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Experiments of periodically sheared colloidal suspensions or soft amorphous solids display a transition from
reversible to irreversible particle motion that, when analyzed stroboscopically in time, is interpreted as an
absorbing phase transition with infinitely many absorbing states. In these systems, interactions mediated by
hydrodynamics or elasticity are present, causing passive regions to be affected by nearby active ones. We show
that mediated interactions induce a universality class of absorbing phase transitions distinct from conserved
directed percolation, and we obtain the corresponding critical exponents. We do so with large-scale numerical
simulations of a minimal model for the stroboscopic dynamics of sheared soft materials and we derive the
minimal field theoretical description.
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Soft materials under cyclic shear often show an intrigu-
ing phase transition in their microscopic dynamics, termed
reversible-irreversible transition (RIT). At low enough driv-
ing amplitudes, the system reaches a reversible state where
its configuration is strictly unchanged when observed stro-
boscopically (once per cycle), whereas at large amplitudes
the stroboscopic dynamics is diffusive. This transition is ob-
served in systems varying considerably in their microscopics,
including non-Brownian suspensions [1,2], granular materials
[3], microemulsions [4], and soft glasses [5]. While for dilute
suspensions reversibility is borne from time-reversible Stokes
hydrodynamics [6], for jammed systems it is argued to come
from a repeated sequence of plastic events [7,8].

The RIT is a form of absorbing phase transition (APT).
The order parameter is the activity A, which measures the
fraction of the system which evolves irreversibly during a
cycle; reversible states correspond to A = 0. APTs arise in
many nonequilibrium contexts, among them the spreading of
infectious diseases, reaction-diffusion problems, and fracture
propagation [9]. In the case of RIT, there exist infinitely
many absorbing states not related by any symmetry (e.g.,
all configurations leading to contact-free cycles for dilute
suspensions), and the particle number N is conserved. It has
therefore been argued [6,10,11] to belong to the conserved di-
rected percolation (CDP) or Manna class [9,12–15]. The CDP
field theory [10,13–16] involves the local density ρ(r, t ) (with∫

drρ(r, t ) = N = V ρ0) and activity A(r, t ), with dynamics

∂tρ = Dρ∇2A, (1)

∂t A = f (A) + DA∇2A + σ
√

Aη , (2)

where f (A) = fCDP(A) ≡ (−α + kρ)A − λA2 and η(r, t ) is
a Gaussian noise with 〈η(r, t )〉 = 0 and 〈η(r, t )η(r′, t ′)〉 =
δ(r − r′)δ(t − t ′). The APT is at ρc

0 = α/k where the mean ac-
tivity vanishes as 〈A〉 ∝ (ρ0 − ρc

0 )β . In mean field, βMF
CDP = 1,

while in two dimensions βCDP ≈ 0.64 [17].

However, while CDP has been argued to capture some
realizations of RIT [6,18], several results challenge the CDP
classification of RIT. Some experiments report a convex be-
havior (β > 1) close to the transition, both above [19] (also
in numerics [20]) and below jamming [4]. A first-order tran-
sition is reported in some semidilute systems [21], as well
as in numerics on dense systems [22–26]. Some of these
CDP-incompatible behaviors have been argued to stem from
hydrodynamic interactions [4]. More generally, a natural ex-
pectation is that, due to hydrodynamic or elastic interactions,
a region of local activity can impact nearby passive ones. This
mechanism is absent from both CDP field theory and minimal
models implementing it [6,11,27].

