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Direct measurement of dipoles in anomalous elasticity of amorphous solids
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Recent progress in studying the physics of amorphous solids has revealed that mechanical strains can be
strongly screened by the formation of plastic events that are typically quadrupolar in nature. The theory stipulates
that gradients in the density of the quadrupoles act as emergent dipole sources, leading to strong screening and
to qualitative changes in the mechanical response, as seen, for example, in the displacement field. In this Letter
we first offer direct measurements of the dipole field, independently of any theoretical assumptions, and second
we demonstrate detailed agreement with the recently proposed theory. These two goals are achieved by using
data from both simulations and experiments. Finally, we show how measurements of the dipole fields pinpoint
the theory parameters that determine the profile of the displacement field.
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I. INTRODUCTION

Classical elasticity theory is one of the basic building
blocks of condensed-matter physics. Once the elastic mod-
uli of a given material are known [1], one can predict the
displacement field that is associated with any mechanical
strain [2] by using linear elasticity when the latter is small
and applying nonlinear extensions of the theory when the
strains are larger [3]. This happy state of affairs is, however,
questioned when one studies the mechanical properties of
amorphous solids. One reason is that, in amorphous solids,
plastic responses appear instantaneously for any amount of
strain [4]. Another reason is that nonlinear elastic constants
were shown to have unbounded sample-to-sample fluctuations
in the thermodynamic limit [5]. Finally, at least in frictional
amorphous solids, one observes stress correlations that are not
consistent with classical elasticity theory [6,7]. It is thus nec-
essary to revisit elasticity theory in the context of amorphous
solids with the aim of seeking an applicable theory that can
provide predictive power.

Such a theory was presented in a recent paper [8]. Attention
was given to the plastic responses, which typically appear
as quadrupolar (Eshelby-like) irreversible responses [9–12].
When the density of these quadrupoles is low, they act only
to renormalize the elastic moduli, but they do not change
the form of the theory. This is reminiscent of the role of
dipoles in dielectrics, where the dielectric constant is dressed,
but the structure of electrostatic theory remains intact [13].
On the other hand, when the density of quadrupoles is high,
the gradients of their density cannot be ignored, and these
are acting as dipoles. Dipole-dipole and dipole-displacement
interactions become crucial, and these change the structure of
the theory and the resulting mechanical responses. Our main
goal here is to directly measure the induced dipole density,
independently of our previous theory.

II. BRIEF REVIEW OF THE THEORY

To introduce the theory in its simplest form we focus here
on 2-dimensional systems with radial geometry. Specifically,
we consider amorphous configurations of binary disks, with
and without friction. For the frictionless case we examined
in numerical simulations the displacement field that results
from an inflation of a disk closest to the center. For the
frictional case our collaborators studied experimentally the
displacement field that is induced by a pusher at the center
of coordinates whose effect is similar to the inflation consid-
ered in silico. Details of these simulations and experiments
can be found in Refs. [8,14]. In short, in our experiment
and simulations we consider an annulus of radii rin and rout,
rin � rout, with an imposed displacement d(rin) = d0r̂ and
d(rout) = 0. The polar symmetry of the problem implies that
d(r) = dr (r)r̂, in which case normal elasticity theory implies
the equation

�d = d ′′
r + d ′

r

r
− dr

r2
= 0. (1)

The solution to this differential equation that satisfies the
boundary conditions is

dr (r) = d0
r2 − r2

out

r2
in − r2

out

rin

r
. (2)

One should note that the solution (2) is a positive monoton-
ically decreasing function of r, and it decays at large values
of r like 1/r, as expected in standard elasticity theory. It was
shown [8] that this form of the displacement field is expected
to remain valid also when there exists a low (or uniform)
density of plastic events, although the coefficients may get
renormalized. We then refer to this situation as “quasi-elastic.”

