as heat leak.
Provided the quasistatically exchanged heat does not scale
with the period, the heat leak vanishes. As we discuss further
on, this situation can be realized for instance by decoupling
the working system from either the reservoir or the envi-
ronment at every point of the cycle [4,45,65]. To determine
how the cooling power Jq decays in this limit, we expand
the coefficients Kqw and Kwq in the affinities, keeping leading
and first subleading terms, Kqw = Lqw + Lq

qwAq and Kwq =
−Lqw + Lq

wqAq. Note that, since Aw is assumed to be of higher
order than Aq, no contributions proportional to Aw appear in
these expansions. Thus, upon keeping only terms that remain
significantly close to the quasistatic limit, the generalized
fluxes become

Jw = LwwAw + LwqAq + Lq
wqA2

q, (6a)

Jq = LqwAw + Lq
qwAwAq. (6b)

Inserting these expansions into Eq. (5) and again keeping only
leading and first subleading terms leaves us with

ε

εC
= 1 + Lq

qw + Lq
wq

Lqw

Aq + Lww

Lqw

Aw

Aq
, (7)

where Lww ≡ Kww|Ax=0. Upon maximizing the right-hand side
of this equation with respect to Aq, we obtain an upper bound
on ε/εC and an optimum for the thermal gradient, which are
given by

ε/εC � 1 − √
LqwAw/Z and A∗

q = −√
zAw (8)

with Z ≡ L3
qw/4(Lq

wq + Lq
qw )Lww and z ≡ Lww/(Lq

wq + Lq
qw )

being non-negative quantities [66]. The bound (8) is saturated
only if the difference in inverse temperature between the envi-
ronment and reservoir are chosen such that Aq = A∗

q. Thus, Aq

has to vanish as the driving period becomes infinite, Aw → 0.
This result holds for any device where Aq and Aw can be
controlled independently. Since Jq = LqwAw in leading order,
we can now replace Aw with Jq/Lqw in Eq. (8), which yields
the power-COP tradeoff relation

Jq � Z (εC − ε)2/ε2
C. (9)

This relation, which is our first main result, shows that the
cooling power of a generic adiabatic refrigerator decays at
least quadratically at the Carnot bound.

A similar picture emerges for adiabatic heat engines, which
are realized for βr � βe, Q � 0, and W � 0. Hence, the ma-
chine picks up heat from the hot reservoir and generates work
output. Its efficiency is then defined as η ≡ −W/Q and the
corresponding Carnot bound reads ηC ≡ (βe − βr )/βe. Upon
introducing the normalized efficiency η/ηC = −JwAw/JqAq,
the steps that lead to Eq. (9) can be repeated one by one [67].
We thus find that η/ηC generically converges to 1 only if the
quasistatic heat flux vanishes and both affinities go to zero
with Aw vanishing faster than Aq, whereby η and ηC both
approach zero. Close to this limit, the engine is subject to the
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power-efficiency tradeoff relation

P � Z (ηC − η)2/ηC, (10)

and the optimal thermal gradient, for which it is saturated
asymptotically, is given by A∗

q = √
zAw.

The bounds (9) and (10) ultimately arise from the fact that
the Onsager symmetry (4) does not extend to the second-order
coefficients Lq

wq and Lq
qw. Still, there are special situations,

where Lq
wq � −Lq

qw [67]. Under this condition, the second
term in the expansion (7) can be neglected and we are left
with the trivial relation ε = (1 + LwwAw/LqwAq)εC [68]. The
Carnot bound is then attained for any Aq in the limit Aw → 0
with the power of the machine vanishing linearly. However,
this behavior will typically occur only in fine-tuned systems.
We stress that this restriction appears only when subleading
terms in the expansions of the generalized fluxes are taken
into account; cf. Eq. (6). It is therefore not captured by the
established adiabatic-response theory, where both fluxes are
assumed to be linear in affinities [56].