In this Letter we report a universality class for APTs with
infinitely many absorbing states, distinct from CDP, which
arises when passive regions are affected by active ones. We do
so by introducing a generalization of the minimal model stud-
ied in Ref. [27] for the stroboscopic dynamics of periodically
sheared suspensions. Mediated interactions are mimicked at a
mean-field level by a diffusion of passive particles depending
on the total activity. We characterize the RIT for our model in
simulations and show that activity-induced diffusion of pas-
sive particles makes it either a convex second-order transition
with β > 1 or even a first-order transition. Furthermore, by a
coarse-graining of our minimal model we show that the CDP’s
normal form (2) is replaced by

f (A) = fCDP(A) + fp(A) = (−α + k̃ρ)A − μρA3/2 − λA2,

(3)

where k̃ is a renormalized coefficient. The presence of a A3/2

term, with μ > 0, is key to the universality class we describe.
Such a nonanalytic term eludes symmetry or conservation
arguments; this property is shared by other nonequilibrium
phase transitions [28] and is probably the reason this univer-
sality class eluded detection.
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FIG. 1. (a) Time step in our model. Particles in overlap (“active,”
shown in red in the upper portion of the panel) are randomly moved
by a typical distance 
a, while others (“passive,’ shown in blue in the
lower portion of the panel) are randomly moved by a typical distance

p function of the total activity. (b) Mean-field scenario. For CDP
an APT occurs at φ = φCDP

c (black curve). Thermal diffusion rounds
the APT (gray isotherms, increasing diffusion from bottom to top).
If activity controls diffusion, the CDP critical point is avoided: the
APT occurs at a distinct critical point [red (thick gray) curve].

Minimal particle model. Our approach to the modeling
of the RIT in systems with mediated interactions follows a
now well-accepted strategy which considers interactions in
a minimal way, without attempting a detailed description of
interactions present in an experimental system. This approach
has led to celebrated models for RITs, most notably the ran-
dom organization model [6,27,29,30], where contacts during
cyclic shear of suspensions are modeled via a simple pair-
wise activity in a discrete-time dynamics. This approach has
proven to be influential and has since been extended to take
into account multiparticle collisions which necessarily arise
in dense suspensions [11]. In the random organization model
[6] in its isotropic form (here abbreviated as the IRO model)
[27,31], a set of N disks of diameter D are distributed in
space (we here consider only the two-dimensional case); those
overlapping with others are called “active,” and the others are
called “passive.” With reference to a dilute suspension, active
particles are interpreted as colliding during a shear cycle. At
each time step (taken as a time unit), active particles move
with Gaussian-distributed random displacements with stan-
dard deviation 
a. In the original IRO model, passive particles
are kept fixed. We instead assume that passive particles are
randomly displaced over a distance that depends on the overall
activity at time t , Ā(t ) = Na(t )/N (with Na being the number
of active particles) [Fig. 1(a)]. Indeed, in a real system a
displacement �a

i of an active particle i induces a displacement
�

p
j on a passive particle j separated by ri j via a tensorial prop-

agator G(ri j ) (which may be long-ranged), such that �
p
j =

G(ri j )·�a
i . Assuming that the total displacement of a passive

particle generated by several active particles is additive, and
that active displacements are uncorrelated, one obtains that the
variance of passive displacements 〈(�p

i )2〉 = 
2
aKρ0Ā, with

K = ∫
dr G(r):G(r), assuming this integral converges. This

holds even for long-ranged interactions [Gαβ (r) ∝ 1/rμ at
large distance r] as far as μ > d

2 , a condition satisfied by the
elastic propagator (μ = d) and by hydrodynamic interactions
caused by force dipoles such as particle contacts. (More de-
tails are given in Ref. [32].) More generally, correlated active
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FIG. 2. Left panels: Average activity 〈A〉 versus mean area frac-
tion φ for c = 0 and (a) λp/D = 0.1 or (b) λp/D = 1. (c) log〈A〉
versus log(φ − φc )/φc, showing the critical behavior at c = 0, for
several values of λp/D.

motion leads to corrections to the variance of order Ā2. We
thus account for the effect of mediated interactions in a mean-
field spirit by assuming Gaussian-distributed displacements
of passive particles with a standard deviation 
p = s(Ā) ≡
λp

√
Ā[1 + cĀ], where λp > 0 and c > −1 to ensure positivity.

