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Hawkes processes with infinite mean intensity
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The stability condition for Hawkes processes and their nonlinear extensions usually relies on the condition
that the mean intensity is a finite constant. It follows that the total endogeneity ratio needs to be strictly smaller
than unity. In the present Letter we argue that it is possible to have a total endogeneity ratio greater than
unity without rendering the process unstable. In particular, we show that, provided the endogeneity ratio of
the linear Hawkes component is smaller than unity, quadratic Hawkes processes are always stationary, although
with infinite mean intensity when the total endogenity ratio exceeds 1. This results from a subtle compensation
between the inhibiting realizations (mean reversion) and their exciting counterparts (trends).
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I. INTRODUCTION

Hawkes processes have been used in various fields to
model endogenous dynamics, where past activity triggers
more activity in the future. Indeed, Hawkes processes were
found to be relevant to capture the self-excited nature of the
dynamics in biological neural networks [1,2], in financial
markets [3,4], in seismologic activity (earthquakes) [5], and
also in crime rates or riot propagation [6,7]. Standard linear
Hawkes processes are basically akin to a branching process,
where each event generates on average ny “child” events. The
process cannot be stable when ny > 1, as events proliferate
exponentially with time, and no stationary state can ever be
reached. When ny < 1, on the other hand, the average event
rate reaches a finite constant that diverges as (1 — ngy)~! as
ny — 1.! Therefore, for standard Hawkes processes, the sta-
bility criterion coincides with the condition that the event rate
remains finite.

As argued by Kanazawa and Sornette in [10,11], nonlinear
Hawkes processes allow one to combine both excitatory and
inhibitory effects, and can describe an even broader range of
phenomena. One special class of such nonlinear processes,
called quadratic Hawkes processes (QHPs), were introduced
and studied in [12]. On top of the standard Hawkes feedback,
a signed process (price changes in the context of [12]) also
contributes to the current activity rate, in a quadratic way
(see below for a more precise definition). On top of the
ny child events triggered by the Hawkes feedback, the new
quadratic feedback contributes to ng extra child events. What
was shown in [12] is that the average event rate diverges when
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!The case ny = 1 is special and can also reach a stationary state
with finite mean intensity when the immigration rate is zero, see [8],
or infinite mean intensity but finite typical (or median) intensity, as
shown in [9].
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the fotal endogeneity ratio ngy + ng reaches unity. From this
result, it was concluded that the QHP is only stationary when
ng +ng < 1.

The aim of this Letter is to show that such a conclusion
was too hasty. In fact, we claim that whenever ny < 1 the
QHP is always stationary, albeit with a diverging mean inten-
sity in the case ny + ng > 1. More precisely, the distribution
density of the local intensity decays asymptotically as a power
law, with an exponent that becomes smaller than 2 whenever
ng +ngp > 1, such that the average intensity diverges. Sta-
tionary processes with infinite mean intensity also appeared
very recently in the context of nonlinear Hawkes processes in
Refs. [10,11]. Intuitively, the mix of excitatory and inhibitory
effects encoded by QHPs allow one to avoid the exponential
runaway of Hawkes processes when ny > 1, while describing
a highly intermittent process with divergent mean intensity.

II. HAWKES PROCESSES: DEFINITION

A. Linear Hawkes process

Hawkes processes were first introduced to model earth-
quake dynamics [5], in particular the propensity of seismic
activity to cluster in time. This same phenomenon is observed
in financial markets, where trading activity and volatility tend
to cluster in time.

A Hawkes process (N;);>0 is an inhomogeneous Poisson
process (meaning that its intensity is time dependent), the
intensity of which is defined with the past realisations of the
process according to the following equation:

A = Aoo +/ ¢(t - u)dNuv (1)

where A, is the local intensity, i.e., probability that d N, is equal
to 1 is A,dt; Ao 1s called the baseline intensity and ¢(-) the
influence kernel, from which one obtains the endogeneity ratio
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ny as the norm of ¢:

ng = |||l = /R¢(M)du < +o0. 2

For an univariate linear Hawkes process to be stable, one
needs ny < 1. In fact, this is the necessary condition for the
mean intensity A := E(A,) to be finite.

One of the main limitation of Hawkes processes for fi-
nancial applications is that the stationary distribution of local
intensities, P(A), has “thin tails” that cannot reproduce the fat
tailed distribution of activity and volatility observed in most
financial time series. Furthermore, as noted in [12], linear
Hawkes processes cannot reproduce the violations of time
reversal symmetry observed in financial time series [13].