The situation changes qualitatively when the density of
plastic events gains sizable gradients, and these act as dipole
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sources [8]. The screening caused by dipoles changes Eq. (2)
to read

d ′′
r + d ′

r

r
− dr

r2
= −κ2dr, (3)

with κ being an emergent constant that is not known a priori.
Below we refer to κ as the “screening parameter.” Equation (3)
is equivalent to the Bessel equation whose solution, satisfying
dr (rin ) = d0, dr (rout ) = 0, reads

dr (r) = d0
Y1(rκ )J1(routκ ) − J1(rκ )Y1(routκ )

Y1(rinκ )J1(routκ ) − J1(rinκ )Y1(routκ )
. (4)

Here J1 and Y1 are the Bessel functions of the first and second
kind, respectively. For very small values of κ the solution
reduces back to (2). Importantly, depending on the precise
value of κ , Eq. (4) may be nonmonotonic, negative, and even
oscillatory. We refer to situations that agree with the solution
(4) and are either nonmonotonic or oscillating as “anomalous
elasticity.” Until now the numerical values of κ had to be
determined by fitting Eq. (4) to experiments and simulations
[8,14]. A consequence of the present Letter will be a direct
determination of the screening parameter κ , as shown below.

Two examples for further analysis

Our next aim is to establish the existence (or nonexistence)
of dipole fields, directly from the measured displacement
field. We choose two examples, the first being a numerical
simulation of frictionless binary amorphous assembly of disks
[8], and the second an experiment with frictional binary disks
[14], all in circular geometry, and both showing anomalous re-
sponses. The displacement fields in these cases result from an
inflation of a disk or a pusher at the center of coordinates. The
angle-averaged radial component of the displacement field
as measured in a simulation and an experiment respectively
are shown in Fig. 1. Both examples deviate strongly from
the elastic solution (2). Rather, the continuous lines in both
panels represent the anomalous solutions (4) with κ being
a fitting parameter. Figures 1(a) and 1(b) are obtained with
κ = 0.0525 and κ = 0.00147, respectively. We note here that
the systems are of different sizes and κ is dimensional. For
the sake of comparison one should consider a dimensionless
number κ̃ ≡ κrout. Then the two examples have κ̃ = 3.79 and
5.11, respectively. One of our goals below is to develop a
direct measure for the screening parameter κ and to test its
success in predicting the curves in Fig. 1, without fitting.

III. THEORY-INDEPENDENT MEASUREMENT
OF DIPOLES

A. Technical preliminaries

To set up the direct measurement of dipoles, we start with
the most general energy functional constructed to describe a
screening mechanism in a domain � of an elastic solid:

F =
∫

�

Wel dS +
∫

�

Wsc dS −
∮

tαdα dS, (5)

FIG. 1. Angle-averaged radial components of the displacement
field as measured in simulation and experiment, cf. Refs. [8,14].
Panel (a) shows simulations with frictionless Hertzian disks, ex-
hibiting an anomalous response. The continuous line is the solution
Eq. (4) with rin = 4.8, rout = 72.2, and κ = 0.0525. Panel (b) shows
experimental measurements with frictional disks, The continuous
line is the solution Eq. (4) with rin = 133.3, rout = 3478, and κ =
0.001 47.

with elastic and screening contributions to the energy

Wel = 1

2
Aαβγ δuαβuγ δ,

Wsc = 1

2
Aαβγ δuαβF (1)

γ δ
(Q) + F (2)(Q). (6)

Here F (1) and F (2) are functions of an emergent quadrupole
field Q and its derivative, the first traceless and the second
positive definite. The traction force on the boundary is t. We
assume emergent quadrupoles since these are the basic plastic
events that are pertinent to the mechanics of amorphous solids.

