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Polarization conversion in the caviton driven by linearly polarized lasers
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In one-dimensional particle-in-cell simulations of a plasma irradiated by linearly polarized lasers from both
sides of boundaries, it is found that there is an appreciable growth of the electromagnetic field in cavitons in the
transverse direction perpendicular to the direction of polarization, which indicates the polarization conversion
of the electromagnetic field in cavitons. This paper demonstrates the mechanism of this phenomenon based on
parametric resonance induced by ponderomotive force with twice the frequency of the electromagnetic radiation
in the caviton. We develop a theoretical model and verify it with simulation results. This phenomenon contributes
to the heating and acceleration of particles and traps more EM energy in cavitons.
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In laser-plasma interactions, stable and long-living struc-
tures with depressed densities named cavitons, also named
relativistic electromagnetic solitons, can be formed in plas-
mas irradiated by intense lasers. They can trap solitonlike
electromagnetic (EM) radiation whose frequency is lower and
amplitude is larger than the laser. Cavitons remain or drift with
a small velocity in uniform plasma, inside which the profiles
of electric field are half-cycle structures, while the profiles of
magnetic field are cycle structures. A large percent of laser
pulse energy is contained in cavitons after they are formed in
a plasma.

Cavitons have been investigated in many studies by simu-
lations. In one-dimensional (1D) configuration, cavitons can
be formed in plasmas with low electron density (less than
0.3nc, nc being the critical density for the incident laser
light) [1–5] and high electron density (approaching or ex-
ceeding nc) [6–8]. Cavitons have also been found to exist in
two- (2D) and three-dimensional (3D) configurations [8–13].
Generally, the mechanism of the formation of cavitons is
related to amplified stimulated Brillouin scattering (SBS)
light [1] or the action of plasma gratings [4,7] undergoing
Raman-type instability. After formation, electrons are heated
and accelerated by the breaking of Langmuir waves in the
density gradients of cavitons [6], while ions by Coulomb ex-
plosion [10,11]. Cavitons play an important role in describing
the nonlinear behavior of plasmas, such as the acceleration
of electrons resulting in the saturation of SBS [14], and syn-
chrotron radiation in 3D circularly polarized incident light
configuration [12]. They can affect many applications, such
as inertial confinement fusion and particle acceleration.

The theoretical study of cavitons induced by linearly polar-
ized [13,15–17] or circularly polarized [18–21] light has been
investigated in several studies for cold or warm plasmas. The
cavitons induced by linearly polarized light are different from
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those induced by circularly polarized light for its oscillatory
vector potential, which can lead to parametric resonance, and
explain our novel discovery in the simulations that the EM
fields perpendicular to the direction of polarization in cavitons
grow exponentially. Parametric resonance occurs when the
external force acts on the oscillation system, which can be at-
tributed to the periodic variation of parameters with time. The
resonance is the most violent when the parameter frequency
is close to twice the characteristic frequency [22]. Conse-
quently, the polarization property is converted, which affects
the property of the trapped field, and thereby the heating and
acceleration of particles.

In this paper, we use one-dimensional particle-in-cell (1D-
PIC) code EPOCH to simulate the formation of cavitons. The
laser propagates in the x direction, the incident laser is linearly
polarized in the y direction, and the z direction is perpen-
dicular to both of them. The linearly polarized lasers are
injected from both sides of boundaries, whose intensities are
both Iλ2

0 = 3.4 × 1015 W μm2/cm2, i.e., eEy/meω0c = 0.05,
where λ0, ω0, and Ey are the wavelength, angular frequency,
and the electric field of the incident lights, respectively. The
total simulation length is 1000k−1

0 , where k0 = 2π/λ0 is the
wave number in vacuum. The initial plasma is located at the
center of the simulation box with the length of 700k−1

0 . The
electrons to ions mass ratio me/mi is 1/1836 and the charge
of ions Z is 1. The initial velocity distribution functions are
Maxwellian with temperature of electrons Te = 1 keV and
ions Ti = 0.5 keV, respectively. The space is discretized into
a grid with 30 000 points, i.e., the mesh size �x = 1/30 k−1

0 .
The number of particles per cell is 300. The boundaries of
particles are open.