B. Quadratic Hawkes

To overcome the limitations of linear Hawkes processes,
Blanc et al. [12] introduced a quadratic extension of Hawkes
processes, where the intensity is dependent on both past ac-
tivity (dN;) and past price returns dP, := ¢, dN,, where €, =
=41 is an unbiased random sign, independently chosen at each
price change, and  is the size of elementary price changes.
The QHP is now defined as

1 t
A,:ADOJF—/ L(t — s)dP;
V)

+ % [m f_oo ot —s,t —u)dPdP,, 3)

where L(-) is called the leverage kernel (breaking the dP;, —
—dP, symmetry) and Q(-, -) the quadratic kernel. Note that L
and Q must be such that the quadratic form in dP; is positive
definite; see [12].

Since dP? = y2dN,, a purely diagonal Q [that is, Q(t —
s,t —u) = ¢(t —s)3(s — u)] recovers the standard Hawkes
kernel. New effects arise when considering nondiagonal con-
tributions to Q; see below.

Taking the expectation of Eq. (3) provides an exact equa-
tion for the mean intensity A, provided it exists. Noting that
Ele,] = 0 and E[eg€,] = 6(s — u), one readily obtains

+00

OC(s, s)ds. 4)

A=Are +nA, n:=

0

Hence, X = Ay /(1 — n) is positive and finite whenever n <
1, but becomes formally negative when n > 1 which was
interpreted in [12] as a regime where the QHP becomes
nonstationary, in analogy with what happens in the case of
standard linear Hawkes processes. As we shall see below, this
conclusion is not always warranted.

C. ZHawkes

As an interesting special case that captures the Zumbach
effect (i.e. the correlation between future volatility and past
trends [13,14]), Blanc et al. [12] proposed the following
ZHawkes specification:

L(s)=0, OC(s,u)=¢(s)d(s —u) +z(s)zm), (3

i.e., a quadratic kernel that is diagonal plus a rank-1 contribu-
tion. In this case, the intensity of the QHP becomes

M = koo + H + 72, (6)

where
t
H, :/ @t — s)dN
—00

represents the Hawkes component of the intensity whereas

t
Z = f z(t — s)d Py
represents the trend-induced (Zumbach) component. Corre-
spondingly, one can then obtain the endogeneity ratio n
[defined in Eq. (4)] as the sum of the two terms: the Hawkes
endogeneity ratio ny := ||¢|| and the Zumbach endogeneity
ratio ny = ||z?||. Naively, the stability of the ZHawkes process
should read

n=nyg+nz <1l. (7)

However, our simulations show that one can have a non ex-
plosive process when n > 1 provided ny < 1. In this case,
the QHP is stationary but with an infinite mean intensity A.
The stability of the QHP for nz + ny > 1 arises from the fact
that the inhibiting realizations of Z, (corresponding to locally
mean-reverting behavior of the price) are compensating the
exciting ones (corresponding to local trends); see the detailed
discussion in [10].

In the following, we show the results of our simulations of
aunivariate ZHawkes process (ZHP) withny = O and nz > 1,
and an exponential Zumbach kernel z(-). We also simulate the
corresponding continuous limit of the ZHawkes process, as
worked out in [12], and reinterpret the analytical results of
Blanc et al. in the context of the present discussion.

III. UNIVARIATE ZHP: NUMERICAL RESULTS

In this section, we provide evidence that the intensity of
a simulated ZHawkes Process with nz > 1 is stationary. In
order to simulate a ZHP process, we adapt the thinning algo-
rithm presented by Ogata (1981) in [15]. The Zumbach kernel
z(+) is chosen to be a pure exponential, such that Z, can be
interpreted as an exponential moving average of past returns,
i.e., a proxy for the recent trend in prices. More precisely, we

set
z2(s)=ye ™, yi=2nw

withnz = 2, @ = 0.03 and a total simulation time of 7 = 10°.
We also set ny = 0, i.e., no Hawkes feedback, and choose the
baseline rate to be Ao, = 0.5.

Figure 1 represents the whole time series of the simulated
intensity, which shows that the process does not explode
and looks stationary. More precisely, we find that the sur-
vival function of the process E(A) := P[A > A] does not
significantly evolve with time; see Fig. 2. In particular, the
distribution does not become significantly “fatter” as time
increases, as would be expected if the process was on an
explosive path. (Note that a formal Kolmogorov-Smirnov test
of this statement is not straightforward because the A,’s are
correlated in time; see [16]). Finally, and most importantly,
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FIG. 1. Time series of the intensity of a simulated ZHP. Parameters: n; =2, T = 10, w = 0.03, ny = 0, Ao, = 0.5. Note the logarithmic

scale on the y axis.

the empirical distribution function very nicely matches the
theoretical prediction of [12], namely

_1 L
EA) & A7) (ng =0); ®)

see the inset in Fig. 2. The expected slope —3/4 for ny; = 2 is
indeed very close to the fitted slope —0.77 in the range A €
[10%, 10°], beyond which finite size effects become visible.