Next we compute the variation of the energy functional
with respect to displacement field d:

δF = −
∫

∂α

(
σαβ + Aαβγ δF (1)

γ δ

)
δdβdS

+
∮ (

σαβ + Aαβγ δF (1)
γ δ

)
n̂αδdβdl

−
∮

tαδdαdS. (7)

Denote now �αβ = σαβ + Aαβγ δF (1)
γ δ and observe that the

variation vanishes at equilibrium, leading to

∂α�αβ = 0, �αβnα|boundary = tβ. (8)
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� is therefore the physical stress tensor. Being divergentless,
it can always be written in terms of an Airy function χ ,

�αβ = εαμεβν∂μνχ. (9)

The pressure is therefore

p ≡ Tr� = �χ. (10)

From the relation between the physical stress � and the cou-
pling tensor F (1) we get

uρσ = Aρσαβεαμεβν∂μνχ − F (1)
ρσ . (11)

And from geometric compatibility condition we get

− 1

Y
��χ = ∇αβqαβ, qαβ ≡ εαμεβνF (1)

μν , (12)

where Y is the Young’s modulus. Finally, denote ∇βqαβ ≡
−Pα . Since the divergence of a quadrupole density is identi-
cally the dipole density, we refer to the existence of the vector
field P as a case of emergent dipoles. Next we ask how can we
ascertain whether P exists from the displacement data.

B. Measurement of the dipole field

We have shown in the last section that emergent dipoles are
introduced as sources for the biharmonic equation for the Airy
function [15]. We thus can start with this equation in the form
[16–19]

1

Y
��χ = ∇ · P, (13)

with P(x) being the position-dependent dipole density. Using
Eq. (10), we compute the integral of the left-hand side (LHS)
of Eq. (13) over a domain �:

1

Y

∫
�

��χdS = 1

Y

∮
∂�

(∇�χ ) · n dl = 1

Y

∮
∂�

(∇p) · n dl,

(14)

where n is the outgoing unit vector on the boundary of the
domain. On the other hand, the integral of the right-hand side
(RHS) of Eq. (13) reads∫

�

∇ · PdS =
∮

∂�

P · n dl. (15)

We therefore conclude that the signature for the existence of
nonuniform dipole distribution is from the integral over the
pressure flux

1

Y

∮
∂�

(∇p) · n dl =
∮

∂�

P · n dl. (16)

Note that the pressure is proportional to the trace of the strain
p = Y Tr(u), which in turn describes the volume deformation
of the material and is equal to the displacement divergence
Tr(u) = ∇ · d. Denoting the resulting integral as I1 we end up
with ∮

∂�

P · n dl =
∮

∂�

(∇(∇ · d )) · n dl ≡ I1. (17)

In the case of our circular systems with radial symmetry both
sides of this equation can be evaluated analytically. The RHS

FIG. 2. The integral I1 of Eq. (18) computed for the two anoma-
lous examples shown in panels (a) and (b) of Fig. 1. These plots use
the data without any resort to theoretical fits. The existence of these
integrals are a direct demonstration for the presence of dipole fields.

reads∮
∂�

(∇(∇ · d )) · n dl = 2πr

(
d ′′

r (r) + d ′
r (r)

r
− dr (r)

r2

)
, (18)

and the LHS reads ∮
∂�

P · n = 2πrP(r), (19)

hence

P(r) = d ′′
r (r) + d ′

r (r)

r
− dr (r)

r2
. (20)

We should notice that Eq. (1) guarantees that the expres-
sion for the dipole density in Eq. (20) is zero identically when
classical elasticity is obeyed. Since this is correct for every
closed circle, it means that P(r) = 0. This is consistent with
the absence of dipole sources. Note also that in two dimen-
sions the elasticity theory solution for the radial component
of the displacement field, being proportional to 1/r at large
values of r results in a trivial zero on the RHS of Eq. (18).

At this point we return to the two examples shown in Fig. 1
and compute the dipole density in Eq. (20) directly from the
measured radial component. The results for the frictionless
simulation and the frictional experiment are shown in Fig. 2.
Although the data are somewhat noisy, we can see that the
measured dipole density is nonzero for the two cases, indicat-
ing that, indeed, dipole sources exist in the system, as they
emerge together with the onset of the displacement fields. We
stress that this result is independent of the theory proposed in
Ref. [8]. A theory-dependent fit to Eq. (4) yields a smoother
measure for I1. The result is shown for the two examples in
Fig. 3. The two methods of evaluation are consistent with each
other and show that a dipole field is emerging together with
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FIG. 3. The same integral I1 of Eq. (18) computed for the two
examples shown in Fig. 1. Here we use the fit Eq. (4) for the sake
of smoothness. These integrals are identical to those obtained using
Eq. (23) up to the scale κ2, as is demanded from the solution Eq. (4).

the displacement field which is caused by the inflation near
the center of our amorphous solids in their radial geometry.

