
PHYSICAL REVIEW E 105, L042202 (2022)
Letter

Higher-order interactions promote chimera states

Srilena Kundu and Dibakar Ghosh *

Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India

(Received 21 February 2022; accepted 31 March 2022; published 21 April 2022)

Since the discovery of chimera states, the presence of a nonzero phase lag parameter turns out to be an
essential attribute for the emergence of chimeras in a nonlocally coupled identical Kuramoto phase oscillators’
network with pairwise interactions. In this Letter, we report the emergence of chimeras without phase lag in
a nonlocally coupled identical Kuramoto network owing to the introduction of nonpairwise interactions. The
influence of added nonlinearity in the coupled system dynamics in the form of simplicial complexes mitigates
the requisite of a nonzero phase lag parameter for the emergence of chimera states. Chimera states stimulated by
the reciprocity of the pairwise and nonpairwise interaction strengths and their multistable nature are characterized
with appropriate measures and are demonstrated in the parameter spaces.
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Introduction. Many natural and human-made systems [1,2]
in physics, biology, engineering, and social sciences are mod-
eled as networks, the constituents of which are represented
as dynamical systems interacting among themselves through
various links. The interplay of the network configuration and
the underlying dynamical processes often gives rise to vari-
ous nonlinear collective phenomena [3–6] that have immense
applicability across wide disciplines. So far, the connectivity
among the dynamical elements of such a complex system has
been mostly described by interactions within a pair of nodes.
However, recent progresses [7,8] in complex system research
have significantly highlighted the prominence of nonpairwise
interactions in addition to pairwise interactions. In several
real networks, such as brain networks [9,10], social networks
[11], ecological interaction [12], random walks [13], scien-
tific collaboration networks [14], and social contagion [15],
simple pairwise interactions may not be sufficient to unravel
the prevailing physical mechanisms. The inherent dynamical
processes are efficiently captured while taking into account
higher-order interactions [8,16–18], that have been widely
adopted in the literatures, recently.

A simplicial complex [19–21], formed by simplices of
different dimensions, is one such topological framework that
is often used to represent the underlying structural configu-
ration of higher-order interaction networks. The interaction
among n + 1 dynamical units is represented as n-simplex, so
a two-simplex typifies three-body interaction, a three-simplex
typifies four-body interaction, etc. Very recently, researchers
took interest in studying the collective dynamical behavior
[22–29] observed in higher-order networks which reveals
some exciting findings due to the incorporation of nonpair-
wise interactions.

Synchronization [3,4,30] is one such collective phe-
nomenon where the interactions among the dynamical entities
play a crucial role. Recent investigations reveal how the
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presence of higher-order interactions affects the transition
scenario to synchronization and also triggers the emergence of
various synchronization states. The Kuramoto phase oscillator
[31,32] is considered as the simplest model for describing
the synchronization phenomena, which when generalized in
a network setup with higher-order interactions promotes the
emergence of explosive synchronization [23,24,27], complete
synchronization [26], cluster synchronization [29], etc.

An intriguing collective dynamics where both the synchro-
nization and desynchronization states coexist simultaneously
is known as the chimera state [33,34], that results from the
symmetry breaking of the network. The emergence of this
exotic state has been massively explored by considering di-
verse network topologies [35–47] and coupling configurations
[48–57], in the last two decades. However, these studies are
concentrated only on networks having pairwise interaction.
Very recently, Zhang et al. [29], as an application to their pro-
posed unified theory for stability analysis of synchronization
patterns, reported the emergence of chimera states in networks
of optoelectronic oscillators in the presence of nonpairwise
interactions.

