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Quenching of oscillations in a liquid metal via attenuated coupling
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In this work, we report a quenching of oscillations observed upon coupling two chemomechanical oscillators.
Each one of these oscillators consists of a drop of liquid metal submerged in an oxidizing solution. These
pseudoidentical oscillators have been shown to exhibit both periodic and aperiodic oscillatory behavior. In
the experiments performed on these oscillators, we find that coupling two such oscillators via an attenuated
resistive coupling leads the coupled system towards an oscillation quenched state. To further comprehend these
experimental observations, we numerically explore and verify the presence of similar oscillation quenching
in a model of coupled Hindmarsh-Rose (HR) systems. A linear stability analysis of this HR system reveals
that attenuated coupling induces a change in eigenvalues of the relevant Jacobian, leading to stable quenched
oscillation states. Additionally, the analysis yields a threshold of attenuation for oscillation quenching that is
consistent with the value observed in numerics. So this phenomenon, demonstrated through experiments, as
well as simulations and analysis of a model system, suggests a powerful natural mechanism that can potentially
suppress periodic and aperiodic oscillations in coupled nonlinear systems.
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I. INTRODUCTION

Scientific literature is replete with examples of oscillating
entities in both temporal and spatially [1,2] extended natu-
ral and laboratory systems [3–8]. The mercury beating heart
(MBH) is a system, wherein both the mechanical movements
of the mercury drop and the redox system potential are oscil-
latory in nature [9,10]. Given appropriate system parameters,
this drop of mercury kept in the presence of an oxidizing agent
may exhibit both periodic [9] and aperiodic oscillations [11].
The excitatory nature of these chemomechanical oscillations
makes this system an ideal tabletop system to demonstrate
and verify a plethora of intriguing behaviors observed or
predicted in such systems. A few examples are the entrain-
ment [6,12–14], synchronization [15,16], Kuramoto transition
[17,18], quorum sensing [19–21], and cessation of oscillations
[22–26].

Quenching of oscillation may prove to be both detrimental
and advantageous to a system depending on a wide variety of
circumstantial factors [27,28]. A sustained rhythmic activity
would be a prerequisite for the proper functioning of cardiac
cells [29], whereas it would be detrimental to a stable laser
output [30]. In the current work, we explore the quenching as
well as the revival of oscillations observed in a system of cou-
pled periodic and aperiodic MBH oscillators. Two oscillating
drops of mercury are coupled bidirectionally in such a way
that each oscillator receives an attenuated copy of the other
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oscillator’s redox time series. This was done to emulate the
signal attenuation over long distances. A robust quenching of
oscillations is observed when the attenuation of the signals is
above a critical threshold. The experimental observations are
numerically corroborated in a system of coupled Hindmarsh-
Rose (HR) oscillators [31,32]. The HR oscillators are kept in
both periodic and chaotic regimes and coupled to each other
in varying degrees of attenuation, to mimic the experimental
results involving periodic and aperiodic MBH systems. In ad-
dition, linear stability analysis of the HR neurons is performed
as a function of the attenuation factor α. This linear stability
analysis reveals a stabilization of the system’s fixed points
when α crosses a critical threshold.

This work is organized in the following manner. In Sec. II,
the experimental setup and their corresponding results are pre-
sented. These results are followed by numerical simulations
corroborating the experiments, using a model system of cou-
pled Hindmarsh-Rose (HR) oscillators in Sec. III. Finally, the
results of our work are summarized and discussed in Sec. IV.

