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The emergence of collective synchrony from an incoherent state is a phenomenon essentially described by
the Kuramoto model. This canonical model was derived perturbatively, by applying phase reduction to an
ensemble of heterogeneous, globally coupled Stuart-Landau oscillators. This derivation neglects nonlinearities
in the coupling constant. We show here that a comprehensive analysis requires extending the Kuramoto model
up to quadratic order. This “enlarged Kuramoto model” comprises three-body (nonpairwise) interactions, which
induce strikingly complex phenomenology at certain parameter values. As the coupling is increased, a secondary
instability renders the synchronized state unstable, and subsequent bifurcations lead to collective chaos. An
efficient numerical study of the thermodynamic limit, valid for Gaussian heterogeneity, is carried out by means
of a Fourier-Hermite decomposition of the oscillator density.
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Collective synchronization is a phenomenon in which an
ensemble of heterogeneous, self-sustained oscillatory units
(commonly known as oscillators) spontaneously entrain their
rhythms. This is a pervasive phenomenon observed in natu-
ral systems and man-made devices, covering a wide range
of spatiotemporal scales, from cell aggregates to swarms of
fireflies [1,2].

Seeking to understand the onset of collective synchro-
nization, Winfree invented a model consisting of globally
coupled oscillatory units with one degree of freedom (phase
oscillators) [3,4]. Following this scheme, Kuramoto found an
analytically tractable model, which captures the onset of col-
lective synchronization from an incoherent state [5,6]. Due to
its simplicity, the Kuramoto model and its generalization with
phase-lagged coupling—the so-called Kuramoto-Sakaguchi
model after Ref. [7]—have been intensely studied, with a vast
number of extensions and applications in several fields [8,9].

The Kuramoto(-Sakaguchi) model is often introduced as
above, i.e., as a mere mathematical refinement of the Winfree
model. However, this is only partly true, since Kuramoto
rigorously derived the model bearing his name. In particular,
he applied phase reduction to an ensemble of weakly coupled
Stuart-Landau oscillators [5,6]. The Stuart-Landau oscillator
is a relevant natural choice, as it represents a generic limit-
cycle attractor close to a Hopf bifurcation.

Kuramoto’s perturbative phase-reduction approach is valid
for weak coupling. Specifically, oscillator heterogeneity and
interactions appear at zeroth and linear orders in the cou-
pling constant, respectively. These considerations explain
why the quadratic order was neglected in the original
Kuramoto model. Nevertheless, in certain circumstances, go-
ing beyond the first (or linear) order may be required. Indeed,
the descriptions of some experiments with lattices of optome-
chanical [10] and nanoelectromechanical [11] oscillators rely
on second-order phase reductions. The analysis of the corre-
sponding second-order phase-reduced models has remained,

however, rather incomplete. The reason for this is the non-
pairwise interactions appearing at quadratic order. From this
perspective, the original setup with heterogeneous, diffusively
coupled Stuart-Landau oscillators appears to be the ideal test-
bed model for investigating second-order phase reduction to
the fullest extent possible. So far, only the case of identical
oscillators has been analyzed [12].

Recently, nonpairwise (also called “higher-order”) interac-
tions have attracted growing attention in several fields, such as
neuroscience, ecology, and social systems (see Refs. [13,14]
and references therein). In this spirit, several works have
considered populations of phase oscillators with nonpairwise
interactions from the outset. Simplifying ad hoc assumptions,
such as absent pairwise coupling [15–18] and/or particularly
convenient nonpairwise interactions [18–21] (e.g., admitting
the Ott-Antonsen ansatz [22]), are adopted seeking analytical
tractability.

In this Research Letter we extend the Kuramoto model up
to second order in the coupling constant ε. In this “enlarged”
Kuramoto model the new terms of order ε2 comprise two dif-
ferent three-body (nonpairwise) interactions. Strikingly, their
combined action triggers a secondary instability in which
standard collective synchronization destabilizes. This is the
precursor of a sequence of instabilities giving rise to a state
of collective chaos. We efficiently investigate the thermody-
namic limit of the model by means of a Fourier-Hermite
decomposition of the oscillator density. This scheme appeared
some years ago in a theoretical study [23], but it is numerically
implemented here (adopting an appropriate closure).

The starting point of our work is a heterogeneous popula-
tion of N � 1 Stuart-Landau oscillators with global diffusive
coupling:

Ȧ j = (1 + iσω j )Aj − (1+ic2)|Aj |2Aj + ε(1 + ic1)(A − Aj ).

