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Motif-based mean-field approximation of interacting particles on clustered networks
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Interacting particles on graphs are routinely used to study magnetic behavior in physics, disease spread in
epidemiology, and opinion dynamics in social sciences. The literature on mean-field approximations of such
systems for large graphs typically remains limited to specific dynamics, or assumes cluster-free graphs for
which standard approximations based on degrees and pairs are often reasonably accurate. Here, we propose a
motif-based mean-field approximation that considers higher-order subgraph structures in large clustered graphs.
Numerically, our equations agree with stochastic simulations where existing methods fail.
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With applications in as disparate branches of science as
statistical physics [1], epidemiology [2–9], chemistry and sys-
tems biology [10,11], social science [12,13], and computer
science [14–16], interacting particles on complex networks
constitute an important class of models in the mathematician’s
and physicist’s toolkit [17–20]. They describe systems where
individual entities (particles), endowed with local states, in-
teract with a subset of other entities (neighbors) and transition
from one state to another as time evolves. For instance, in
epidemiology the local state space consists of immunological
statuses, such as susceptible, infected, removed, etc. Who
interacts with whom defines a graph with the particles as the
vertices.

The time evolution of the ensemble of particle states is
often described by a continuous-time Markov jump process,
for which discrete-time analysis can be insufficient [21]. As
the number of particles increases, the exponentially growing
combinatorial state space renders exact stochastic analysis
prohibitive. To this end, the standard mean-field theoretic
approach has been to describe the nonequilibrium dynam-
ics of interacting particle systems via ordinary differential
equations (ODEs) for the proportions of particles in each
state. Together with control [22], learning-based methods
[23,24] and graph limit theory [25–28], mean-field models
can enable analysis of otherwise intractable settings [29–31].
More advanced mean-field approximations, such as hetero-
geneous mean fields [32], pair approximations [33–37], or
approximate master equations (AMEs) [38–41] and exten-
sions thereof [42–45], acknowledge the heterogeneity of the
particles’ behaviors due to the graph structure and incorpo-
rate vertices’ degrees and edge counts (pairs). Though they
provide reasonable accuracy for a number of applications,
they are generally not asymptotically exact in that they do
not agree with the functional law of large numbers (FLLN)
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limits of the corresponding stochastic processes, agreeing
only in certain special cases [46,47]. Even for calculations of
critical parameter values, standard mean-field approximations
are often inaccurate [48]. Nevertheless, their simplicity and
intuitiveness have commonly justified mean-field approaches
despite their inexactness.

In this Letter, we propose a simple and elegant derivation of
a general motif-based mean-field approximation for interact-
ing particles on bounded-degree graphs to address two crucial
shortcomings of the state of the art: (i) The implicit assump-
tion of cluster-free graphs [49]. In practice, the encountered
graphs are far from cluster free and exhibit complex structures
[14,50–52] (e.g., neural and transportation networks [53]),
which greatly affect, e.g., cascades in correlated networks
[54]. Here, we go beyond correlation coefficients and account
for arbitrary subgraph structures called motifs [55] beyond
standard degree and edge-based calculations. (ii) The restric-
tion to special cases (e.g., susceptible-infectious-recovered
(SIR) epidemics [56]) or dynamics driven by simple neighbor-
hood counts. For instance, infection rates are often assumed
to depend only on the number of infected neighbors, while in
practice shared connections among neighbors and the shape of
the induced neighborhood subgraph are too important to ne-
glect (e.g., simplicial dynamics [14,57]). Though there exists a
multitude of works on the analysis of clustered graphs [49,58–
61], here we provide a general approximation that takes into
account both of these aspects into a single coherent mean-field
framework. We now introduce the mathematical model before
explaining how our approximation addresses the above two
issues.

Model. A convenient way to generate random graphs is
via the configuration model (CM) [20,62], which allows
specifying either a degree sequence or probability law from
which the degrees are sampled. Each vertex is assigned as
many half edges as its degree. We may need to add or drop
a parity edge if the degree sequence is not graphical, but its
contribution is negligible in large graphs [20, Sec. 7.6, pp.
239]. The configuration model graph is then constructed by
uniformly-at-random matching of all available half edges. As
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FIG. 1. Schematic illustration of the model. (a) A finite num-
ber of network motifs occurring in the network. (b) An example
ECM vertex with two motif participations as vertex 2 in G(1)

and one each as vertices 3, 1, 3 in G(2), G(3), G(4) respectively,
i.e., d1 ≡ (d1,1, d1,2) = (0, 2), d2 = (0, 0, 1), d3 = (1, 0, 0, 0), d4 =
(0, 0, 1, 0). (c) Simplicial SIS dynamics [14] as an example of
general neighborhood-dependent dynamics. Susceptible vertices are
infected at rate τ by infected neighbors, and additionally at rate τ�
for each shared neighbor.