For λp = 0, our model reduces to the IRO model, which is
expected to belong to the CDP universality class. To focus on
the potential deviations to CDP, we here restrict to 
a/D = 1.
Dimensionless model parameters are then (i) the area fraction
φ = πD2ρ0/4, (ii) the ratio λp/D, and (iii) the coefficient c of

the correction to the scaling 
p ∝
√

Ā.
At the mean-field level, adding a small thermal diffu-

sivity D = 
2
p close to φCDP

c [30] gives rise to the activity
〈A〉CDP(φ,D) as sketched in Fig. 1(b). Close to an APT the
activity is small, so one might expect that activity-induced
diffusion amounts to adding an infinitesimal 
p close to the
CDP critical point. However, 
p is not a control parame-
ter in our model, as it is controlled by activity. Enforcing√
D = s[〈A〉CDP(φ,D)] (red open circles), one finds that D

is finite at φ = φCDP
c and actually vanishes at a smaller den-

sity [red (thick gray) curve]. Thus, activity-induced diffusion
does not trivially lead to a thermally rounded CDP criticality,
which is indeed never approached; we show below that it
actually creates a distinct critical point away from the CDP
one [Fig. 1(b)].

Numerical analysis. We use system sizes up to N = 224 to
get as close as possible to the APT. We first focus on the case
c = 0, and we briefly discuss later the effect of c 
= 0.

We plot in Figs. 2(a) and 2(b) the average activity in steady
state 〈A〉 as a function of φ, for two different values of λp/D,
for c = 0. We observe an APT at the value φc which de-
creases when increasing λp/D, that is, with stronger mediated
interactions. Importantly, the convexity of 〈A〉(φ) observed
in Figs. 2(a) and 2(b) indicates that β > 1, in contrast with
the CDP value βCDP ≈ 0.64. This is confirmed on a log scale
showing 〈A〉 as a function of ε ≡ (φ − φc)/φc in Fig. 2(c).
(We show in Ref. [32] how we determined φc.) For λp/D =
0 (IRO model), we recover βCDP ≈ 0.64. For λp/D > 0, a
crossover is observed between a regime compatible with βCDP

(at least for small λp/D, for which φc is close to φCDP
c ) far

enough from the critical point, and a new critical behavior
with β ≈ 1.85 in an interval close to the critical point, which
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FIG. 3. The average activity 〈A〉 (top panel), the normalized
variance N〈(A − 〈A〉)2〉 of activity fluctuations (middle panel), and
the correlation time δt of activity fluctuations (bottom panel) versus
(φ − φc )/φc for c = 0 and λp/D = 1.

widens upon increase of λp/D. It thus appears clearly that a
tiny motion of passive particles mimicking the effect of me-
diated interactions modifies the universality class of the APT.
Quite importantly, the value β ≈ 1.85 is much larger than the
mean-field value βMF

CDP = 1, showing that, although we have
included mediated interactions in a mean-field manner, the
model is not following mean-field directed percolation, which
rather happens when 
a/D → ∞ [17].

We further characterize the universality class in Fig. 3,
showing the critical behavior of the variance of the activ-
ity N〈δĀ2〉 ∝ ε−γ ′

, where δĀ = Ā − 〈A〉, and of the activity
correlation time τ ∝ ε−ν‖ , for λp/D = 1. Here we define τ

as 〈δĀ(t )δĀ(t + τ )〉/〈δĀ(t )2〉 = 1/e. We find γ ′ ≈ −1.2 and
ν‖ ≈ 1.2, in contrast to CDP values γ ′

CDP ≈ 0.37 and ν‖CDP ≈
1.23. We performed in Ref. [32] a finite-size scaling analysis
which supports these values. The sign of γ ′ even differs from
the one of CDP; in our model, activity fluctuations vanish at
the transition. This is due to the large β value, as shown by the
hyperscaling relation γ ′ = dν⊥ − 2β [17], with d being the
dimension of space. Similar behavior is observed in a variant
of contact process [33] or active yielding [34].

An important feature of the CDP class is hyperuniformity,
characterized by a scaling of the structure factor S(q) ∝ qκ

when q → 0 (0 < κ < 1) at φc [27,29]: large-scale density
fluctuations are much weaker than those for an equilibrium
system at the same density. Adding a small thermal diffusion
near the CDP critical point even enhances hyperuniformity
[30]. We show in Ref. [32] that when increasing λp/D the
hyperuniform regime instead shrinks and a low-q plateau
develops due to activity-induced diffusion. This further high-
lights the non-CDP nature of the RIT in our model.

