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Recent experimental utilization of liquid substrate in the production of two-dimensional crystals, such as
graphene, together with a general interest in amorphous materials, raises the following question: is it beneficial
to use a liquid substrate to optimize amorphous material production? Inspired by epitaxial growth, we use a
two-dimensional coarse-grained model of interacting particles to show that introducing a motion for the substrate
atoms improves the self-assembly process of particles that move on top of the substrate. We find that a specific
amount of substrate liquidity (for a given sample temperature) is needed to achieve optimal self-assembly. Our
results illustrate the opportunities that the combination of different degrees of freedom provides to the self-
assembly processes.
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I. INTRODUCTION

The rise of two-dimensional (2D) materials opens a vari-
ety of possibilities for materials science and nanotechnology
[1–6]. It is possible to distinguish between two different
categories of 2D materials: crystal and amorphous mate-
rials. While crystals have a periodic structure, amorphous
materials are categorized by the lack of periodicity. Ma-
terial microscopic structure has a crucial impact on its
global properties; therefore, controlling the self-organization
of two-dimensional materials, such as ordered or disordered
graphene, is vital to optimizing their performance [7,8].

Two-dimensional materials are frequently produced by
bottom-up techniques like chemical vapor deposition (CVD),
plasma-enhanced CVD, or physical vapor deposition [1,9–
11]. In these methods, atoms are deposited on a substrate,
move on the substrate, interact, and self-assemble. The main
challenge of creating 2D amorphous matter by bottom-up
techniques is to obtain a large and defect-free cluster. Con-
trolling growth parameters such as temperature, pressure,
and substrate geometry enables one to fit the outcome with
high reproducibility [12–18]. Recently, a liquid substrate was
experimentally utilized for crystal growth. The lack of a
crystallographic substrate has been observed to positively im-
pact crystallization, i.e., larger crystal size [19–22]. It is also
possible to promote the rearrangement of atoms by utiliz-
ing methods like radiation [23–27], electric/magnetic fields
[28], and heating [29]. The superposition of several of the
mentioned methods and their effect on interatomic interaction
also has been explored. For example, thermal activation and
UV radiation promote the rearrangement of atoms in glassy
systems [25]. Reviews of diverse experimental methods and
simulation techniques for self-assembly of nanoparticles into
large clusters can be found in [28,30].
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Self-assembly is a generic name for a microscopic process
that determines the spontaneous self-organization of the build-
ing blocks of the material. It can be naturally stimulated or
modified by controlling experimental conditions [28,31]. Pre-
viously self-assembly was explored by croase grained models
such as terrace ledge kink models [32,33], the Kardar-Parisi-
Zhang (KPZ) equation [34], tile assembly models [35,36], and
solid on solid (SOS) models [16,37,38].

On the level of a single particle, self-assembly occurs due
to interparticle interactions. In general, particles present in
the vicinity of local energy minima are separated by signifi-
cant energy barriers. From time to time, particles experience
abrupt transitions between these local minima. These transi-
tions occur due to random fluctuations that enable the system
to escape from a metastable state [39]. We generally address
random fluctuations as noise. It is possible to distinguish
between two kinds of noise effects on the single particles: a
uniform effect that, on average, affects all the particles simi-
larly and a heterogeneous impact that will affect each particle
differently. In this study, we develop a coarse-grained model
of interacting particles (a generalization of the SOS model
[16,37,38]) to explore the impact of different noises on the
self-assembly processes of amorphous materials. Due to the
focus on amorphous structures, by self-assembly we refer to
emergence of a coarse-grained, dense aggregation of particles,
and not a formation of crystalline phase. We separately in-
troduce two kinds of noises in the model. One type has the
same impact on each atom in the system; we call it uniform
noise. The other noise has a different effect on each atom in
the system, and hence the name local noise. The temperature
is assumed to be constant across the sample; therefore, it is
a uniform noise. In contrast, atoms of the liquid substrate
move differently through the sample; thus, their motion causes
a different substrate arrangement at each point, i.e., a local
noise. The emerging questions are, What is the impact of the
various noises on self-assembly processes? Which noise is
beneficial for 2D self-assembly? What happens when a cohort
of these noises is applied? This study explores these questions
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by simulating a self-assembly process of an amorphous cluster
on top of a liquid substrate. We use molecular dynamics (MD)
to describe the motion of substrate atoms and the kinematic
Monte Carlo (KMC) approach to address the self-assembly of
particles on top of the substrate. Voronoi tessellation represen-
tation of the substrate interlinks these two approaches.