N , the number of vertices, grows to infinity, the numbers
of self-loops and multiple edges have independent Poisson
limits whose means depend only on the first two moments of
the degree distribution [19, Theorem 3.1.2]. Therefore, their
contributions to the limits of various counts scaled by 1/N
(standard mean-field scaling) vanish in the limit.

To introduce higher-order structure, we adopt the ex-
tended configuration model (ECM) [63]—also known as the
hyperstub configuration model [56,64]. Denoting vertices
and edges of graphs H by V (H ) and E (H ), respectively,
and given M graphical network motifs G(1), . . . , G(M ) with
N1, . . . , NM vertices, we construct an ECM on N vertices by
specifying higher-order motif participation counts (hyperstub
degrees) (d1, . . . , dN ), where dv ≡ (d1, . . . , dM ) ∈ D, di ≡
(di,1, . . . , di,Ni ), and di, j ∈ N0 denotes the number of par-
ticipations (hyperstubs) as the jth vertex (role) in the motif
G(i) (see Fig. 1). As in the standard CM, hyperstubs are first
generated for each node in accordance with a limiting hyper-
stub degree distribution P(d ). Subsequently, for each possible
motif, we iteratively sample hyperstubs of each motif vertex
role and add edges wherever the underlying motif has an edge,
repeating until no hyperstubs are left.

To describe the dynamics of the interacting system, we will
consider time-indexed colored ECM graphs {Gt }t�0. Each ver-
tex is endowed with a local (finite) state space X . Denote the
state of vertex v at time t—interpreted as color—as Gt [v], and
define the colored neighborhoods N (v)

t as colored subgraphs
of Gt with fixed center vertex v, induced by the set of all
vertices participating in motifs with v. Treated as a stochastic
process, Gt is a Markov jump process with infinitesimal rates
λx→y(N (v)

t ), depending on v only via its colored neighbor-
hood configuration, i.e., the rate for vertex v to jump from
state x to y ( �= x) is given by

P
(
Gt+h[v] = y | Gt [v] = x,N (v)

t

)
= λx→y

(
N (v)

t

)
h + o(h). (1)

Note that the rate functions λx→y depend on the entire sub-
graph and its coloring up to isomorphism (not only neighbor
state counts), and therefore generalize those considered in

standard mean-field approximations. To illustrate this, define
the neighbor evaluation function

ψ (N (v), f ) ≡
∑

n∈V (N (v) ):(v,n)∈E (N (v) )

f (N (v)[n]) (2)

for any f : X → R and colored neighborhood N (v). Then, the
simplicial susceptible-infected-susceptible (SIS) model [14],
which imposes additional higher-order terms on the infection
rates of vertices, can be modeled as

λS→I (N (v) ) = τψ (N (v),1{I}) + τ�
∑

(v,n,n′ )∈�v

× [1{I}(N (v)[n]) + 1{I}(N (v)[n′])], (3)

λI→S (N (v) ) = γ , (4)

for pairwise infection rate τ , triangle (clique) infection rate
τ�, recovery rate γ , and indicator function 1A. Here, the
summation is over all unique triangles �v involving v. This
model is more realistic than the standard SIS model when
shared acquaintances meet more often (see Fig. 1, [50]). In our
experiments, we also consider the standard SIS model where
τ� = 0, which can also be understood as a result of micro-
scopic contact processes [65], for which we similarly imagine
higher-order interactions to be of interest. For a susceptible-
infected-removed (SIR) model, λI→S is replaced by jumps to
a third terminal state R. Finally, we consider the Ising Glauber
dynamics [1] with states {U, D} and

λU→D(N (v) ) = 1 − λD→U (N (v) )

=
{

1 + exp

[
2J

T
ψ

(
N (v), (−1)1{D}

)]}−1

(5)

for interaction strength J > 0 and temperature T > 0.
Mean-field approximation. While the exact colored graphs