(1)
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Here, Aj ≡ r jeiφ j is a complex variable, and index j runs
from 1 to N . The ω j’s are drawn from a unit-variance normal
distribution g(ω). The mean of g(ω) is selected to be 0, by
going to a rotating frame if necessary. Therefore each indi-
vidual Stuart-Landau oscillator possesses a natural frequency
equal to σω j − c2, where c2 is the nonisochronicity parameter.
Parameter σ > 0 is included to account for the frequency
dispersion. Concerning the coupling, it is diffusive through
the mean field A = 1

N

∑N
i=1 Ai. Parameter ε > 0 controls the

coupling strength, and c1 modulates its reactivity. We are
exclusively interested in the thermodynamic limit (N → ∞)
of the model. In this Research Letter we select σ = 10−3 and
c2 = 3 (a standard value in the literature, see, e.g., Ref. [24]),
leaving c1 and ε as control parameters. The effect of varying
c2 and σ is discussed at the end of this Research Letter.

System (1) displays a plethora of complex states. In partic-
ular, collective chaos already emerges at moderate and large
coupling under simplifying assumptions such as homogeneity
(σ = 0) [24,25] and vanishing reactivity and shear (c1 = c2 =
0) [26]. We focus here on the weak-coupling regime, in which
the oscillators remain close to their original limit cycles at
r j = 1 and a phase description becomes possible. Two states
are generically expected for small ε. On the one hand, there
is the uniform incoherent state (UIS), corresponding to a
vanishing mean field A (in the thermodynamic limit), with
the oscillator angles φ j uniformly scattered; see Figs. 1(a)
and 1(b) for particular parameter values and ε = 0.07. On the
other hand, typically, as ε exceeds a certain threshold, UIS
becomes unstable, and a state of collective partial synchrony
(PS) emerges. In this configuration, a macroscopic proportion
of the oscillators becomes entrained to a common frequency
〈φ̇ j∈S〉 = �, and the mean field rotates uniformly with con-
stant amplitude: |A| = const. In a finite population, as in
Fig. 1(c), entrained oscillators may not be observed, since they
belong to one of the tails of g(ω). Drifting oscillators alone
cause A to depart from zero. Surprisingly, our numerical sim-
ulations indicate that the dynamics may become of a different
kind as the coupling is further increased, while still remaining
small. As shown in Fig. 1(a) for ε = 0.09, the collective
dynamics incorporates a new frequency, and |A(t )| oscillates
periodically, i.e., the attractor is a two-dimensional torus or
T2 (disregarding finite-size fluctuations). Figure 1(d) shows
the corresponding snapshot of the angles φ j for ε = 0.09. We
may see that part of the population forms a two-cluster state
that evolves in time such that the phase differences are time
dependent but bounded. It is very much like the Bellerophon
state coined in Ref. [27] for ensembles of phase oscillators.
For still larger ε, |A| exhibits even more complex oscillations,
as can be seen setting ε = 0.115 in Fig. 1(a). In Fig. 1(f) we
represent the local maxima and minima of |A(t )| as a function
of ε. The low-frequency modulation sets in at ε ≈ 0.109.
As a result of the instability, a three-frequency quasiperiodic
collective motion is, in principle, expected. Still, an addi-
tional transition to weak collective chaos cannot be ruled out.
At some parameter values (e.g., ε = 0.14, c1 = −0.415; see
Supplemental Material [28]), the largest Lyapunov exponent
does not decay to zero with the system size, which is a clear
indication of collective chaos. (For the value ε = 0.115 taken
in Fig. 1 the result is inconclusive.)

(a)

(f)

(b) (c) (d) (e)

FIG. 1. Dynamics of the population of 20 000 Stuart-Landau
oscillators [Eq. (1)] for different values of ε with c1 = −0.4, c2 = 3,
and σ = 10−3. (a) Time series of the mean-field amplitude |A| for
ε = 0.07, 0.078, 0.09, and 0.115. |A| 
 0, |A| 
 const > 0, and pe-
riodic |A(t )| correspond to the UIS, PS, and quasiperiodic global
attractor, respectively. (b)–(e) Snapshots of the angular variables φ j

for each of the four ε values chosen in (a). Only a subset of 4000
oscillators are shown for clarity. (f) Local maxima and minima of |A|
as constant ε is increased by steps of size 1.35 × 10−3.