II. EXPERIMENTS

A. Experimental setup

A schematic diagram showing the experimental setup is
presented in Fig. 1. It consists of two periodic (aperiodic)
oscillators coupled bidirectionally with the help of an op-
erational amplifier. The redox voltage from one MBH (O1)
is initially scaled by an attenuation factor α by the first
operational amplifier working as an inverting amplifier. The
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FIG. 1. Experimental setup for bidirectionally coupling two pe-
riodic (aperiodic) mercury beating heart oscillators in which an
attenuated signal of one oscillator is fed to the other.

attenuated but inverted signal is then passed through another
unity gain inverting amplifier and subsequently coupled to the
second MBH via a coupling resistor. This circuit is repeated
for the second MBH (O2) as well to construct a bidirec-
tional coupling scenario. One can couple the two oscillators
with varying degrees of attenuation by controlling the factor
α through the variable resistors. The coupling between the
two MBH oscillators is initially switched on without any
attenuation, i.e., α = 1. Subsequently, α is slowly decreased
till the oscillations in the two oscillators are quenched. The
electrolyte used to immerse the mercury drops was a mixture
of 6M H2SO4 and 0.2M Ce2(SO4)3 solutions. A grounded,
reducing Fe nail was kept near the drops so as to maintain
autonomous oscillations of the drop. The redox time series
of the oscillating mercury drop was recorded by immersing
a Pt wire into the mercury drop and recording its potential
difference with respect to the ground. To generate periodic
oscillations, the drops were placed in a container of a small
radius of curvature compared to the aperiodic scenario where
a much shallower watch glass with a larger radius of curvature
was used.

B. Experimental results

Figure 2 shows the system dynamics of two periodic MBH
oscillators. At t ≈ 320 s, the oscillators are bidirectionally
coupled to each other without any attenuation in their signals,
i.e., α = 1. This leads to the dynamics of the two oscillators
to be in-phase synchronized with each other. Subsequently,
the signal is gradually attenuated by slowly decreasing α

from t ≈ 340 s onward, and the oscillations are quenched at
t ≈ 355 s. After t ≈ 360 s, the coupling is switched off, due
to which the oscillations of the two systems are revived. The
three insets in Fig. 2 from left to right show representative
zoomed-in dynamics of the initial unsynchronized oscillators,
the coupled synchronized dynamics when there is no attenu-
ation, and the final uncoupled dynamics after the coupling is
switched back off.

In Fig. 3, we present the scenario when two aperiodic MBH
oscillators are coupled via the coupling scheme mentioned
in Fig. 1. Similar to the periodic MBH case, we find that
coupling aperiodic oscillators without any attenuation (α = 1)

FIG. 2. Dynamics of two periodic MBH systems are displayed
in red and blue. Initially the oscillators are uncoupled (t < 320 s and
left inset). At t ≈ 320 s, the oscillators are coupled without any signal
attenuation and their dynamics become synchronized (middle inset).
Following this, the attenuation in the coupling signals is gradually in-
creased from t ≈ 340 s till the quenching of oscillations at t ≈ 355 s.
This attenuated coupling is switched off at t ≈ 360 s, after which
the two systems resume their autonomous periodic oscillations (right
inset).

leads to an emergence of synchronized (10 s � t � 40 s)
dynamics between the two oscillators. Similar to the periodic
scenario, α is gradually decreased for the aperiodic oscillators
as well. This leads to a cessation of oscillations being even-
tually achieved at t ≈ 50 s. As the coupling is switched off
at t ≈ 60 s, the autonomous aperiodic oscillations of the two
systems are reinvigorated. The three insets in Fig. 3 from left
to right show representative zoomed-in dynamics of the initial
unsynchronized aperiodic MBH oscillators, the coupled syn-
chronized dynamics when there is no attenuation, and the final
uncoupled aperiodic dynamics after the coupling is switched
back off.

From these experiments, it is evident that, if the coupling
between two oscillators is sufficiently attenuating the signal in
transit, there is a possibility for the coupled system to go to a

FIG. 3. Dynamics of two aperiodic MBH systems are displayed
in red and blue colors. Initially the two aperiodic MBH oscillators
are uncoupled (t � 10 s and left inset). The oscillators are coupled
without any signal attenuation and their dynamics become synchro-
nized (middle inset) during 10 s � t � 40 s. Following this, the
attenuation in the coupling signals is gradually increased till the
quenching of oscillations at t ≈ 50 s. The coupling is switched off
at t ≈ 60 s after which the two systems resume their autonomous
aperiodic oscillations (right inset).
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fixed point state. In the next section, we try to understand this
phenomenon by recreating these observations in a numerical
system of coupled HR oscillators.