Gt can be evolved through their probability laws or their
associated operator semigroup M, an exact analysis is typ-
ically prohibitive due to the combinatorial state space. In
the limit of large graphs (N → ∞), our aim will thus be
to approximate, by a system of ODEs M ′, the evolution of
certain population fractions, obtained by aggregating the col-
ored graphs via some aggregation function ϕ—e.g., densities
of different colors ϕx(G) ≡ 1

N

∑
v 1{x}(G[v])—such that the

diagram

G0 Gt

ρ0 ρt

M

ϕ ϕ

M ′
(6)

commutes: The goal is to find a system of ODEs M ′ that
accurately models the evolution of population fractions ρ,
such that aggregating population fractions through ϕ and then
applying M ′ is equivalent to first exactly evolving the system
and then aggregating.

Since the degrees are bounded, the jumps of Gt are also
bounded. Therefore, one expects the jumps of various (1/N )-
scaled fractions to vanish in the limit because their quadratic
variations (e.g., the running sum of squared jump sizes) van-
ish over finite time horizons. Consequently, even though the
scaled proportions are not necessarily Markovian, their large-
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FIG. 2. Schematic illustration of the MMF equations for two states. (a) A fixed, finite number of network motifs with associated motif
colorings. (b) Common, shared jump rates between motif colorings. (c) A visualization of all jumps from and to configuration z (center),
where the jump rates are given by the number of motif configurations times their shared motif jump rates. Here, d1 = (2, 2), d2 = (0, 0, 1)
and z1,1 = (1, 1, 0, 0), z1,2 = (0, 0, 2, 0), z2,3 = (0, 1, 0, 0, 0, 0, 0, 0).

graph limits have continuous paths and can be described using
ODEs by first performing the Doob-Meyer decomposition,
which intuitively separates out a stochastic process that cap-
tures the mean of the scaled proportions and a zero-mean
martingale (a stochastic process that acts like an error process
or fluctuations around the mean process), and then invoking
the FLLN for martingales [66,67] to claim that the fluctuations
around the mean process vanish in the limit.

Denote the set of non-negative integer solutions to the
Diophantine equation y1 + y2 + · · · + yn = k by 	(n, k). It
is useful to think of k 	→ 	(n, k) as the equivalence class
of a vector in Nn

0 whose elements sum up to k (where two
vectors are equivalent if their elements have the same sum).
For motifs G(i), consider their set of distinct colorings G (i) and
Ci ≡ |G (i)| = |X |Ni . For a vertex with hyperstub degree d , the

possible counts of each neighboring motif coloring where the
vertex participates as the jth vertex role in a motif G(i) are
elements of 	(Ci, di, j ).

Therefore, all colored neighborhoods N (v) will
belong to an equivalence class corresponding to a
count vector (configuration) z ∈ Z ⊂ ×M

i=1 ×Ni
j=1 N

Ci
0

under an appropriate equivalence relation ∼, such
that z ≡ (z1,1, . . . , z1,N1 , z2,1, . . . , zM,1, . . . , zM,NM ) ∈ Z ,
zi, j ≡ (zi, j

k , . . . , zi, j
Ci

), and zi, j
k ∈ {0, 1, . . . , di, j} denotes the

number of participations as role j in neighboring motifs G(i)

currently in the kth motif coloring X i,k ∈ XV (G(i) ). Denote
the set of such equivalence classes that are compatible with
d and the center vertex state x by [x, d]. To each z ∈ [x, d]
corresponds injectively some z′ = 
→y[z] ∈ [y, d], where
the color of the center vertex is changed from x to y, and,

FIG. 3. Mean-field approximations in the SIS model using the edge and triangle graphs as motifs. (a)–(c) Results for τ = 0.3, γ = 0.9. (a)
Pa,3, P0(I ) = 0.2, (b) Pu,3, P0(I ) = 0.3, (c) Pd,2, P0(I ) = 0.4. (d)–(f) Results for Pa,3. (d) τ = 0.3, γ = 0.9, P0(I ) = 0.2, (e) τ = 0.5, γ = 0.7,
P0(I ) = 0.6, (f) τ = 0.65, γ = 0.55, P0(I ) = 0.75.
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FIG. 4. Mean-field approximations in the Ising Glauber model using the edge and triangle graphs as motifs. (a)–(c) Results for T J−1 = 3.
(a) Pa,3, P0(D) = 0.2, (b) Pu,3, P0(D) = 0.3, (c) Pd,2, P0(D) = 0.4. (d)–(f) Results for Pa,3, P0(D) = 0.33. (d) T J−1 = 1, (e) T J−1 = 3 (f)
T J−1 = 4.

analogously, z′′ = 

→y
i,k,v

[z] ∈ [x, d], where the color of a
neighboring vertex that participates as role v in motif G(i)

with current motif coloring k, X i,k ∈ XV (G(i) ), is changed from
X i,k

v to y. Moreover, each z ∈ [x, d] determines the colored
neighborhood (up to isomorphism) of a center vertex with
color x and hyperstub degree d .