To put the previous observations in a wider framework, we
numerically determined where the unsteady behavior occurs
in the c1-ε plane. The phase diagram in Fig. 2(a) shows where
qualitatively different dynamics are observed. The stability
boundary of the UIS was analytically computed following
the approach in Ref. [29]; see Supplemental Material. Re-
markably, numerical simulations of Eq. (1) reveal that PS
is unstable inside the dark shaded region in Fig. 2(a), i.e.,
unsteady |A(t )| spontaneously sets in. In addition, numerical
continuation discloses an adjacent narrow band of coexis-
tence between unsteady dynamics and PS. The orange line
in Fig. 2(a) divides the unsteady region into two parts: the
lower one with T2 collective motion, and the upper one with
more complex oscillations. We emphasize that determining
the exact nature of the complex unsteady states is an arduous
work, which hinders a more detailed phase diagram.

At this point, we resort to phase reduction in order to
better understand the nature and organization of the unsteady
collective states. For weak coupling, phase reduction allows
us to describe the system solely in terms of phase variables
θ j = φ j − c2 ln r j [2,6]. Following Ref. [12], we write down
the second-order phase reduction [30] of (1), or the “enlarged
Kuramoto model”:
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FIG. 2. Phase diagrams of model (1) for c2 = 3 and σ = 10−3, as well as its first- and second-order phase reductions. (a) Model (1): All
boundaries were obtained from numerical simulations with a population of N = 20 000 Stuart-Landau oscillators, save the boundary of the
UIS (obtained analytically). In the dark shaded region, the UIS and PS are both unstable, and |A| varies with time. In the light shaded region, PS
coexists with an unsteady state. (b) Kuramoto-Sakaguchi model obtained from Eq. (2) discarding quadratic terms in ε. (c) Enlarged Kuramoto
model [Eq. (2)]; all boundaries, except the UIS-PS line, were determined using Eq. (5). The right boundary of the bistability region (in purple)
indicates where the attractor with unsteady dynamics abruptly disappears, indistinctively through a saddle-node bifurcation of tori, a boundary
crisis, or any other bifurcation. Sup., supercritical; Sub., subcritical; doubl., doubling; SN, saddle-node bifurcation.

θ̇ j = σω j + εη R sin(	 − θ j + α) + ε2η2

4
[R sin(	 − θ j + β ) − R2 sin(2	 − 2θ j + β ) + R Q sin(� − 	 − θ j )], (2)

where three new constants, depending on c1 and c2, are de-

fined: η ≡
√

(1 + c2
2 )(1 + c2

1 ) and the phase lags α ≡ arg[1 +
c1c2 + (c1 − c2)i] and β ≡ arg(1 − c2

1 + 2c1i). For simplic-
ity, we have chosen a reference frame with vanishing central
frequency. Interactions involve two mean fields, Z1 ≡ R ei	

and Z2 ≡ Q ei�, which are the first two elements of an in-
finite set of Kuramoto-Daido order parameters [31]: Zk ≡
N−1 ∑N

j=1 eikθ j . Equation (2) includes nonpairwise interac-
tions, which are inherent to higher-order phase reduction,
even if the coupling in the original system (1) is pairwise
and linear [12,32,33]. In particular, three-body interactions are
conveyed by the last two terms [34] and are comparatively
weak (of order ε2), as usual in physics [35]. This is not the
case in most previous studies of coupled phase oscillators
[15–17,19,20,36,37], but see Refs. [11,12,33,38].

We start the analysis of Eq. (2) noticing that if we neglect
the O(ε2) terms, then we recover the Kuramoto-Sakaguchi
model with coupling constant εη. For N → ∞, the phase
diagram resulting from this O(ε) approximation is shown in
Fig. 2(b). The only attracting configurations are the UIS and
PS. The boundary of the UIS can be calculated following
Ref. [7]. It diverges at c1 = −c−1

2 = −1/3, corresponding to
α = −π/2. When comparing Figs. 2(a) and 2(b), it is mani-
fest that first-order phase reduction does not provide a faithful
description of system (1) in the left part of the phase diagram.

We now consider Eq. (2) in full. Concerning the linear sta-
bility of the UIS (R = Q = 0), only the first term of order ε2 is
relevant. It may be added to the linear term to recalculate the
stability boundary [7]; see Supplemental Material. The result
is shown as a solid black line in Fig. 2(c). Now the boundary of

the UIS exhibits a knee at c1 ≈ −1/3, in qualitative agreement
with Fig. 2(a). Analyzing the stability of PS is a much harder
problem. Through a numerical self-consistent approach [7]
we tracked the branch of PS emanating from incoherence.
However, this does not allow us to determine its stability.
Moreover, the direct numerical integration of Eq. (2) is not
more efficient than simulating Eq. (1): The number of degrees
of freedom is reduced by a factor of 2, but at the cost of
including computationally expensive trigonometric functions.