II. MODELS AND METHODS

We simulate two-dimensional, amorphous cluster growth
on top of a liquid substrate. Our model consists of a sub-
strate and particles that move and self-assemble on top of
the substrate. The substrate is a set of atoms that can reorga-
nize. Initially, the substrate atoms are randomly dispersed. To
obtain more or less uniform substrate density, we divide the
sample into equal squares and randomly introduce an atom
into each square. The substrate atom number i interacts with
substrate atom number j via Lennard-Jones potential Vi, j :

Vi, j = 4ε[(σ/ri, j )
12 − (σ/ri, j )

6], (1)

where ε = 100, σ = 104, and ri, j is the distance between
atoms i and j. The surface is a square of size 20σ × 20σ ; pe-
riodic boundary conditions are implied. To consider only the
short-ranged repulsion interaction between atoms, we cut off
the potentials at 1.1σ , i.e., Weeks-Chandler-Anderson (WCA)
potential (see [40]). The overdamped Langevin equation de-
termines the dynamics of the substrate atoms, i.e., the position
of the iith particle is

�ri(t + �t ) = �ri(t ) +
√

Dδt (ηxx̂ + ηyŷ)

+
n∑

i=1

4ε

[
−12

σ 12

r13
i, j

+ 6
σ 6

r7
i, j

]
δt p̂i, j, (2)

where D = 1.5×10−7σ 2/δt is the diffusion coefficient, n is
the number of particles that are closer than 1.1σ , δt = 0.005
is the time step size and p̂i, j is the unit vector in the direction
�r j − �ri. ηx and ηy simulate Gaussian noise for each axis (see
the Supplemental Material [41]).

We use Voronoi tesselation [42] to define the substrate sites
created by the substrate atoms. Voronoi tessellation is defined
by a set of nonordered sites, i.e., a set of randomly placed
points. Each site defines a cell, a Voronoi cell, that covers
all the points that are closer to a given site than to any other
site [42]. For a given Voronoi cell, neighbor Voronoi cells are
defined as cells that share a common boundary. The number
of neighbor Voronoi cells and circumference length varies be-
tween different cells; see Fig. S1 in the Supplemental Material
[41]. In our model, each substrate atom represents the central
point of a given Voronoi cell. Thus, the motion of substrate
atoms alters the Voronoi tessellation. These modifications in-
fluence the geometry of all the cells simultaneously, but each
Voronoi cell is affected uniquely. Ultimately, these unique and
random rearrangements introduce local noise to the system.
During our simulation, we update the Voronoi tessellation.
The number of MD steps between sequential Voronoi tessel-
lation updates should be large enough for the change in the
structure to be significant. That is, nonzero modifications for
the cell circumference should be observed. But at the same
time, many MD steps completely modify the Voronoi tessel-
lation and disconnect previously neighboring cells. To balance

these criteria, we use a temporal step of 1800δt between se-
quential updates of the Voronoi tessellation. Due to interaction
via the Lennard-Jones potential [Eq. (1)], the substrate atoms
move significant distances during the tessellation update step.
Since the substrate atoms are in equilibrium, the chosen up-
date step of the Voronoi tessellation reflects proper sampling
of the various positions of the substrate atoms. Additional
possible updates of the Voronoi tessellation are discussed in
the Supplemental Material [41].

The substrate structure, i.e., Voronoi tessellation, defines
the possible locations and dynamics of self-assembling parti-
cles that move on top of the substrate. Each Voronoi cell can
be occupied by up to one self-assembling particle. Initially,
all the particles are randomly dispersed among the Voronoi
cells. We use the KMC model to determine the transitions
between different substrate sites of the self-assembling par-
ticles. At each iteration of the KMC, one particle can hop
from one Voronoi cell to one of the unoccupied neighboring
Voronoi cells. The local geometry of a given Voronoi cell
determines the interaction energy of two nearby particles, i.e.,
self-assembling particles located at neighbor Voronoi cells.
This bonding interaction depends on the length of the mutual
edge of the Voronoi cell; thus the total energy of a particle
situated in Voronoi cell s is provided by Es = −J bs

∑
k bk fs,k∑
k fs,k

,
the summation is over all the neighbors of cell s, and fs,k is
the length of the boundary between cells s and k. bk is 1 if
cell k is occupied and 0 otherwise. This definition assumes
that particle-particle interactions are linear with the distance
between particles since the average distance between two
randomly allocated particles in two adjacent Voronoi cells is
proportional to the length of their mutual boundary [18].