IV. CONTINUOUS TIME LIMIT OF THE ZHP

We now further assume that the Hawkes kernel ¢(-) is also
exponential and reads

¢(s) =nppe .

When the parameters w, 8 in the kernels z(-) and ¢(-) are
sufficiently small, a continuous time limit of the ZHP was de-
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FIG. 2. The main figure shows the survival function E(A) =
P[) > A]inalog-log plot, for several subperiods ¢ € (n x 10°, (n +
1) x 10°) of the total simulation, with n indicated in the legend. The
results fluctuate somewhat, but there is no systematic trend towards
a fatter tail at longer times. The inset shows (in log-log) the survival
function for the whole period 10° <t < T = 10°, together with the
theoretical prediction for the tail of the distribution (red line), as
given by Eq. (8). Parameters areny; = 2,7 = 10% @ = 0.03,ny = 0,
and Ao, = 0.5.

rived in [12]. The corresponding two-dimensional stochastic
differential equation (SDE) reads

dH, = B[—(1 — np)H, + np(hoo + (Z)%)]d1
dZ, = —wZ,dt + yv/ Aeo + H, + (Zt)deVt, (©)]

where dW, is a Wiener noise. Instead of simulating the orig-
inal ZHP using the thinning method of the previous section,
one can simulate the above SDE, with results shown in Fig. 3,
this time with a nonzero Hawkes parameter ny = 0.2, and
with w = 0.1, B =1, Ao = 0.5, nz = 1.5; such that n =
1.7 > 1 but ny < 1. The resulting time series of the process
Z; and the intensity A, are presented in Fig. 3 and look,
again, perfectly stationary, even though the criterion ensuring
that E[H] < +o0 and E[Z?] < 400, namely ny + nz < 1, is
violated here.

In fact, the stationary probability density function (PDF)
of the two-dimensional process (9) was studied in [12]. It was
shown that the tail of the distribution of the intensity A, is a
power law, given by an extension of Eq. (8):

E(A) Ag()\ A—%(l'*‘nz(‘:m), (10)

where a can only be computed in some limits:

~ ng . 1—nH—nZ _2_0)
“”1—nH[1 X(l—mﬂz] (X_'ﬂ_90>(u)

and
an —TH__ ( —2—w—>oo> (12)
x(U—ny X7 B '

Note that the latter expression is in fact valid for arbitrary x
when ng — 0, provided ny < x (1 — ngz). In particular, a =
0 when ny = 0, recovering Eq. (8).

The conclusion is that the ZHP, at least in the continuum
limit, always reaches a stationary distribution when ny < 1,
albeit the tail of the distribution of X, is a power law, with an
exponent that becomes smaller than unity when ng + nz > 1,
i.e., it leads in that case to a divergent mean intensity.

V. CONCLUSION

In this work, we have revisited the properties of quadratic
Hawkes processes in the strong feedback regime. Based on
numerical simulations and analytical results, we have argued
that a new regime exists, where the process reaches a sta-
tionary state with an infinite mean intensity. Such a regime
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FIG. 3. Times series of the continuous time limit of a ZHawkes process according to Eq. (9). Top: (Z,),; bottom: A, = As + H, + Zf.
Parameters: N = 10°, 0 = 0.1, B = 1, Ao = 0.5, ny = 0.2, n; = 1.5. Note the logarithmic scale on the y axis for A,.

is absent for standard (linear) Hawkes processes: the stabil-
ity of the process requires the mean intensity to be finite,
except in the critical case [9]. As argued by Kanazawa and
Sornette [10,11], nonlinear Hawkes processes allow for a rich
phenomenology, with inhibitory and excitatory effects that
can balance each other in a subtle way, resulting in a highly
fluctuating, but nonexplosive process, for which they provide
several other examples.

QHPs naturally lead to a power-law tail distribution for the
local intensity, with an exponent that can become less than
unity, in which case the mean intensity diverges. The resulting
price process then converges to a Lévy stable process with
an infinite variance, in spite of the fact that elementary price
changes are strictly bounded (and, in our example, equal to
£1). As such, this regime is not directly relevant to finan-
cial markets, since price returns, although fat-tailed, have a
finite variance. Regardless, we believe that the possibility of
creating Lévy stable random walks based on a self-exciting

mechanism is interesting in itself, and may have applications
in other fields.

Finally, our analysis is far from mathematically rigorous.
Although the results of [12] for the continuous time version
of the ZHawkes process are suggestive (see Sec. IV), a more
formal proof of the stationarity of quadratic Hawkes processes
with general kernels and in the infinite mean intensity regime
would be welcome. An extension of the present discussion to
multivariate quadratic Hawkes processes is under way.
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