Until now, innumerable studies [5,33,34,51,58,59] in net-
works with pairwise interactions have confirmed the crucial
importance of a nonzero phase lag parameter, in order
to observe chimera states in networks of nonlocally cou-
pled identical Kuramoto phase oscillators. These fascinating
chimera states are indeed possible without the presence of
phase lag, however the network cannot be simply coupled
nonlocally with identical oscillators [60,61]. Either some
nonhomogeneity should be introduced among the individual
oscillators or the coupling configuration should differ from
that of the usual nonlocal topology. In contrast to this, in
this Letter we report the emergence of chimera states in non-
locally coupled identical Kuramoto phase oscillators in the
absence of the crucial phase lag parameter, when the limit
of pairwise interactions is removed. Specifically, in this Let-
ter, we consider coupled oscillator simplicial complexes with
nonlocal interaction, and explore the impact of two-simplexes
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and three-simplexes (see Supplemental Material [62]) on the
advent of chimera states. Taking into account the higher-order
interaction terms, our investigation unveils that chimera states
can be observed extensively without phase lag. In fact, we
found that the chimera region broadens in the parameter space
with the increase of the nonpairwise interaction strength. The
influence of initial conditions has already been well estab-
lished in the literature for the emergence of chimera states in
pairwise interacting networks [63–66]. Here, we observe that
the variation of initial conditions in the presence of higher-
order interactions promotes the coexistence of multiple states,
which are characterized by quantifying the basin stability
of those states. Further, we explore the most probable route
of transition from incoherent to coherent dynamics as the
two-body interaction strength increases in the presence of
higher-order interaction.

Nonlocally coupled higher-order Kuramoto network. To ex-
plore the effect of higher-order interaction on the emergence
of chimera states, we consider a network of N nonlocally cou-
pled identical phase oscillators with three-body and four-body
interaction terms along with two-body interactions. Specifi-
cally, we consider a simplicial complex of N nodes having
simplices of dimension P = {2, 3}, where P is the nonlocal
coupling radius. The mathematical equation of a higher-order
Kuramoto network without phase lag is given by

θ̇i = ω + ε1

k1

N∑
j=1

Ai j sin(θ j − θi )

+ ε2

k2

N∑
j=1

N∑
k=1

Bi jk sin(θ j + θk − 2θi )

+ ε3

k3

N∑
j=1

N∑
k=1

N∑
l=1

Ci jkl sin(θ j + θk + θl − 3θi ), (1)

where θi denotes the phase of the oscillator placed at position
xi and ω is the identical natural frequency of the oscillators.
The underlying network topology is considered to be nonlocal
having P pairwise interactions on each side of each of the
N nodes. The one-, two-, and three-simplex interactions are
encoded in the adjacency matrix A and the adjacency tensors
B and C, respectively, such that Ai j = 1 if there is a link (i, j)
(0 otherwise), Bi jk = 1 if there is a triangle (i, j, k) (0 oth-
erwise), and Ci jkl = 1 if there is a tetrahedron (i, j, k, l ) (0
otherwise). The parameter εq represents the strength of the
q-simplex interaction and kq is the q-simplex degree of each
node across the network for 1 � q � P. For simplicity, here
we assume ε′

q = εq/kq. The higher-order sinusoidal coupling
functions associated with each node i are chosen in such a way
that they remain symmetric with respect to i.

In the following, we explore the consequences of intro-
ducing higher-order interactions in the classical nonlocally
coupled Kuramoto phase oscillator network without any phase
lag. In this Letter, we consider the network size N = 100 and
the natural frequency of oscillators ω = 1. All the numerical
results are implemented using a fifth-order Runge-Kutta-
Fehlberg integration scheme with fixed time step dt = 0.01.
We choose the boundary conditions to be periodic and the
initial conditions θi(0) are chosen randomly [67] from the in-

FIG. 1. (a) Spatiotemporal evolution of the observed chimera
state in the absence of phase lag in a nonlocally coupled higher-order
Kuramoto phase oscillator network with two-simplex interaction.
The colorbar corresponds to the state of the phase variable θi of the
oscillator at position xi. (b) Snapshot of the phases θi at position xi

depicting the coherent and incoherent subpopulations at the final time
t = 2000. (c) Distribution of the phases over the complex unit circle,
where the synchronized cluster is identified with red dots and the in-
coherent cluster is associated with the markers plotted in red circles.
The parameter values are fixed at N = 100, P = 2, ω = 1, ε′

1 = 0.1,
and ε ′

2 = 0.3.

terval [0, 2π ] that are fixed for all the simulations throughout
the Letter (unless otherwise mentioned).