The probability of a particle to leave its current site and
jump to one of the adjacent empty cells follows

ps = eβEs , (3)

where β = 1
kbT , T is the temperature and kB is the Boltzmann

constant. If the attempt of the particle to leave its current cell
s is successful, it will consider all the potential destinations
(i.e., empty neighboring cells). For each of those potential
destinations the transition probability ps→k is

ps→k = e−β�Es,k∑
k e−β�Es,k

, (4)

where �Es,k = Ek − Es and the summation is over all the
potential cells k. During the simulation, self-assembling par-
ticles’ locations are updated sequentially one after the other.
Since the self-assembling particles are indistinguishable,
it is possible to use sequential updating instead of random
updating generally used in MC simulations [43]. Each N
KMC steps, the Voronoi tesselation is updated according
to the algorithm described above. In the following, we use
the term vibration frequency = 1/N to describe the periodic
updates of the Voronoi tessellation. These Voronoi tesselation
updates are terminated after a specific (and vast) number
of KMC steps. We allow the system to relax on top of a
specific (but randomly chosen) Voronoi tessellation. Notice
that when such relaxation is introduced, we assume that we
can control the motion of the substrate atoms. Such control is
mathematically achieved via setting D → 0 or rapid freezing
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of the substrate. Suppose the origin of the noise that affects
substrate atoms rearrangements is achieved via an external
source, such as rattling of the system. In that case, the
relaxation phase occurs when this external source is switched
off. It is worth noting that recently a model describing ion
transport processes used similar ideas of dividing the system
into two coupled subsystems. MD represents one subsystem
and the other is represented by MC; see [44].

The main parameter that describes “successful” self-
assembly is cluster compactness. To measure the cluster
compactness, we sum over the lengths of the edges of all the
cells. The measure is defined by U = 1

2

∑
s

∑
k fs,k|(bs − bk )|

where bs is 1 if cell s is occupied and 0 otherwise, s indicates
different particles, and k indicates the various neighbours of
particle s. Due to the presence of |bs − bk|, in U , only situa-
tions where just one of the cells (s, k) is occupied contribute
to U . Since the number of particles is fixed, small U describes
situations when many particles are clumped together and form
clusters. Large U may be caused by holes in the cluster or the
emergence of many small clusters instead of a large one. Such
situations are not desirable.

III. RESULTS

Two types of noises are present in the model. The first
noise is the thermal one that we term uniform. It is varied
by controlling the temperature in Eqs. (3) and (4). The sec-
ond noise is introduced via rearrangements of the substrate
atoms. The Voronoi cells differ extensively from one place to
another. Therefore the term “local noise” describes substrate
variations. We vary the vibration frequency of the substrate. In
Figs. 1(a)–1(c) the U with pronounced oscillations describes
the situation when substrate rearrangements are introduced.
The whole behavior looks as if the system is periodically
rattled. As mentioned above, we stop these substrate varia-
tions after a specific amount of time (i.e., KMC steps). After
the substrate vibrations are terminated, U starts to decay (on
average). Surprisingly, this decay leads to terminal values of
U that are smaller than the values achieved without substrate
deformations, given that the measurement time is the same
for both cases. This effect occurs even though at the start of
the final relaxation, U for the case with local noise is larger
(i.e., less compact cluster) than U for the case without such
noise. In Figs. 1(a)–1(c) we present three representative cases
of how U behaves for different duration of vibrations. Panel
(d) summarizes the findings for different values of duration
of vibrations. This improvement disappears when the vibra-
tion duration is close enough to the measurement time and
the period of the relaxation phase is too short. Through this
work we use ∼ 1

3 of the measurement time for the duration
of vibrations. We notice that similar effect of positive impact
due to inclusion of additional noise can be achieved when
the Voronoi tessellation dynamics is modified (see the Sup-
plemental Material [41])