We now turn to the case c > 0, shown in Fig. 4. Increasing
c at fixed λp/D = 1, the curve 〈A〉(φ) steepens close to the
transition (however, critical exponents are unaffected [32]),
eventually becoming discontinuous [Fig. 4]. Moreover, after
a first decay to a pseudosteady plateau, the relaxation to an
absorbing state is discontinuous in time. Finite-size effects,
however, prevent us from deciding whether the transition is a
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FIG. 4. (a) Average activity 〈A〉 as a function of area fraction φ

for λp/D = 1 and several values of c. (b) Time series of the activity
for the case c = 6, for several φ across the first-order transition.

genuine APT or rather a first-order transition inside the active
phase in the vicinity of a continuous APT. It is, nonethe-
less, reminiscent of simulations of cyclically sheared particle
model [22,23].

Continuum description. To rationalize our findings, we now
look for a continuum description in a local mean-field frame-
work. The crucial ingredient is that passive particle diffusion
creates activity, which adds a contribution fp(A) to the normal
form in Eq. (2). Estimating the number of active particles
created in a time step (t, t + δt ) from the radial distribution
function of passive particles g(r) leads to

N fp(A)δt � Npρp

∫
dd r g(r)Poverlap(
p, r) , (4)

where r = |r|, Np = N − Na and ρp = Np/N are the number
of passive particles and their density, and Poverlap(
p, r) is the
probability that a couple of particles at distance r overlap in
the next time step. Passing in polar coordinates and setting
r = D + 
px, we have

δt fp(A)

2Sdρ
= (1 − A)2
p

∫ 2

0
dx[D + 
px]d−1

× g(D + 
px)PO(
p, x),

where PO(
p, x) = Poverlap(
p, D + 
px), we used
Poverlap[
p, r > 2(R + 
p)] = 0, and Sd = dπd/2/�(d/2 +
1) is the surface of the unit sphere. We show in Ref. [32] that
for d = 2 the expansion of PO(
p, x) in 
p is

PO(
p, x) = P (0)
O (x) − 
p

D
P (1)

O (x) + O
(

2

p

)
, (5)

where P (i)
O (x), with i = 1 and 2, are positive and given by

model-parameter-independent integrals which can be readily
evaluated numerically.

Estimating the radial distribution function g(D + 
px) for
small A is more subtle. To get insight, and assuming isotropy,
we consider a minimal two-body description for the motion
of two nearest-neighbor passive particles, p0 and p1. We fix
p0 at the origin and consider p1 as a discrete-time random
walker. The latter moves in an annular shape of radii D and L
representing, respectively, p0 and the second nearest particle
to p1. Whenever p1 reaches one of the two boundaries, it is re-
distributed uniformly in the annulus. The pair correlation g of
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the original model corresponds, in this effective description,
to the stationary state Ps(r) of p1. In three spatial dimensions,
and for L → ∞, Ps(D + 
px) = 
pQ1(x)/(D + 
px), where
Q1(x) is given in terms of an inverse Laplace transform [32]
and is model parameter independent [35,36]. Surprisingly, the
mathematical structure of the problem is very different in
d = 2 and, to the best of our knowledge, no exact solution
is available. Yet, numerical integration is straightforward and
its results are reported in Ref. [32]. To a very good accuracy,
Ps(D + 
px) = 
pQ(x)/(D + 
px) also for d = 2, and Q(x)
is independent of 
p and c. We thus conclude that

(D + 
px)g(D + 
px) ∼
p→0 
p g(0)(x), (6)

where, obviously, g(0)(x) > 0 for all x. Combining Eqs. (4)
and (7) we conclude that

fp(A) = αpρA − μρA3/2 + O(A2), (7)

where αp = (2Sd/δt )λp
∫ 2

0 dx g(0)P (0)
O > 0 and μ =

(2Sd/δt )(λ2
p/D)