Aggregating colored ECMs over equivalence classes from
the quotient space G/∼, where G is the space of all col-
ored ECMs, is tantamount to keeping track of proportions
ρt (x, d, z) of vertices in Gt with color x ∈ X , hyperstub
degree d , and counts of neighboring motif colorings z ∈
[x, d]. Note that although z already contains all information
about x, d , for notational convenience we track proportions
of (x, d, z). As N → ∞, these proportions can be described
by deterministic ODEs, which we shall call the motif-based
mean-field (MMF) equations.

This leads us to our main result: The MMF master equa-
tions for the limiting proportions ρt constitute a system M ′ of
ODEs in (6) with an accuracy going beyond existing mean-

field approximations, and are given by

ρ̇t (x, d, z) =
∑
y∈X

(�←y − I )ρt (x, d, z)λx→y(z)

+
∑
y∈X

∑
i, j,k,v �= j

(
�

←y
i, j,k,v

− I
)
ρt (x, d, z)zi, j

k λ̂
→y
i,k,v

,

(7)

where we aggregate rates λx→y(z) and zi, j
k λ̂

→y
i,k,v

over equiv-
alence classes corresponding to each center vertex configu-
ration z (since z uniquely defines the colored neighborhood
up to isomorphism) and each coloring k of neighboring
motifs G(i), respectively. Here, we defined unit operators I
and influx step operators �←y,�

←y
i, j,k,v

acting on functions
f (x, d, z, y), f (x, d, z, y, k) such that we have influx by center
vertex jumps from configurations 
→y[z],

[�←y f ](x, d, z, y) = f (y, d,
→y[z], x), (8)

FIG. 5. Mean-field approximations in the SIS model using the edge and square graphs as motifs and Pa,2. (a) τ = 0.3, γ = 0.9, P0(I ) = 0.2,
(b) τ = 0.5, γ = 0.7, P0(I ) = 0.6, (c) τ = 0.65, γ = 0.55, P0(I ) = 0.75.
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FIG. 6. A comparison between MMF and numerical Gillespie simulation in the simplicial SIS model using τ� = τ , the edge and triangle
graphs as motifs and τ = 0.3, γ = 0.9. (a) Pa,3, P0(I ) = 0.2, (b) Pu,3, P0(I ) = 0.2, (c) Pd,2, P0(I ) = 0.4.

and similarly influx by jumps of all neighboring motifs’ ver-
tices that are not the center vertex (v �= j),[

�
←y
i, j,k,v

f
]
(x, d, z, y, k) = f

(
x, d,


→y
i,k,v

[z], X i,k
v ,�

→y
i,v [k]

)
,

(9)

where �
→y
i,v [k] denotes the motif coloring resulting from

changing the color of vertex v to y in motif i with coloring
k. The jump rates of any neighbors in role v of motif G(i)

with coloring k from the corresponding state x̃ = X i,k
v to y are

approximated by the averaged jump rate over all such colored
motif occurrences,

λ̂
→y
i,k,v

≡
∑

d,z ρt (x̃, d, z)zi,v
k λx̃→y(z)∑

d,z ρt (x̃, d, z)zi,v
k

, (10)

since a vertex in configuration z participates zi,v
k times in the

considered motif coloring. See Fig. 2 for a visualization. Fi-
nally, sampling independent and identically distributed (i.i.d.)
initial states from some P0 : X → [0, 1], the initial conditions
are given by