The two noises affect quite differently the immediate evo-
lution of the system. While particles temperature increase
leads to consistent small fluctuations, each substrate vibration
violently destabilizes the system due to the reconfiguration of
intersubstrate energetic bonds. When we eliminate substrate
variations and consider only the effect of temperature, i.e.,

Duration of vibrations

FIG. 1. (a)–(c) Compactness as a function of time for kBT/J =
1/7, vibration frequency 10−4 and different periods of vibrations
[illustrated in panel (c)]. Red curves describe the cases without
substrate variations and green curves the cases where dynamical
substrate variations were implemented. Durations of vibration are
(a) 5×104 KMC steps, (b) 2×105 KMC steps, (c) 4×105 KMC
steps. (d) Cluster compactness at the end of the measurement for
various durations of vibration. The simulations were performed for
260 particles and 100 realizations and the measurement time was
6×105.

uniform noise, two distinct regimes appear. For low temper-
atures, the system is stuck in a metastable state [Fig. 2(c)]
where large “holes” persist for extremely long times in the
cluster. On the other hand, for high temperatures, the system

FIG. 2. (a)–(b) Cluster compactness as a function of the amount
of “noise” in the system, averaging over 99 realizations. (a) Only
thermal fluctuations are present. (b) Thermal fluctuations and sub-
strate variations are present and the temperature is fixed, kBT/J =
1/15. (c)–(e) Snapshots of the formed cluster with no substrate varia-
tions; the straight lines determine the boundary of every Voronoi cell.
(c) kBT/J = 1/15. (d) kBT/J = 1/7. (e) kBT/J = 1/3. 260 particles
were used and the measurement time was 6×106 KMC steps.
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FIG. 3. Single-particles behavior during cluster formation.
(a) Jump frequency as a function of temperature and no substrate
vibrations. (b) Jump frequency as a function of vibration frequency
and fixed temperature kBT/J = 1/15. (c) Energetic gain as a function
of temperature and no substrate vibrations. (d) Energetic gain as
a function of vibration frequency and fixed temperature kBT/J =
1/15. The measurement time was 106 KMC steps, with 260 particles
and averaging over 100 realizations.

stays in a homogeneous phase. Local formation of cluster
grains are disassembled very fast [Fig. 2(e)]. In both high- and
low-temperature limits, U is large. There is an optimal inter-
mediate temperature where some balance is reached between
the tendency to break loose and the opportunity to stay locally
connected. For this optimal temperature U reaches a minimal
value, as shown in Fig. 2(a), and a compact cluster is obtained
[Fig. 2(d)]. This result agrees with previous findings where
an optimal interaction that leads to an efficient self-assembly
process was observed [45,46].

When the temperature is set to be constant, and the vi-
bration frequency is modified, a similar effect is observed.
Figure 2(b) shows that U behaves nonmonotonically with
vibration frequency. The small vibration frequency of the
substrates acts beneficially, up to a specific limit. Further in-
clusion of additional noise is destructive for cluster formation.
Comparison of panels (a) and (b) in Fig. 2 shows that the roles
of vibration frequency and temperature are close. The dy-
namic range of the y axis in Figs. 2(a) and 2(b) discloses that
the size of the impact of the noises is different: temperature
has much more effect on cluster compactness than substrate
variations.

To better characterize the differences and the similarities
of the impact of the two noises, we explore the single-particle
behavior. We define jump frequency as the total number of
transitions between different Voronoi cells performed by the
self-assembling particles, divided by the measurement, i.e.,
total number of KMC steps. Panel (a) of Fig. 3 shows that
the jump frequency monotonically grows with the temperature
when there are no substrate variations. Similar behavior of the
jump frequency appears when the temperature is kept fixed,
and the vibration frequency is modified, Fig. 3(b). Again,
the scales of the panels disclose that the effect of tempera-

FIG. 4. Optimal vibration frequency F (T ) as a function of tem-
perature. For each temperature the minimum of U as a function of
vibration frequency was detected (see the inset). The measurement
time was 6×106 KMC steps, with 300 particles and averaging over
1000 realizations.