Results. First, we execute the analysis by considering P =
2, that means only two-simplex interactions are present in
this network along with one-simplex interaction. Therefore, in
Eq. (1), the last term associated with the three-simplex inter-
action will remain absent in this case. Figure 1 illustrates the
emergence of coexisting synchronized and desynchronized
dynamics in the presence of nonzero two-simplex interaction
strength ε′

2 = 0.3 when the one-simplex interaction strength
ε′

1 = 0.1 is considered. The spatiotemporal pattern of the
observed chimera state for the chosen parameter values is
depicted in Fig. 1(a). At a particular time instant t = 2000,
the phase distribution of the oscillators is shown in Fig. 1(b).
These two subfigures clearly demonstrate the emergence of a
single coherent domain in between two incoherent subpopu-
lations. This chimera state is further illustrated in Fig. 1(c),
where individual oscillators belonging to the synchronized
cluster are depicted with red dots and the oscillators plotted
with red circles that are distributed randomly over the unit
circle, belong to the incoherent subpopulation.

In order to properly distinguish the three different para-
metric regimes corresponding to the three different dynamical
states, namely, coherent, chimera, and incoherent, we adopt
the conventional statistical measure strength of incoherence
(SI) [68], which is calculated using the following formula:

SI = 1 −
∑η

m=1 sm

η
, sm = �[δ − σ (m)], (2)

where �(·) is the Heaviside step function and δ is a predefined
threshold. The oscillators are subdivided into η bins of equal
length β = N

η
, and local standard deviation σ (m) is measured

in each of these bins as

σ (m) =
〈√√√√ 1

β

mβ∑
i=β(m−1)+1

(�θi−〈�θ〉)2

〉
t

, m=1, 2, . . . , η.

(3)
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FIG. 2. Characterization of three different dynamical states,
namely, incoherent (IN), chimera (CH), and coherent (CO) states as
an interplay of the one-simplex and two-simplex interaction strengths
ε ′

1 and ε ′
2, respectively. The states are, respectively, classified depend-

ing on the values of SI = 1, SI ∈ (0, 1), and SI = 0, as computed
from Eq. (2). The following parameter values are used to generate
the figure: β = 20, δ = 0.5. The time average 〈·〉t in Eq. (3) is taken
over 2 × 103 time iterations.

Here, the variable �θi = θi+1 − θi represents the difference of
phases between two adjacent oscillators for i = 1, 2, . . . , N
and 〈�θ〉 = 1

N

∑N
i=1 �θi. The interplay of the one-simplex

and two-simplex interaction strengths is portrayed in Fig. 2
in the ε′

1 − ε′
2 parameter space using the SI measure as de-

scribed in Eq. (2) for the initial condition discussed in [67].
The incoherent (IN), coherent (CO), and chimera (CH) re-
gions in the parameter space are characterized by the values
SI � 1, SI = 0, and SI ∈ (0, 1), respectively. In the absence
of phase lag in the pairwise coupled network, one-simplex
coupling strength gives rise to the synchronization phenomena
[5]. This occurrence is also verified in this figure for ε′

2 = 0,
which produces only the coherent region. For much smaller
values of the two-simplex interaction strength ε′

2 > 0, a direct
transition from incoherent to coherent dynamics is noticed in
the parameter space as ε′

1 increases. However, the chimera
region shows up beyond a certain value of ε′

2 and this region
keeps enlarging with higher ε′

2. Hence, simply the addition
of two-simplex interaction in the networked equation signifi-
cantly promotes the chimera dynamics, which was previously
impossible to achieve in the absence of phase lag in a non-
locally coupled network of identical phase oscillators with
one-simplex interaction. However, our thorough numerical
analysis uncovers the possibility of obtaining multiple stable
dynamics depending on the initial phase values at any partic-
ular choice of the coupling pair (ε′

1, ε′
2). Particularly, we have

found that the chimera dynamics in the (ε′
1, ε′

2) parameter
space coexists either only with the incoherent dynamics or
with both the incoherent and coherent dynamics. Thus the
considered higher-order Kuramoto network exhibits multi-
stable phenomena, which is in congruence with the previously
observed multistable behavior [22,23] due to the inclusion of
nonpairwise interactions in the network. To characterize the
coexistence of multiple stable dynamical states depending on
the choice of initial values, we stick to the basin stability
measure [64] that quantifies the volume of the basin leading

FIG. 3. (a) Demonstration of the various stability regions in the
ε ′

1 − ε ′
2 parameter space characterized by the quantification of the

basin stability measure. Region I: existence of only coherent dy-
namics; region II: coexistence of incoherent and chimera dynamics;
region III: coexistence of chimera, incoherent, and coherent dynam-
ics. The inset figures in the respective regions elucidate the snapshots
of the phases for different choices of initial conditions. (b) Variation
of the basin stability BS is instantiated by varying the one-simplex
coupling strength ε ′