ρ0(x, d, z) = P0(x)P(d )
∏

i, j,k,v �= j

[
P0

(
X i,k

v

) · 1{x}
(
X i,k

j

)]zi, j
k ,

(11)

where 00 ≡ 1. The fractions of vertices in any state x are then
given by ρt (x) = ∑

d,z ρt (x, d, z).
The biggest appeal of the MMF equations (7) is their

simplicity and intuitiveness. While they may generally not
be asymptotically exact, experimentally we find that they are

quite accurate. Note that as a special case, we obtain classi-
cal approximations such as AMEs [38] and thereby coarser
approximations [39] for degree distributions P̃ : N0 → [0, 1]
by considering only the edge motif G(1), assuming bino-
mial role distributions and aggregating equivalent terms, i.e.,
P(d1,1, d1,2) = P̃(d1,1 + d1,2) · (d1,1 + d1,2

d1,1 )( 1
2 )d1,1

( 1
2 )d1,2

.
Numerical evaluation. For numerical purposes, we gener-

ate equations only for P-supported hyperstub degrees d and
simulate rescaled proportions ρt (x, z | d ) ≡ ρt (x, d, z)/P(d ).
For fast ECM graph generation, we drop leftover hyper-
stubs (in our experiments, this amounts to less than 0.5%
of all generated stubs, leading to only slight inaccuracies)
instead of resampling until cardinality constraints are satis-
fied and allow, but ignore, self-loops and multi-edges. We
use a third-order numerical integrator and compare MMF
against the approximate master equations (AMEs) [38], the
heterogeneous pair approximation (HPA) [35], the hetero-
geneous mean-field approximation (HMF) [32], and exact
Gillespie simulations on graphs of size N = 100 000. For
use by the wider community, PYTHON code is available
at [68].

For two given, arbitrary network motifs G(1), G(2), we con-
sider the three parametrized families of antidiagonal, uniform,
and diagonal hyperstub degree distributions Pa,θ , Pu,θ , and
Pd,θ with parameter θ ∈ N. For Pa,θ , we put uniform mass
1/(θ + 1) on each case, where

∑
j d1, j = k and

∑
j d2, j =

θ − k for k = 0, 1, . . . , θ . In each case, we shall assume a
uniform distribution over motif roles, resulting in a product
of multinomials Pa,θ (d ) ≡ 1

(θ+1)

∑θ
k=0 1{k}(

∑
j d1, j + d2, j ) ·∏

i∈{1,2} Mult(di | k, 1
Ni

1Ni ), where 1Ni is the Ni-dimensional

FIG. 7. The MMF approximation is almost indiscernible from the numerical simulation in the SIR model using the edge and triangle graphs
as motifs and Pa,2. (a) τ = 0.3, γ = 0.9, 1 − P0(S) = P0(I ) = 0.2, (b) τ = 0.5, γ = 0.7, 1 − P0(S) = P0(I ) = 0.6, (c) τ = 0.6, γ = 0.5,
1 − P0(S) = P0(I ) = 0.5.
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one-vector. For Pu,θ and Pd,θ , we similarly put equal proba-
bility mass whenever

∑
j d1, j + ∑

j d2, j � θ and
∑

j d1, j =∑
j d2, j = θ , respectively.
On the ECM graphs with edge and triangle motifs

(G(1), G(2) from Fig. 1), we find that our approximation
matches well with the numerical Gillespie simulation. For
the SIS dynamics (3) and (4) in Fig. 3, our approximation
outperforms other approximation methods over a range of
(hyperstub) degree distributions and dynamics parameters.
Similar assertions hold for the Ising Glauber dynamics (5)
in Fig. 4, where existing mean-field approximations become
highly inaccurate near the critical point due to the high
clustering of the considered graphs. Furthermore, our approx-
imations remain quite accurate also, e.g., for graphs with edge
and square motifs (G(1), G(3) in Fig. 1) as seen in Fig. 5.
For the simplicial version of the SIS dynamics, in Fig. 6
we find that the accuracy of our approximations is accept-
able, while existing degree-based approximations are unable
to handle simplicial dynamics by design. Finally, we verify
the accuracy of our proposed framework on the SIR dynamics
model in Fig. 7 with nonbinary states, where the Gillespie
simulation for N = 100 000 is almost indiscernible from the

predicted mean-field proportions, showing the generality of
our approach.

Discussion. We have proposed motif-based mean-field
equations for arbitrary neighborhood-dependent jump dynam-
ics on a highly adjustable random graph model, considering
both higher-order graph structures and dynamics. Numerical
examples show that our approximations are quite accurate.
Potential extensions include the consideration of general
k-hop neighborhoods with k > 1, control and lumping of
equations [69,70] under additional assumptions on motif roles
to improve tractability. Finally, for applications, estimating
hyperstub degree distributions constitutes another important
problem, as an identifiability problem arises from counting
larger motifs that include smaller motifs.
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