ture modifications is superior to variations of the vibration
frequency. This increase in jump frequency due to the rise
of the noise, either uniform or local, is expected. The jump
frequency is associated with a kinetic energy that grows when
the temperature is increased. Moreover, the increase of tem-
perature generally allows a system to escape local metastable
states and reach states with lower potential energy. But when
the temperature is too high, the transitions are random, and on
average, there is no net energetic gain. Precisely this behavior
is observed in panel (c) of Fig. 3. The average difference
between a particle’s energy before and after a transition, i.e.,
〈�E〉, grows with temperature until it saturates at 〈�E〉 = 0.
So while the rare transitions at low temperatures occur toward
(on average) lower energy states, very frequent transitions do
not contribute anything at high temperatures. When average
energetic gain, 〈�E〉, is measured as a function of vibration
frequency (for a fixed temperature), a contradiction with the
previously described intuition is observed. Figure 3(d) shows
that |〈�E〉| always grow with vibration frequency. From this
behavior, we can conclude that the effect of local noise due to
substrate modifications is different on the single-particle level.
Substrate modifications always provide favorable energetic
pathways. These energetic pathways can lead to an improve-
ment in cluster compactness, as is observed in Fig. 2(b).

We define the optimal vibration frequency F (T ) as the
vibration frequency for which at temperature T the cluster
compactness measure attains a minimum. Figure 4 presents
F (T ) as a function of kBT/J .

Figure 4 displays that it is always beneficial to introduce
local noise, and the optimal amount of this noise grows with
temperature. This growth supports the assumption that we
raised above regarding different energetic pathways created
due to the presence of local noise. The impact of the two
noises differs quantitatively and qualitatively; they are not
interchangeable.

IV. DISCUSSION

This study explored the self-assembly process on top
of a 2D amorphous material that lacks periodicity. This
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lack of periodicity can soften some constraints that limit
the self-assembly of crystals by imposing a variation of
particle-particle interactions. Previous studies have shown that
uniform [47] or local [45] alternation of particle-particle in-
teraction accelerates the self-assembly process. In this line
of studies, modification comes from a built-in feature that
characterizes each component of the system such as the shape
of the component [47] or the internal state of the component
[45]. In our case, modification of particle-particle interaction
appears due to substrate variation, i.e., liquidity. Substrate
variations modify the local structure of the substrate and, as
a consequence, alter the average positions of the particles
on top of the substrate, which in turn change the particle-
particle interaction. Since these modifications are random, we
compare the impact of substrate variations to the effect of
temperature, i.e., noise in the system. Similarly to thermal
fluctuations, substrate modifications stimulate the transition
of particles from one location to another. But unlike thermal
fluctuations, the average energetic gain from such transitions
does not wear out when the vibration frequency of the sub-
strate is large. Despite this net energetic gain per particle,
the effect on cluster compactness is quite similar for both
noises. There is a specific temperature/vibration frequency for
which U is minimal, and more noise is destructive. While
large thermal fluctuations cause random transitions that desta-
bilize the cluster, large substrate variations can rip the cluster
apart by disconnecting local neighbors. These modifications
effectively increase particle energy, making the following
transitions energetically favorable for the particle, but might
not be perfect for the cluster formation. We can say that while
temperature fluctuations facilitate transitions on top of a fixed
energy landscape, substrate vibrations cause time-dependent
deformations to this landscape. These deformations provide
additional energetic pathways toward better self-assembly, up
to a specific frequency of deformations. When these defor-
mations of the energetic landscape are present, the system is
out of equilibrium. Equilibrium relaxation on the energetic
landscape formed during the nonequilibrium period leads to
better self-assembly (i.e., more compact cluster). We find that
it is always preferable to impose substrate variations, i.e.,
time-dependent deformations to the energy landscape (this

occurs even when Voronoi dynamics is modified; see the
Supplemental Material [41]). When the two noises are ap-
plied in a cohort, there is a preferable frequency of variations
for any temperature. Moreover, this frequency monotonically
grows with temperature, suggesting that the higher the thermal
fluctuations are, the larger the amount of substrate variations
that is needed.