Geometric picture. To unveil the geometric character of the
bounds (9) and (10), we have to analyze the structure of Z .
We assume that the machine is driven by periodic changes
of the parameters λ = {λμ}, which control the energy of the
working system and its coupling to the baths. Once the system
has settled to a periodic state, the work input and heat uptake
from the reservoir per cycle are given by

W = −
∫ τ

0
dt f μ

t λ̇
μ
t and Q =

∫ τ

0
dt jt (11)

where f μ
t is the generalized force conjugate to the parameter

λμ and jt denotes the heat current from the reservoir into the
system. If the driving is slow on the internal timescale of the
system, and the difference between the inverse temperatures
of the reservoir and the environment is small on its typical
energy scale, then these quantities can be expanded in the
driving rates and the thermal gradient,

f μ
t = −∂μFλt − Rμν

λt
βeλ̇

ν
t − Rμq

λt
Aq − Rμqq

λt
A2

q, (12a)

jt = Rqμ

λt
βeλ̇

μ
t + Rqqμ

λt
βeλ̇

μ
t Aq. (12b)

The free energy of the system Fλ and the adiabatic-response
coefficients Rλ depend parametrically on the control vector λ

and on βe. Note that we include only the relevant second-order
terms and assume that there are no heat leaks, i.e., jt |λ̇t =0 = 0.

Upon inserting Eqs. (12) into Eq. (11) and comparing the
result with the expansions of the fluxes (6), the off-diagonal
coefficients can be expressed as line integrals in the space of
control parameters,

[
Lwq Lqw

Lq
wq Lq

qw

]
=

∮
γ

[Aμq
λ Aqμ

λ

Aμqq
λ Aqqμ

λ

]
dλμ. (13)

Here, γ denotes the closed path that is mapped out by the
driving protocols λt , and the thermodynamic vector potentials
are defined as

[Aμq
λ Aqμ

λ

Aμqq
λ Aqqμ

λ

]
≡ −λν∂μ

[Rνq
λ Rqν

λ

Rνqq
λ Rqqν

λ

]
. (14)

The coefficient Lww does not admit a geometric representa-
tion. It is, however, subject to the geometric bound

Lww = τ

∫ τ

0
dt Gμν

λt
λ̇

μ
t λ̇ν

t � L2 with L ≡
∮

γ

√
Gμν

λ dλμdλν

(15)

being the thermodynamic length of the path γ . This no-
tion is motivated by the fact that, due to the second
law, the coefficients Gμν

λ ≡ (Rμν

λ + Rνμ

λ )/2 form a positive-
semidefinite matrix and can therefore be interpreted as a
pseudo-Riemannian metric in the space of control parame-
ters. The bound (15) can be derived by minimizing Lww with
respect to the parametrization of the path γ . A similar opti-
mization is used in [46]. Here we make Lww a functional of a
yet undetermined, monotonically increasing speed function φt

and its derivative φ̇t through substitution λ
μ
t → λ

μ
φt

. Solving
the Euler-Lagrange equations for this functional with respect
to the boundary conditions φ0 = 0 and φτ = τ yields the
optimal parametrization φt , for which Eq. (15) becomes an
equality. This optimal speed function is implicitly given by

t = τ

L

∫ φt

0
ds

√
Gμν

λs
λ̇

μ
s λ̇ν

s . (16)

Equations (13) and (15) show that the figure of merit Z is
subject to the bound Z � Z ≡ L3

qw/4(Lq
wq + Lq

qw )L2, where
Z depends only on geometric quantities. Thus, Eqs. (9) and
(10) imply the geometric tradeoff relations

Jq � Z (εC − ε)2/ε2
C and P � Z (ηC − η)2/ηC, (17)

for adiabatic refrigerators and heat engines. These bounds,
which are our second main result, hold for any thermo-
dynamically consistent dynamics that admits a well-defined
adiabatic-response regime. Moreover, they are asymptotically
saturated in the limit Aw → 0 if the optimal parametrization
φt is chosen for the control path γ and the thermal gradi-
ent scales with the driving frequency as Aq = ∓√

ẑAw with
ẑ ≡ L2/(Lq

wq + Lq
qw ).

Example: Two-stroke refrigerator. Two-stroke cycles pro-
vide a general mechanism to fully suppress heat leaks, i.e.,
Jqs

q = 0. Under this protocol, the working system is decoupled
from the environment for the first part τ1 < τ of the cycle and
decoupled from the reservoir during the second part τ − τ1.
As a result, no persistent heat current between reservoir and
environment emerges and jt and Jq vanish for Aw → 0. The
coefficients (13) then depend solely on the equilibrium prop-
erties of the working system and the geometric figure of merit
becomes

Z = (Sλ1 − Sλ0 )3

2β3
e (Cλ1 + Cλ0 )L2

, (18)

where λ1 ≡ λτ1 and Sλ and Cλ denote the equilibrium entropy
and the heat capacity of the working system at fixed control
parameters and inverse temperature βe [67]. Hence, the only
quantity that still depends on the dynamics of the system is
the thermodynamic length L.