III. COUPLED OSCILLATOR MODEL

To numerically corroborate the experimental results in a
model system mimicking our experiments, we simulate the
HR system. This is a system of three coupled ordinary dif-
ferential equations [32] and can exhibit relaxation oscillations
similar to the ones observed in an MBH osillator. We took two
such HR neurons and coupled them via attractive bidirectional
coupling. The system equations for our simulations are as
follows:

ẋi = yi − ax3
i + bx2

i − zi + Ii − k(xi − αx j ), (1)

ẏi = c − dx2
i − yi, (2)

żi = ε
[
s
(
xi − xR

i

) − zi
]
. (3)

Here, xi, yi, and zi denote the three dynamical variables
of the HR system for the ith oscillator where i = 1 and 2.
The term k(xi − αx j ) denotes the coupling between the two
oscillators. The incoming signal from the other oscillator is
attenuated by a factor α in this term. When α = 1, there
is no attenuation, while the limiting case of α → 0 indi-
cates the situation where the signal is so attenuated that the
influence of the coupled oscillator approaches zero. So α

reflects the strength of the feedback [33] from the other os-
cillator in the coupling interaction.

The system parameters are kept such that the autonomous
systems exhibit either periodic or aperiodic bursting dynam-
ics. The parameters a = 1, b = 3, c = 1, d = 5, s = 4, ε =
0.0021, and xR

i = (−8/5) are kept constant during all the
simulations. The parameters I1 and I2 are set at 3.21 and 3.22
for periodic dynamics, and at 3.28 and 3.29 for aperiodic dy-
namics. The coupling constant is kept fixed at k = 5 whenever
the oscillators are coupled and at zero when uncoupled. The
attenuating parameter α serves as the control parameter that is
varied during the simulations to mimic the experiments.

A. Numerical results

In Fig. 4, it is observed that when two periodic HR neurons
are coupled to each other without attenuation (α = 1 at t =
4000), they exhibit synchronized dynamics. As the attenuation
is increased (i.e., α is decreased to 0.7 at t = 7000), both
the systems converge to a fixed point. The oscillations of the
two systems are revived when the coupling is switched off at
t = 10 000. The three insets in Fig. 4 from left to right show
representative zoomed-in dynamics of the initially unsynchro-
nized oscillators, the coupled synchronized dynamics when
there is no attenuation, and the final uncoupled dynamics after
the coupling is switched back off.

Figure 5 presents the scenario when two aperiodic HR neu-
rons are coupled. Initially, at t = 4000, the two systems are
coupled with an attenuation factor of α = 1 and the two sys-
tems become synchronized with each other. At t = 7000, α is
decreased to 0.7 and the oscillations of the two systems cease.
Autonomous aperiodic oscillations in the two HR neurons are

FIG. 4. Dynamics of two periodic HR neurons are displayed in
red and blue. Initially the systems are uncoupled (t < 4000 s and
left inset). The oscillators are coupled without any signal attenuation,
i.e., α = 1 and their dynamics become synchronized (middle inset)
during 4000 < t < 7000. Following this, the attenuation factor α

is decreased to 0.7 at t = 7000 and a quenching of oscillations is
observed. The coupling is switched off at t = 10 000, after which
the two systems resume their autonomous periodic oscillations (right
inset).

revived when the systems are uncoupled at t = 10 000. The
zoomed-in panels of Fig. 5 show the uncoupled dynamics
(left), synchronized dynamics (center), and final unsynchro-
nized aperiodic oscillations (right) of the two HR neurons.