C. Theory-dependent evaluation

Next we test the theory that was proposed in Ref. [8] where
an anomalous response of the system is described by Eq. (3):

∇Tr(u) = (∇(∇ · d )) = −κ2d, (21)

hence the integrand in LHS of Eq. (18) can be simplified,∮
∂�

P · n dl = −κ2
∮

∂�

d · n dl. (22)

If the theory is correct, the evaluation using the RHS of
Eq. (22) should agree with the evaluation of Eq. (18). Denote
the integral itself as I2,

I2 ≡ −
∮

∂�

d · n dl. (23)

Since we have used in Fig. 3 the solution of Eq. (4) to compute
I1, it is obvious that I2 would be identical to I1 up to the scale
factor κ2. Computing

√
I1/I2 one indeed finds the evident

value of κ which was used to fit the data in Fig. 1.
Thus far we did not put the theory of Ref. [8] under a

stringent test. To achieve such a test we return to the raw data
of the angle averaged displacements shown in Fig. 1. To avoid
effects of noise we smooth the displacement data by calcu-
lating moving averages. The displacement at each position r
is estimated from the average of eight nearest neighbors. In
addition, we note that the integrals I1,2 measure the dipole
density P(r). Upon integrating over the radial direction we

FIG. 4. Comparison of the solutions obtained using the screen-
ing parameter κ from the measurements of the dipole fields. Panel
(a) shows a comparison with the experimental data (blue points) as
shown in Fig. 1(a). Panel (b) shows a comparison with the simulation
data (blue points) shown in Fig. 1(b).

find the total dipole charge induced in the system

Ptot = 2π

∫
rP(r)dr

= κ2
∫

I2(r)dr =
∫

I1(r)dr.

(24)

Therefore we can estimate κ by

κ =
√∫

I1(r)dr∫
I2(r)dr

. (25)

This ratio can be calculated directly from the raw data. We
find the values κ = 0.049 80 and κ = 0.001 46 for the two
examples in Fig. 1. If the theory is correct, when these mea-
sured values of κ are plugged into the predicted form in
Eq. (4) the resulting curves should agree with the measured
radial components of the displacement without performing
any fitting procedure. Indeed, in Fig. 4 we plot the predicted
form (4) and the measured displacement using the calculated
κ and find very good agreement, thus providing a support
to the dipole screening picture in general and to our specific
model in particular.

IV. SUMMARY AND CONCLUSIONS

The aim of this Letter was twofold. First we wanted to
present a direct computation of the dipole field that was
presumed to exist in Refs. [8,14]. Contrary to the case of
electrostatics [13], where dipoles can be directly attributed to
polarized molecules or polymers, in the present case dipoles
were identified as gradients of quadrupole fields, rendering
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them less obvious. We have shown in this Letter how to com-
pute the dipole fields from loop integrals on the displacement
field. The existence of a dipole field goes hand in hand with
a finite value of the screening parameter κ and with having
anomalous elasticity. Mutatis mutandis, when κ = 0 we ex-
pect quasi-elastic responses with a possible renormalization
of the elastic moduli.

The second aim of this Letter was to present a method
to estimate the numerical value of the screening parameter
κ from the measurement of the dipole field. The total dipole
charge, as defined in Eq. (24), provides us with a method to
compute κ from Eq. (25), without fitting the angle-averaged
displacement field. The agreement of the prediction of Eq. (4)
with the data, once we used the screening parameter from
this procedure, is strong support for the theory as presented
in Refs. [8,14].

It should be stated that until now the theory was tested
by and compared with simulations and experiments involving
disks in radial geometry in two dimensions. In the near future
we will provide evidence that the theory is also applicable to
systems of spheres in three dimensions and to standard models
of glass formers in two and three dimensions.
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