To illustrate the two-stroke mechanism, we consider a
quantum refrigerator that consists of a qubit with Hamiltonian
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FIG. 1. Qubit refrigerator. The first plot shows the cooling power
in units of 10−4 h̄� as a function of the normalized COP, where τ

is varied from 10−6/� to 1/�. Along the dashed lines, for which
1/βr = 0.89, . . . , 0.95h̄ from left to right, the cooling power goes
to zero at ε/εC < 1 in the limit Aw → 0. The solid blue line, for
which we set Aq = −√

ẑAw , almost saturates the geometric bound
(17), shown by the boundary of the gray-shaded region. For all plots,
we have set 1/βe = h̄ and chosen the optimal parametrization of
the control path φt , whose derivative is shown in the second plot.

Hλ = h̄λσz/2, where  sets the energy scale [24,69,70].
The state ρt of the system evolves according to the adiabatic
Lindblad equation [71]

∂tρt = − i

h̄
[Hλt , ρt ] + Dr

λt
ρt + De

λt
ρt (19)

with Dx
λ · · · ≡ �κx

t

∑
α=± nα

λ,βx
([σα · · · , σ †

α ] + [σα, · · · σ †
α ])

being dissipation superoperators that describe the influence
of the reservoir and the environment (x = r, e). Here, σz

and σ± are the usual Pauli matrices, the rate � > 0 sets the
relaxation timescale of the system, and n+

λ,βx
≡ 1/(eβx h̄λ − 1)

and n−
λ,βx

≡ n+
λ,βx

+ 1 are thermal factors. For the control
parameters λ1 ≡ λ and λ2 ≡ κ r ≡ 1 − κe, we choose the
following protocols. During the first stroke, the system
couples to the reservoir, i.e., κ r

t = 1, and the level spacing
λt decreases linearly from 2 to 1; in the second stroke,
the system couples to the environment, i.e., κ r

t = 0, and λt

increases linearly from 1 to 2. For general adiabatic Lindblad
dynamics, the generalized forces and the heat current are
given by

f μ
t = −tr

[
ρτ

t ∂μHλt

]
and jt = tr

[(
Dr

λt
ρτ

t

)
Hλt

]
, (20)

where ρτ
t is the periodic state of the system. These quantities

can now be calculated perturbatively in the driving rates and
the thermal gradient, which yields the thermodynamic length
(15) and the figure of merit (18) for the qubit refrigerator
[67]. To compare the performance of this device with the first
tradeoff relation (17), we calculate its COP and cooling power
by solving the master equation (19) numerically. Figure 1
shows that, in the quasistatic limit, ε remains indeed strictly
smaller than εC for any fixed Aq < 0, while it approaches εC if
Aq is optimized with respect to the cycle time; the bound (17)
is asymptotically saturated if the optimal parametrization (16)
is chosen for the control path.

This result shows that the sudden changes of the coupling
parameters κ r and κe are consistent with the adiabatic-
response assumption. This conclusion holds in general for
the weak-coupling regime, where the internal energy and the
equilibrium state of the system do not depend on its in-
teraction with the baths. Under this condition, the coupling

FIG. 2. Aharonov-Bohm refrigerator. A four-way beam splitter
connects a mesoscopic ring and two ideal leads supporting a single
transport channel. The left and right leads are coupled to the cold
reservoir and the environment, respectively. The linearly increasing
magnetic flux �t induces a constant electromagnetic force around the
ring, which decelerates incoming carriers from the reservoir; carriers
with energy E � h̄ω pass through the ring and return to the reservoir;
carriers with E < h̄ω are reflected on the ring and transmitted to the
environment. Incoming carriers from the environment are accelerated
and return to the environment regardless of their energy. For ω → 0,
no carriers are transmitted; hence, the quasistatic heat flux vanishes.
The plot shows the cooling power of the device in units of 10−4 h̄�2

as a function of its normalized COP, where ω is varied from 10−7� to
10−2�. Here, 2π/� = 4πml2/h̄ is the typical dwell time, m denotes
the carrier mass, and l is the circumference of the ring. The dashed
lines correspond to 1/βr = 0.90, . . . , 0.96h̄� from left to right. The
blue line is obtained for Aq = −√

ẑAw , and the gray area indicates the
bound (17). For all plots, we have set 1/βe = h̄� and μ = 1.05h̄�

and used the optimal parametrization φt = t .

parameters do not give rise to generalized forces and their
time derivatives do not appear in the expansion (12a); see [67]
for details. As a result, the coupling parameters do not enter
the diagonal kinetic coefficient (15) or the thermodynamic
length. They rather affect only the off-diagonal coefficients
(13), which, being geometric quantities, do not depend on the
driving rates. The expansions (6) of the generalized fluxes are
thus well-defined for the two-stroke protocol.