1 for a particular choice of two-simplex interac-
tion strength ε ′

2 = 0.7. The probability of obtaining three different
dynamical states is shown in three different colors. Blue (solid), red
(dashed), and green (dotted) colors correspond to the incoherent,
chimera, and coherent dynamics, respectively.

to a particular dynamical state. We choose V0 = 1000 random
initial conditions θi(0) uniformly distributed over the interval
[0, 2π ] for each of the ith oscillators, to quantify the fraction
of initial conditions leading to either the incoherent, chimera,
or coherent state. Thus the basin stability is measured accord-
ing to the formula BS = Vs

V0
, such that BS ∈ [0, 1], where Vs

is the number of initial conditions leading to any particular
state. The values BS = 0 and 1, respectively, correspond to the
instability and monostability of any particular state, whereas
the coexistence of multiple states is indicated by the values
0 < BS < 1. Figure 3(a) illustrates the occurrence of three
different stability regions characterized by means of the BS
measure in the ε′

1 − ε′
2 parameter space that are demarcated by

the cyan boundaries. Region I corresponds to the monostable
region depicting the presence of only the coherent dynamics,
region II exhibits the bistable region where the coexistence of
incoherent and chimera states is detected, and region III is the
region of tristability where all three dynamical states coexist
for specific choices of initial conditions. Here, the increased
nonlinearity due to the two-simplex interactions dominates the
basin of the coherent state over the basin of the incoherent
and/or chimera states. As a result, the basin of the incoher-
ent and/or chimera state becomes much larger compared to
the basin of the coherent state in regions II and III. Even
though the coherent state is always linearly stable for identical
Kuramoto oscillators [25], the significant contribution of the
linear approximations owing to the higher-order interactions
in the linearized system fails to easily detect the coherent state
in the parameter region II. That is why we observe only the
emergence of incoherence and chimera in region II for 1000
realizations over the initial conditions from the basin [0, 2π ].
However, by significantly increasing the number of realiza-
tions or reducing the basin of initial conditions, the coherent
state can be observed in region II. How the variation of the
initial conditions affects the emergence of different states by
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FIG. 4. Transition from coherent to incoherent dynamics (from
left to right) when the two-simplex interaction strength ε ′

2 is varied
for a particular choice of one-simplex interaction strength ε ′

1 = 0.15.
Five different spatiotemporal patterns are manifested for values ε ′

2 =
0.1, 0.3, 0.45, 0.62, and 1.0, respectively, that correspond to the five
red markers shown in Fig. 2. For lower values of ε ′

2, the dynamics
remains coherent (a, f, k), which then shifts to coherent traveling
wave when ε ′

2 is increased slightly (b, g, l). Further increment in-
duces the chimera dynamics (c, h, m) which then switches to the
multichimera state (d, i, n) and then finally to the incoherent state (e,
j, o) as ε ′

2 advances. Snapshots of the phase variables θi are depicted
in the upper row at t = 2000 and their corresponding spatiotemporal
behavior is displayed in the middle row. The bottom row shows the
spatiotemporal variation of the order parameter amplitude |Ri| for the
respective values of ε ′

2, such that |Ri| = 1 for the coherent dynamics
and |Ri| < 1 for the incoherent dynamics.

varying the one-simplex interaction strength ε′
1 is delineated

in Fig. 3(b) for an exemplary value of the two-simplex inter-
action strength ε′

2 = 0.7. Blue (solid), red (dashed), and green
(dotted) colors correspond to the basin stability of incoherent,
chimera, and coherent states, respectively. The figure substan-
tiates that the probability of getting the incoherent state is
higher in region II than in region III, whereas in region III the
chimera states are most probable and coherent states are very
less probable. Also, the presence of only the coherent state in
region I is evidenced from the figure.