B. Linear stability analysis

To further understand the reason for the cessation of os-
cillations when the attenuation in the coupling is increased,
we performed an eigenvalue analysis of the coupled HR oscil-
lators. For this purpose, the Jacobian of the six-dimensional
coupled system was evaluated. In Figs. 6(a) and 6(b), we
show the variation of the maximum value of the real parts
of the eigenvalues of this Jacobian matrix (λmax, solid orange
curve) as a function of the attenuation factor α for the periodic

FIG. 5. Dynamics of two aperiodic HR neurons are displayed
in red and blue. The systems dynamics for uncoupled aperiodic
HR oscillators are shown in the left panel and at t < 4000 s. The
oscillators are then coupled without any signal attenuation and their
dynamics are synchronized (middle inset) during 4000 < t < 7000.
Following this, at t = 7000, the attenuation factor α is decreased to
0.7 and the oscillations are quenched. The coupling is switched off
at t = 10 000, after which the two systems resume their autonomous
aperiodic oscillations (right inset).
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FIG. 6. The dependence of λmax as a function of α (solid orange
curve, right y axis). λmax crosses the value 0 (dashed black curve) at
α ≈ 0.75. The fixed points of the variables x1 (red solid curve, left y
axis) and x2 (blue dashed curve, left y axis) as a function of α. The
two panels (a) and (b) correspond to the case of periodic and chaotic
HR dynamics respectively.

[Fig. 6(a)] and aperiodic [Fig. 6(b)] cases. In both cases, the
value of λmax becomes negative at an α value of around 0.75.
That is, there exists a threshold value of attenuation. As the
system crosses this value, the fixed point dynamics are stabi-
lized. Additionally, the fixed points of the system variables x1

and x2 for the periodic [Fig. 6(a)] and aperiodic [Fig. 6(b)]
cases are also plotted as a function of α in red solid and blue
dashed curves, respectively. The system converges to these
fixed points when α crosses the threshold value from the right.
We must also note here that, although the two fixed points
xFP

1 and xFP
2 seem to fall along the same curve in Figs. 6(a)

and 6(b), there exists a small difference between their val-
ues; i.e., the two variables x1 and x2 of the coupled system
stabilize to two slightly different values. Since both systems
are stabilized to different values, we have an inhomogenous
steady state, also known as an oscillation death (OD) state.
The fixed point solutions obtained in periodic and aperiodic
HR systems, shown in Figs. 6(a) and 6(b), are consistent with
the values of the system variable xi at the time of cessation of
oscillations shown in Figs. 4 and 5.

IV. SUMMARY AND DISCUSSION

In this work, we reported the quenching of oscillations in
two bidirectionally coupled MBH systems when their indi-
vidual signals were attenuated before passing on to the other
oscillator. This attenuation presented before feeding the signal
to the other oscillator is used to mimic a physical situation
wherein there is an attenuation of signal amplitude due to
various transmission losses. Interestingly, a cessation of os-
cillations was observed when the signal attenuation crossed a
threshold. This cessation was observed for both the periodic
and the aperiodic MBH system setups. To understand the ex-
periments, we performed numerical simulations on a coupled
Hindmarsh-Rose neuronal model in both periodic and aperi-
odic domains. Similar to experiments, it was observed that the
coupled system ceased to oscillate when the attenuation factor
α was below a threshold level. Below this threshold level, it
was found that the real part of the maximum eigenvalue of
the Jacobian evaluated at the fixed point became negative,
indicating the stabilization of fixed point dynamics.

Our results are relevant in settings wherever there are cou-
pled systems separated by space and coupling signals carried
over lossy connections. For example, neuronal cells coupled
over a large distance may suffer from signal attenuation at the
receiver’s end. So attenuation-induced oscillation suppression
suggests another general mechanism of control of oscillatory
behavior in neuronal systems [34,35]. Such attenuation of
signals also underpins models of distance-dependent coupling
that is believed to be widespread in ecological systems [36].
In summary then, attenuated coupling could potentially lead
to the spontaneous stabilization of steady states and indicates
another potent natural mechanism for oscillation quenching.
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