Example: Aharonov-Bohm refrigerator. To show that the
tradeoff relations (17) are applicable also outside the two-
stroke scheme, we now consider a mesoscopic refrigerator
based on coherent transport. This example will show that heat
leaks can be fully suppressed, even if both the environment
and the reservoir couple to the system simultaneously. The
system consists of a four-way beam-splitter and a mesoscopic
ring subject to the time-dependent magnetic flux �t ; see Fig. 2
[72]. Its two control parameters can be identified with the real
and the imaginary parts of the Aharonov-Bohm phase, which
are picked by a particle when passing through the ring, i.e.,
eiq�/h̄c ≡ λ1 + iλ2, where c is the speed of light and q is the
carrier charge. A linearly increasing flux, �t ≡ h̄cωt/q, thus
leads to the driving protocols λ1

t = cos[ωt] and λ2
t = sin[ωt],

where ω = 2π/τ .
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For coherent transport and effectively noninteracting car-
riers, the generalized forces and the heat current admit the
general expressions [41,73,74]

f μ
t = −

∫ ∞

0
dE

∑
x=r,e

〈
ψx

E ,t |∂μHλt |ψx
E ,t

〉
gx

E , (21a)

jt =
∫ ∞

0
dE

∑
x=r,e

〈
ψx

E ,t |Jλt |ψx
E ,t

〉
gx

E . (21b)

Here, Hλ and Jλ are the single-carrier Hamiltonian and
heat current operator, and |ψx

E ,t 〉 is the Floquet scattering
state that describes a carrier with energy E , which enters the
system either from the reservoir or the environment [74,75];
gx

E ≡ 1/[1 + eβx(E−μ)] is the Fermi function with chemical
potential μ.

If the typical dwell time of carriers inside the system is
short compared to τ , the Floquet-scattering states can be cal-
culated perturbatively [41], which yields the figure of merit
Z for the Aharonov-Bohm refrigerator [67]. Since no carriers
are transmitted for ω = 0, the quasistatic heat flux vanishes
and the first tradeoff relation (17) applies. Figure 2 shows
how the cooling power and the COP of the Aharonov-Bohm
refrigerator, which can be calculated exactly [67], compare
to this bound in the slow-driving regime. As for the qubit-
refrigerator, we find that ε does not reach εC for any fixed
Aq < 0, while the tradeoff relation (17) is asymptotically
saturated in the quasistatic limit if Aq is optimized with
respect to Aw.

Concluding remarks. Our findings for the Aharonov-Bohm
refrigerator further underline the universality of our main
insights. First, generic adiabatic thermal machines cannot ap-
proach their Carnot limit when working between two baths
with a finite-temperature difference. Second, close to this
limit, the performance of such devices is not captured by stan-
dard adiabatic-response theory, which treats both temperature
gradient and driving rates as first-order perturbations. Instead,

second-order terms describing corrections to the finite-rate
heat current and the nonisothermal work play an essential
role. Taking these corrections into account leads to the geo-
metric tradeoff relations (17), which imply that power decays
quadratically rather than linearly at the Carnot bound. These
results follow only from system-independent arguments and
the Onsager symmetry (4).

For comparison, earlier bounds on the power of cyclic
microscopic heat engines, which have been derived from
Markov-jump, Fokker-Planck, or Lindblad dynamics, take the
generic form P � ξη(ηC − η), where ξ is a system-dependent
figure of merit. These bounds hold arbitrarily far from equilib-
rium and require that the power output of the device vanishes
at least linearly as its efficiency approaches the Carnot value.
Our quadratic tradeoff relation (10) and its geometric counter-
part (17), which have been derived from adiabatic-response
theory, provide improvements of these earlier bounds for
situations where a heat engine operating between two reser-
voirs with fixed temperatures approaches Carnot efficiency
via the slow-driving limit. However, outside this setting, it
is generally possible to devise engine cycles whose power
decays linearly towards the Carnot bound; see, for instance,
[14,25]. Whether there exist general bounds on the power of
microscopic thermal machines that hold far from equilibrium
and reduce to our geometric tradeoff relations (17) in the
adiabatic-response regime remains as an important question
for future research. Furthermore, even within the adiabatic-
response framework, it would be interesting to explore how
breaking the Onsager symmetry (4) alters the performance of
thermal machines close to the Carnot limit.
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