Additionally, we also investigate the transition route from
synchronized to desynchronized dynamics as ε′

2 increases for
a particular value of ε′

1. Five qualitatively different dynamical
states are detected during our inspection for our chosen initial
conditions, the dynamics of which are plotted in Fig. 4 for five
different values of ε′

2 (corresponding to the five red markers
shown in Fig. 2). For fixed ε′

1 = 0.15, coherent dynamics is
observed for smaller values of ε′

2, a typical snapshot of which
is depicted in Fig. 4(a) taking ε′

2 = 0.1. As ε′
2 increases, the

dynamics changes to a coherent traveling wave. An exemplary
snapshot is portrayed in Fig. 4(b) for ε′

2 = 0.3. Further in-
crement in ε′

2 shifts the dynamics from coherent to chimera
state with a single coherent cluster, as shown in Fig. 4(c)
for ε′

2 = 0.45. With the increase of two-simplex interaction
strength the coherent region is subdivided into more than one
cluster and induces the multichimera state. The corresponding
dynamics is shown in Fig. 4(d) for ε′

2 = 0.62. Finally, beyond
a certain value of ε′

2, incoherent dynamics is triggered in
the system, a snapshot of which is illustrated in Fig. 4(e)
for ε′

2 = 1.0. Spatiotemporal behaviors of all these different
dynamical states are demonstrated in the middle row that

manifests their stationarity. To determine the level of coher-
ence among the neighboring oscillators, we define a complex
order parameter Ri for the ith node as Ri = (R1i + R2i )/2,
where Rqi for q = 1, 2 gives an essence of the coherence
among the oscillators due to the q-simplex interaction which
is defined for the ith oscillator as R1i = 1

k1

∑N
j=1 Ai jeiθ j and

R2i = 1
k2

∑N
j=1

∑N
k=1 Bi jkei(θ j+θk ), where i = √−1. The spa-

tiotemporal variation of amplitude |Ri| of the oscillator at xi is
depicted in the bottom row of Fig. 4 for the corresponding
values of ε′

2, which confirms that the synchronized cluster
takes value |Ri| = 1, while |Ri| < 1 for the incoherent cluster.

We look for some theoretical insights into the observed
chimera dynamics by using the Ott-Antonsen (OA) [59,69]
approach in the thermodynamic limit N → ∞. Although the
OA reduction is more widely applicable to systems of oscil-
lators with nonidentical frequencies, this method can also be
utilized effectively for homogeneous networks [70–72]. Using
the complex order parameters R1i and R2i , Eq. (1) can be
rewritten as

θ̇i = ω + 1

2i
[Hie

−iθi − Hi
∗eiθi ], (4)

where Hi = ε1R1i + ε2R2ie−iθi and ∗ denotes the complex
conjugate. In the continuum limit, the state of the system can
be represented by a probability density function f (θ, t ), that
gives the fraction of oscillators with phases lying between θ

and θ + dθ at time t . Since the number of oscillators in the
system is conserved, f satisfies the continuity equation

∂ f

∂t
+ ∂

∂θ
( f v) = 0. (5)

Here v = θ̇ is given in Eq. (4) and f can be ex-
panded in a Fourier series of the form f (θ, t ) = 1

2π
(1 +∑∞

n=1[{h(x, t )}neinθ + {h∗(x, t )}ne−inθ ]), {h(x, t )}n being the
nth Fourier coefficient. Substituting f into Eq. (5) and com-
paring the coefficient of the term einθ , we obtain the time
evolution of the variable h(xi, t ) associated with the oscillator
at position xi as

∂h(xi )

∂t
= − iωh(xi ) + 1

2
{ε1[R1

∗
i − R1ih(xi )

2]

+ ε2[R2
∗
i h(xi )

−1 − R2ih(xi )
3]}. (6)

Also, the order parameters R1i and R2i can be derived in terms
of h(xi, t ) as

R1i = 1

k1

N∑
j=1

Ai je
iθ j

= 1

k1

N∑
j=1

Ai j

∫ 2π

0
f (θ j, t )eiθ j dθ j

= 1

k1

N∑
j=1

Ai jh
∗(x j ),

R2i = 1

k2

N∑
j=1

N∑
k=1

Bi jkei(θ j+θk )
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FIG. 5. (a) Snapshot of the chimera state for the pairwise
and triangular interaction strengths ε ′

1 = 0.3, ε ′
2 = 0.8, respectively.

(b) Spatiotemporal variation of the order parameter amplitude |Ri|
computed directly from the numerical simulations. (c) Profile of |Ri|
at a particular time when computed using Eqs. (6) and (7) obtained
from the Ott-Antonsen approach.