The number of cavitons is related to the difficulty of their
generation. In order to generate as many cavitons as possible
for observation, parameters of the plasma and lasers should be
set properly. Preliminary simulations yield that cavitons have
a higher chance of generation when the electron density is
near the critical density for nonrelativistic laser intensity, and
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FIG. 1. (a) The evolution of electron density ne/nc, cavitons al-
most have no drift velocity except a few cavitons near the boundaries.
(b) The density profiles of electrons (blue solid line) and ions (red
dashed line), the almost coincidence of the curves implies that cavi-
tons in the simulation are quasineutral. (c) Comparison of the density
profile of electrons between the simulation results (blue solid line)
and the analytical results (red dashed lines). Shallower cavitons have
lower frequencies.

continuous laser irradiation also contributes. Thus, the initial
density of electrons and ions are both 0.8nc homogeneously,
and the lasers irradiate the plasma continually in the simula-
tion time.

The evolution of electron density ne/nc is shown in
Fig. 1(a). Several cavitons are formed after the formation of
plasma gratings, and then they remain relatively stable and
long living. The density profiles of electrons of some cavitons
at t = 90 000 ω−1

0 are shown in Fig. 1(b). The cavitons are
quasineutral and almost have no drift velocity except a few
cavitons near the boundaries, which is consistent with the fact
that cavitons move with acceleration against the density gradi-
ent [23]. We mainly focus on the nondrifted cavitons far from
the boundaries and apply the theoretical solutions of non-
drifted and quasineutral cavitons in warm plasmas irradiated
by circularly polarized incident lights [19]. Then we modify it
to the case of nonrelativistic, linearly polarized incident lights
and neglect the motion of ions for me/mi � 1. The solutions
can be obtained by solving the following equations,

∂2aX

∂x2
+ ω2aX = aX e− a2

X
4λe e

ϕ

λe , (1)

ϕ =
(

1

λe
+ Z

λi

)−1 a2
X

4λe
, (2)

ne(x) = Nee− 1
λe

(
a2

X
4 −ϕ), (3)

FIG. 2. (a) The snapshot of Ez and ne at t = 90 000 ω−1
0 . There

is a prominent Ez in each caviton. Note that it exists in every caviton.
Some small values are just caused by the small instantaneous value
at this moment. (b) The curve of Ezm vs t in the circled caviton in (a),
where Ezm is the envelope of Ez. This caviton is formed after around
t ≈ 15 000 ω−1

0 . (c) The curve of logarithm of the (upper) envelope
of Ez vs t in the caviton. There are two distinct growth rates marked
with black straight lines in the figure. It eventually saturates when Ez

grows to be nearly as large as Ey.

where aX (x) = eAX (x)/mec and AX (x) is the spacial com-
ponent of the vector potential A(x, t ) = AX (x) cos ωt , λe,i =
Te,i/mec2, and ϕ = eφ/mec2. Moreover, Ne is unperturbed
electron density, which is also the density on both sides of the
caviton. The equations have been reduced to the nonrelativis-
tic limit, and there is an additional factor of 1/2 on a2

X , which
represents the average effect of linearly polarized light. The
red dashed lines in Fig. 1(c) represent the numerical results
of the modified theoretical solutions, where the simulation re-
sults and the numerical solutions are similar, and the influence
of the discrepancy is discussed later.

Figure 2(a) shows that, at the end of the simulation time
(t = 90 000 ω−1

0 ), there is obvious large Ez in every caviton,
though the incident lights are polarized in the y direction.
Figure 2(b) shows the process of the growth of Ez in one
caviton located at x ≈ 530 k−1

0 , and the growth is approxi-
mately exponential [see Fig. 2(c)]. Another simulation shows
that, if there is no thermal motion in z direction, the initial
fluctuating Ez is zero and Ez remains zero in the simulation. It
is conjectured that there is an instability of Ez in the caviton.
The explanation can be given via the principle of parametric
resonance as follows.

Unlike the case in which incident light is circularly po-
larized, the magnitude of vector potential A of the linearly
polarized light is oscillatory with frequency ω. The pondero-
motive force is proportional to A2, resulting in a component
of 2ω frequency. It drives the longitudinal velocity with 2ω,
and thereby the frequency of density and current density also
have a component of 2ω. Hence, A satisfies an equation of
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parametric resonant, which leads to the exponential growth of
Az. Then Ez also grows exponentially for Ez = −∂Az/∂t .