In order to exploit the dimensionality reduction achieved
in Eq. (2), an alternative strategy is required. We resort to a
moments system introduced almost a decade ago by Chiba in
his theoretical study of the Kuramoto model [23]. Crucially,
working with a set of moments avoids finite-size fluctuations
and the concomitant microscopic (phase) chaos [39]. We start
by defining the density ρ(θ |ω, t ) such that ρ(θ |ω, t )dθ is the
fraction of oscillators with phases between θ and θ + dθ and
frequency ω at time t . Now, we write the Fourier-Hermite
decomposition of ρ:

ρ(θ |ω, t ) = 1

2π

∞∑
k=−∞

∞∑
m=0

Pm
k (t )e−ikθ hm(ω), (3)

where hm(x) = Hem(x)/
√

m! are normalized (probabilist’s)
Hermite polynomials:

∫ ∞
−∞ hm(ω)hn(ω)g(ω)dω = δmn. The

Fourier-Hermite coefficients Pm
k are obtained inverting

Eq. (3):

Pm
k (t ) =

∫ 2π

0
dθeikθ

∫ ∞

−∞
dωhm(ω)g(ω)ρ(θ |ω, t ). (4)
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These Fourier-Hermite modes extend the Kuramoto-Daido or-
der parameters to the space of the natural frequencies. Specif-
ically, P0

k = Zk (in the N → ∞ limit). The density ρ obeys
the continuity equation ∂tρ = −∂θ (ρ θ̇ ). Inserting the ex-
pansion (3), using the recurrence relation ωhm = √

mhm−1 +√
m + 1hm+1 [40], and redefining Pm

k → (−i)mPm
k for conve-

nience, we get an infinite set of ordinary differential equations:

k−1Ṗm
k = σ

(√
mPm−1

k − √
m + 1Pm+1

k

)

+εη

2

(
Pm

k−1Z1eiα − Pm
k+1Z∗

1 e−iα
)

+ε2η2

8

(
Pm

k−1Z1eiβ − Pm
k+1Z∗

1 e−iβ − Pm
k−2Z2

1 eiβ

+Pm
k+2Z∗2

1 e−iβ + Pm
k−1Z2Z∗

1 − Pm
k+1Z∗

2 Z1
)
, (5)

where the asterisk denotes complex conjugation. System (5)
is equivalent to Eq. (2) with N → ∞.

The numerical integration of Eq. (5) requires us to imple-
ment a truncation at finite kmax and mmax, with an adequate
closure. Note first that, in the UIS, P0

0 = 1 is the only
nonzero coefficient, whereas in the PS state the modes decay
with k and m roughly as |Pm

k | ∼ e−ake−b
√

m. We imposed
the boundary conditions Pm

kmax+1 = 0 and Pmmax+1
k = 2Pmmax

k −
Pmmax−1

k . We tested the performance of different system sizes,
finding that kmax = mmax = 40 already yields an excellent
convergence, even for strongly unsteady states. Therefore our
analysis below relies on Eq. (5) with n f = kmax × (mmax +
1) × 2 = 3280 degrees of freedom. In comparison, simulating
Eq. (2) with n f oscillators is unproductive because of unavoid-
able finite-size fluctuations.

One now can see that the PS state corresponds to a solid
rotation Pm

k (t ) = pm
k eik�t . After inserting this solution into

Eq. (5), the unknowns pm
k and � are found via a Newton-

Raphson algorithm (imposing p1
1 ∈ R). The result completely

agrees with the one obtained from the self-consistent nu-
merical calculation mentioned above. Now, however, we can
determine linear stability. Moving to a rotating frame with
angular velocity �, we linearize the system around the fixed
point. The locus of a secondary (Hopf) instability is accurately
located requiring the eigenvalues of the Jacobian matrix with
the largest real part to be ±i�H (with an extra zero eigenvalue
due to rotational invariance Pm

k → eikγ Pm
k ). The Hopf line

is shown in blue in Fig. 2(c). The transition is supercritical
(subcritical) at the solid (dashed) line. The emerging oscilla-
tory mode yields a torus attractor (T2), in which, due to the
rotational symmetry, no lockings on its surface are expected;
see, e.g., Refs. [41,42]. Recalling Eq. (2), we infer that, at
the level of the individual oscillators, the superimposed oscil-
lation induces entrainment at frequencies � + (n/2)�H (n ∈
Z). The half-integer frequency plateaus stem from the term
accompanying R2 in Eq. (2). In particular, the two clusters
in Fig. 1(d) correspond to a frequency plateau at frequency
� + �H/2.