∫ 2
0 dx g(0)P (1)

O > 0; the normal form in
Eq. (2) should thus be

f (A) = (−α + k̃ρ)A − μρA3/2 + O(A2) , (8)

where k̃ = k + αp. The leading term merely renormalizes the
linear coefficient of Eq. (2) and does not change the criti-
cal properties. Mediated interactions, however, have a drastic
effect, through the A3/2 contribution. We get in mean field
a continuous transition at ρc

0 = α/k̃ and, because μ > 0, in
the active phase 〈A〉 = (k̃/μρ0)(ρ0 − ρc

0 )2, so that βMF = 2,
slightly larger than the measured value β ≈ 1.85.

This coarse-graining strongly supports the existence of
a different universality class for APT whenever infinitely
many absorbing states are present and local activity
affects passive particles. By contrast, a small thermal
diffusion of passive particles (
p/D � 1 independent
from A) would modify the CDP normal form to f (A) =
α′

pρ
2
p − μ′ρ
3

p + (−α + kρ)A − λA2 + O(A3), hence, just

rounding the transition. [Yet taking 
p = λp

√
A yields back

Eq. (8).] Our analysis further provides the field-theoretical
description within which the universality class described
might be studied. This corresponds to replacing the CDP
normal form (2) with Eq. (8). It should be also noted that
the density evolution (1) is expected to be transformed
into

∂tρ = Dρ∇2A + Dm∇2(Aρ) + σm∇ · (
√

Aρ ξ), (9)

with ξ being a vectorial Gaussian white noise. While
dimensional analysis indicates that Dm and σm are
irrelevant close to the upper critical dimension, a detailed
renormalization group analysis or large-scale numerics of our

continuum theory are needed to assess the importance of Dm

and σm; this is left for future works. We finally observe that the
presence of a discontinuous APT numerically found at high
c values is likely explained by a change in the sign of μ (still
assuming a stabilizing A2 term). In fact, direct measurements
of g(0) reported in Ref. [32] indicate that, in the many-body
system, g(0) is not independent of A exactly: it can be shown
that this adds a new contribution to μ which might change its
sign.

Conclusion. We investigated a minimal model for the stro-
boscopic dynamics of periodically sheared soft matter, taking
into account the effect of active regions on passive ones in
a mean-field way. We showed, using numerical simulations
and a local mean-field analytical argument to derive a contin-
uum theory, that mediated interactions modify the universality
class of an APT, which does not belong to CDP anymore.
CDP is not the only universality class of APTs with infinitely
many absorbing states; as such, the field-theoretical descrip-
tion proposed here is expected to describe APTs in many other
contexts in which local activity affects nearby passive regions.

Here, the displacement of passive particles depends on the
spatially averaged activity, in a mean-field spirit. This seems
relevant in a realistic system with mediated interactions that
are long ranged. It is indeed well known that for equilib-
rium systems close to a continuous transition long-ranged
interacting systems can behave as mean-field ones (for strong
long-range interactions) or the critical exponents can be mod-
ified perturbatively around mean-field ones (see, for instance,
Ref. [37,38]). Our model could then be the starting point
for a perturbation theory that tries to capture non-mean-field
effects, if any. For short-range propagators (e.g., screened hy-
drodynamic interactions in dense suspensions), displacements
of passive particles rather result from a more local activity.
Whether this would turn the critical behavior reported here
into a crossover (in the Renormalization Group (RG) sense)
and CDP would be recovered in the infinite-size limit is an
important question left for future work.

Let us also remark that, in practice, it is often difficult
to distinguish active particles from passive ones because all
particles move, even ever so slightly [18,21]. This could be
a consequence of mediated interactions. A test of this could
be to determine the distribution of particle displacements,
which close to the APT is expected to become bimodal, with
much smaller displacements for passive particles than for
active ones. Finally, our results imply that hyperuniformity
is suppressed by mediated interactions, a consequence of ex-
perimental relevance since scattering techniques may provide
access to the structure factor.
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