The hydrodynamic equations for electrons are given by

∂ns

∂t
+ ∂ (nsvs)

∂x
= 0, (4)

∂vs

∂t
= − qs

ms

∂φ

∂x
− γsTs

nsms

∂ns

∂x
− 1

2

∂

∂x

(
vs − qsA

ms

)2

, (5)

where ns, vs, qs, ms, γs, and Ts are the density, longitudinal
velocity, charge, mass, adiabatic index, and temperature of sth
species (s = e, i for electrons or ions), respectively. We can
assume that ne = ne0 + ne1 cos 2ωt , ne0 = ni0 for quasineutral
approximation, me � mi, and ni1 � ne1 for the slow response
of ions, and then the equations of scalar and vector potentials
are given by

∂2φ

∂x2
= e

ε0
ne1 cos 2ωt, (6)

∂2A
∂x2

− 1

c2

∂2A
∂t2

= ω2
pene

Ne
A, (7)

where ωpe =
√

Nee2/ε0me is the electron plasma frequency.
The growth rate of the field in the whole caviton can be

represented by the growth rate at its central point, where
∂ne/∂x = 0 is satisfied by virtue of its bilateral symmetry. The
combination of Eqs. (4), (5), and (6) gives

4ω2ne1 cos 2ωt = e2ne

meε0
ne1 cos 2ωt − γeTe

me

∂2ne

∂x2

− e2

m2
e

∂

∂x

(
neA

∂A

∂x

)
. (8)

When Az � Ay at the onset of the formation of cavitons, the
vector potential can be decomposed as A(x, t ) ≈ Ay(x, t ) =
AX (x)AT (t ), where AX (x) and AT (t ) are the spatial and tem-
poral components of A(x, t ) or Ay(x, t ). The amplitude of Ay

is basically unchanged, and thus the temporal component can
be regarded as AT (t ) = cos ωt . Then ∂AX /∂x = 0 is satisfied
at central point and

∂2AX

∂x2
+ ω2

c2
AX = ω2

pene

Ne
AX . (9)

Comparing the coefficients of cos 2ωt terms in Eq. (8)
gives

4ω2ne1 = e2ne

meε0
ne1 − e2ne

2m2
e

∂

∂x

(
AX

∂AX

∂x

)
. (10)

By substituting ne/Ne → ne, ωpet → t , ωpex/c → x, and a =
eA/mec to make normalizations, ne1 can be obtained as

ne1 = 1

2

(
ω2 − nb

4ω2 − nb

)
nba2

m, (11)

where nb and am are the central values of ne and eAX /mec,
respectively.

Next we consider the equation of the vector potential in the
z direction

∂2az

∂x2
− ∂2az

∂t2
= neaz, (12)

FIG. 3. The time dependence of the values of the growth rates
on the right-hand (blue solid lines) and left-hand (blue dotted lines)
sides of Eq. (16) in three simulated cavitons. Additionally, it also
shows the time dependence of sin 2θ (red dotted line) and its consis-
tency with the growth rate.

which is decomposed as az(x, t ) = azX (x)azT (t ), and we as-
sume that

∂2azX

∂x2
= −ω2azX + (ne0 + �n)azX , (13)

∂2azT

∂t2
+ (ω2 + �n + ne1 cos 2ωt )azT = 0, (14)

where we have supplemented an additional density discrep-
ancy �n � ne0, which is necessary as discussed below.
Equation (14) is a Mathieu differential equation. Searching
a solution in the format of

azT = α(t ) cos(ωt + θ ), (15)

where α(t ) ∼ est , θ is the phase difference between Ay and Az,
and s is the growth rate and satisfies s � ω, we can obtain

s = ne1

4ω
sin 2θ = 1

8ω

(
ω2 − nb

4ω2 − nb

)
nba2

m sin 2θ (16)

and

�n = −ne1

2
cos 2θ. (17)

The parameters in Eq. (16), s, ω, nb, am, and θ , can all be
measured from the simulation results, which reveals that there
is an interconnection among them. Figure 3 demonstrates
the time dependence of three growth rates in their respective
cavitons, where the blue solid lines represent the growth rates
calculated on the right-hand side of Eq. (16), while the blue
dotted lines represent the growth rates obtained by directly
measuring the slope of the envelope of ln |Ez|. The two are in
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FIG. 4. Comparison of the density of electrons at the bottom of
the same caviton from the simulation results and that obtained from
Eqs. (1)–(3). The discrepancy becomes larger with time due to the
increase of temperature.

great agreement, especially because when there is a significant
variation in one of the growth rate, the variation of the other
is usually synchronized. The validity of Eq. (16) is a strong
evidence that parametric resonance causes the growth of Ez.
Figure 3 also demonstrates the time dependence of sin 2θ ,
where the variations of sin 2θ and growth rate are consistent.
Other parameters, ω, nb, and am, vary slowly in time. It indi-
cates that the value of sin 2θ has a major influence on the time
dependence of s.