= 1

k2

N∑
j=1

N∑
k=1

Bi jk

∫ 2π

0
f (θ j, t )eiθ j dθ j

∫ 2π

0
f (θk, t )eiθk dθk

= 1

k2

N∑
j=1

N∑
k=1

Bi jkh∗(x j )h
∗(xk ). (7)

The evolution of the variable h(xi, t ) as well as the or-
der parameters Rqi for q = 1, 2 can be determined by using
Eqs. (6) and (7), simultaneously. While solving these equa-
tions, the order parameter values Ri derived from the phase
values obtained from direct numerical simulation of Eq. (1)
are considered as the initial conditions h(xi, 0). We com-
pute the average Ri from Eq. (7) and plot their amplitude
in Fig. 5(c) for a particular choice of interaction strengths
(ε′

1, ε
′
2) = (0.3, 0.8). The corresponding profile of the phases

at a particular time t = 2000 is depicted in Fig. 5(a) and
the evolution of the order parameter amplitude |Ri| com-
puted directly from the numerical simulations is illustrated
in Fig. 5(b). This figure substantiates the validation of the
higher-order dynamics through the theoretically predicted or-
der parameter values that are in good agreement with the
numerically simulated dynamics of the system at least for a
particular choice of the interaction strengths. In addition, the
transition phenomena among the various dynamical states are
exhibited in Fig. 6 on the basis of SI measurements and the-
oretically derived values of order parameter |R| (average over
the |Ri| values for i = 1, 2, . . . , N) for three different values
of the two-simplex interaction strength ε′

2 = 0.4, 0.6, and 0.8,
respectively. Three distinct regions corresponding to incoher-
ent, chimera, and coherent states are classified depending on
the values of SI. For smaller values of ε′

1 where SI � 1, the
dynamics is incoherent and order parameter |R| takes lower
values and then takes moderate values when the dynamics
shifts to the chimera region. Finally, the transition point of

FIG. 6. Characterization of the incoherent (IN), chimera (CH),
and coherent (CO) region depending on the values of SI � 1,

0 < SI < 1, SI = 0, respectively, when the one-simplex interaction
strength ε ′

1 is varied. The transition is also validated by plotting the
theoretically derived |R| values. The transition point at which SI = 0
coincides with the point at which |R| = 1, which determines the
onset of coherent dynamics. Three-body interaction strength ε′

2 is
fixed at (a) ε ′

2 = 0.4, (b) ε ′
2 = 0.6, and (c) ε ′

2 = 0.8.

the coherent region where |R| = 1 is in good accordance with
the transition point where SI = 0.

Conclusion. Until now, chimera states have been inves-
tigated extensively from the perspective of networks where
the dynamics is associated to the nodes and the interactions
among the dynamical units are represented only by the links
joining a pair of nodes. Previous research in this context
confirms the necessity of an additional phase lag parame-
ter to develop a chimera pattern in a nonlocally coupled
network of identical Kuramoto phase oscillators. Presently,
the rising interest in exploring various synchronization phe-
nomena considering networks with nonpairwise interactions
fosters the idea of investigating the emergence of fascinating
chimera states in a network with higher-order interactions. In
this Letter, we discover the unusual occurrence of coexisting
synchronous and asynchronous dynamics in the absence of
phase lag in a nonlocally coupled identical Kuramoto network
incorporating higher-dimensional interactions. Specifically,
we adopted the simplicial complex network topology and
scrutinized the impact of higher-order simplexes on the
emergence of distinct collective states like synchronization,
desynchronization, and chimera states. Considering P = 2,
we rigorously analyzed the parameter space containing one-
simplex and two-simplex interaction strengths and explained
the possible route of transition from coherent to incoherent
dynamics when the two-simplex interaction strength increases
for a particular choice of one-simplex interaction strength. We
found that the inclusion of higher-order terms gives rise to the
multistable behavior where either two or three of the incoher-
ent, chimera, and coherent dynamics coexist. The regions of
monostability, bistability, and tristability are characterized by
calculating the basin stability measure. Moreover, we utilized
the Ott-Antonsen approach in the large N limit and derived
the evolution equation of the order parameter, which is found
to be in good agreement when compared with its numeri-
cally computed counterpart. We also analyzed the network for
P = 3 (see Supplemental Material [62]) with the addition of
three-simplex interactions and demonstrated how the inclu-
sion of four-body interactions affects the observed phenomena
in the parameter space.
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