The remaining regions of the phase diagram in Fig. 2(c)
are determined from direct numerical simulations of Eq. (5)
with the aforementioned closure, as well as by computing the
largest Lyapunov exponents {λi}i=1,2,.... Our systematic explo-
ration reveals a period-doubling bifurcation line (T2 → T2

d

(a)

(b)

FIG. 3. Sequence of bifurcations of Eq. (2), obtained from
Eq. (5), as c1 is increased with ε = 0.14. (a) Five largest Lyapunov
exponents {λi}i=1,...,5. (b) Local maxima and minima of R(t ). As
a reference, the R values of the UIS (R = 0) and PS (R > 0) are
depicted in gray. Solid (dashed) lines correspond to linearly stable
(unstable) states.

transition) close to the supercritical-Hopf line. The period-
doubling bifurcation line almost certainly exists also for the
ensemble of Stuart-Landau oscillators. Magnifying the gray
line in Fig. 1(a), the signature of a doubled torus T2

d can be
discerned. However, it is very hard to determine the bifurca-
tion point due to the long transients involved and unavoidable
finite-size fluctuations; see Fig. 1(f).

As occurs with the ensemble of Stuart-Landau oscillators,
the torus attractor undergoes a Hopf bifurcation; see the or-
ange line in Fig. 2(c). Thereby three-frequency quasiperiodic
dynamics (T3 attractor) emerges, consistent with three vanish-
ing Lyapunov exponents.

Adjacent to the T3 domain in Fig. 2(c), there exists a region
with chaotic dynamics, in conformity with the Ruelle-Takens-
Newhouse scenario. As occurred with system (1) [Fig. 2(a)],
PS and unsteady states coexist. In Fig. 2(c) the bistability re-
gion is bounded by a purple line denoting either a saddle-node
bifurcation, emanating from a (codimension-2) Bautin point at
the bottom of the Hopf line, or an attractor crisis. The phase
diagram in Fig. 2(c) reveals which are the unsteady collective
states of (1), and their expected arrangement. Indeed, obtain-
ing a phase diagram with the degree of detail of Fig. 2(c) is
virtually unattainable simulating the original system, Eq. (1).

To better characterize the chaotic region, a detailed explo-
ration along the horizontal line ε = 0.14 is shown in Fig. 3.
In Figs. 3(a) and 3(b) the five largest Lyapunov exponents
and the local maxima and minima of |P0

1 (t )| = R(t ) are, re-
spectively, depicted for the same c1 range. In the T3 interval
there may be some additional bifurcations (lockings or torus
doubling), which we did not attempt to resolve. Interestingly,
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in the chaotic domain an increasing number of Lyapunov
exponents become positive as c1 increases, i.e., collective
chaos transforms into collective hyperchaos.

In this Research Letter we have introduced the enlarged
Kuramoto model: a population of phase oscillators in which
three-body interactions enter in a perturbative way. Remark-
ably, this makes a world of difference, drastically reshaping
the traditional Kuramoto scenario. The enlarged Kuramoto
model exhibits a variety of unsteady states, including col-
lective chaos and hyperchaos. Remarkably, we report these
states in a population of globally coupled phase oscillators,
with a unimodal distribution of the natural frequencies. We
have considered a particular frequency dispersion σ = 10−3

in Fig. 2(c). If σ is lowered, the bottom of the Hopf bifurcation
line approaches the c1 axis at c1 = −c−1

2 . This is expected to
occur for any nonzero c2 value, consistent with the σ = 0 case
[12] (to be shown elsewhere). Nonetheless, only heterogene-
ity, in contradistinction to weak noise [12,43], is able to trigger

unsteady collective dynamics (absent for σ = 0). As a final re-
mark, we stress that reducing the population of Stuart-Landau
oscillators (1) to the phase model (2) is both illuminating and
convenient, as it enables an efficient investigation of the ther-
modynamic limit by virtue of the Fourier-Hermite expansion.
The application of this scheme to other populations of phase
oscillators with Gaussian heterogeneity is straightforward. For
other forms of g(ω) a suitable set of orthogonal polynomials
must be adopted: For example, the Fourier-Legendre mode
decomposition is appropriate for uniform g(ω).
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