The phase difference θ is relevant to the density discrep-
ancy �n according to Eq. (17). We can speculate that the
variation of growth rate is affected by the phase difference
and ultimately by the disturbance of density. In addition to the
disturbance caused by the inherent property of particle-in-cell
(PIC) simulation, the deformation of cavitons caused by par-
ticle heating and acceleration is an another important factor.
Simulation yields that Eq. (1) predicts relatively accurate am,
but the nb predicted by Eq. (3) is less than that obtained from
the simulation results. As shown in Fig. 4, the discrepancy be-
tween ne (and nb) obtained by simulation and theory becomes
larger in time. As a result, the sign of s changes after around
t = 60 000ω−1

0 , which may be a mechanism of saturation.
The specific location and time of the generation of cavitons

are somewhat random and sensitive to the initial conditions.
Therefore, it is elusive to predict the parameters in cavitons
precisely when only the initial parameters of laser and plasma
are provided. Instead, it is possible to roughly estimate the
maximum value of growth. By using (ω2 − nb)/(4ω2 − nb) <

1/4 and Eq. (3), Eq. (16) can be rewritten as

s <
1

32ω
e− Ca2

m
2 a2

m, (18)

where C = Z/2(λi + Zλe) ≈ 1/2λe. By integrating Eq. (1),
one can obtain

∫ am

0 a exp(−Ca2/2)da = ω2a2
m, i.e., ω2 =

[1 − exp(−Ca2
m/2)]/Ca2

m. The maximum value of s then can
be roughly expressed as smax ≈ 0.1182 λ3/4

e , which shows
that the order of magnitude of smax is in the range of
10−5 ωpe to 10−3 ωpe when the temperature of electron is
in the range of 10 eV to 1.5 keV. Generally, the simulated
growth rate is smaller than smax, but in the same order of
magnitude.

This unstable growth is found to be general, since para-
metric resonance induced by 2ω ponderomotive force exists

FIG. 5. (a) Time dependence of the total energy increment �W
of plasma for different PPCs. The black dashed line indicates the
energy emitted by lasers. (b) Transverse momentum, (c) temperature
of electrons and ions, and (d) EM energy density for different PPCs.
Ez is also plotted in panel (d) to ensure that a larger PPC indicates
a smaller initial noise level and a smaller impact of parametric reso-
nance. All of these values are obtained by calculating the averages of
the top five peaks to reduce random errors.

in different kinds of cavitons. Cavitons can also generate in
low-density plasmas where the EM fields often possess mul-
tipeak structures [20] and electron-positron plasmas where
the thermal energy of particles is extremely high [24]. Under
these circumstances, the growth can still be observed from
simulations.

To further explore the impact of this phenomenon, for
different initial noise levels, we calculate the total energy
increment �W of plasma obtained by integrating the Poynting
vector with respect to time and summing at both boundaries.
In PIC simulation, the initial noise level can be adjusted by
changing the number of particles per cell (PPC). The initial
noise level becomes larger when PPC becomes smaller. The
time dependence of �W is shown in Fig. 5(a). After ap-
proximately t = 60 000ω−1

0 , �W becomes larger when PPC
becomes smaller. Hence, parametric resonance makes more
energy contained in the plasma. Since �W comprises ki-
netic energy, thermal energy, and EM energy, we calculate
the transverse momentum of electrons p⊥e and ions p⊥i, the
temperature of electrons Te and ions Ti, and the EM energy
density w in cavitons for different PPCs at t = 60 000ω−1

0
and t = 90 000ω−1

0 , which are shown in Figs. 5(b)–5(d), re-
spectively. Though there may be random errors caused by the
unpredictability of cavitons, it can still be clearly seen that
parametric resonance contributes to the heating and accelera-
tion of particles and traps more EM energy in cavitons.

In conclusion, we have shown and explained the polar-
ization conversion caused by instability of Ez. We develop a
theoretical model which gives the relation between the growth
rate and other parameters. The consistence of the simulation
result and the model confirms the correctness. The order of
magnitude of the growth rate is also estimated. We have
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also shown that this phenomenon contributes to the heating
and acceleration of particles and makes more EM energy
trapped in cavitons. One can enhance or inhibit this phe-
nomenon artificially according to demand. Other impacts and
applications of parametric resonance in cavitons could be the
subject of future research when the direction of polarization
affects physical phenomena. For example, when a relativis-
tic intensity laser irradiates a plasma, cavitons generated by

s- and p-polarized lasers have different structures [9], or when
an external magnetic field is applied to the plasma, the dis-
persion relation of EM wave is related to its direction of
polarization.

This work is supported by the National Natural Sci-
ence Foundation of China (Grants No. 11875091 and No.
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