Thus, behavior on the single-particle level, faster relaxation
towards more compact cluster, and consistent improvement
of the cluster due to additional frequency of vibrations (that
grows with the temperature) advocate for a qualitative dif-
ference between the observed behavior and annealing due to
temperature. Additional heating of the sample is known to
produce faster freezing, e.g., the Mpemba effect, for which
one of the explanations suggests faster search on top of a
constant energy landscape occurs due to better initial spread
achieved due to preheating [48]. In our case, it is not only
that the self-assembly relaxes faster after substrate variations,
but it also reaches more compact clusters. The search for
the compact cluster occurs not only on a given energy land-
scape; imposed variations generate a search between different
energy landscapes as well. The lack of periodicity of the
2D amorphous substrate allows us to perform this search
among different energy landscapes in the first place. When the
substrate is not constrained by crystalline order, local modifi-
cations are possible. These modifications change the energy
landscape and effectively create two processes: one is on top
of the energy landscape and the other is the transitions of the
landscape itself. The observed amplification of self-assembly
can appear due to effective cooperation, as in the case of
stochastic resonance [49]. Our results will be beneficial not
only for designers of self-assembly on top of 2D amorphous
materials but also for any search process driven by fluctuations
on a constant energy landscape, such as evolution [50] and
deep learning [51].

ACKNOWLEDGMENT

D.S. thanks E. Shimshoni, D. A. Kessler and E. Lazar
for fruitful discussions. This work was supported by Israel
Science Foundation Grant No. 2796/20.

[1] Z. Yang, J. Hao, and S. P. Lau, Synthesis, properties, and ap-
plications of 2D amorphous inorganic materials, J. Appl. Phys.
127, 220901 (2020).

[2] H. Zhao, Q. Guo, F. Xia, and H. Wang, Two-dimensional ma-
terials for nanophotonics application, Nanophotonics 4, 128
(2015).

[3] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D.
Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Elec-
tronics based on two-dimensional materials, Nat. Nanotechnol.
9, 768 (2014).

[4] A. K. Geim and I. V. Grigorieva, Van der Waals heterostruc-
tures, Nature (London) 499, 419 (2013).

[5] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.
Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional
atomic crystals, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).

[6] Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J.
Qiu, M. W. Barsoum, and Y. Gogotsi, Flexible and conductive

MXene films and nanocomposites with high capacitance,
Proc. Natl. Acad. Sci. USA 111, 16676 (2014).

[7] G. Yang, L. Li, W. B. Lee, and M. C. Ng, Structure of graphene
and its disorders: A review, Sci. Technol. Adv. Mater. 19, 613
(2018).

[8] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D.
Mohite, and M. Chhowalla, Phase-engineered low-resistance
contacts for ultrathin MoS2 transistors, Nat. Mater. 13, 1128
(2014).

[9] Z. Cai, B. Liu, X. Zou, and H. M. Cheng, Chemical vapor de-
position growth and applications of two-dimensional materials
and their heterostructures, Chem. Rev. 118, 6091 (2018).

[10] X. Li et al., Large-area synthesis of high-quality and uni-
form graphene films on copper foils, Science 324, 1312
(2009).

[11] J. H. Park and T. S. Sudarshan, Chemical Vapor Deposition
(ASM International, Materials Park, OH, 2001).

L022601-5

https://doi.org/10.1063/1.5144626
https://doi.org/10.1515/nanoph-2014-0022
https://doi.org/10.1038/nnano.2014.207
https://doi.org/10.1038/nature12385
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.1073/pnas.1414215111
https://doi.org/10.1080/14686996.2018.1494493
https://doi.org/10.1038/nmat4080
https://doi.org/10.1021/acs.chemrev.7b00536
https://doi.org/10.1126/science.1171245


DEBORAH SCHWARCZ AND STANISLAV BUROV PHYSICAL REVIEW E 105, L022601 (2022)

[12] P. Zhang, X. Zheng, S. Wu, J. Liu, and D. He, Kinetic Monte
Carlo simulation of Cu thin film growth, Vacuum 72, 405
(2004).

[13] L. Meng, Q. Sun, J. Wang, and F. Ding, Molecular dynamics
simulation of chemical vapor deposition graphene growth on
Ni (111) surface, J. Phys. Chem. B 116, 6097 (2012).

[14] Z. Chen, Y. Zhu, S. Chen, Z. Qiu, and S. Jiang, The kinetic
process of non-smooth substrate thin film growth via parallel
Monte Carlo method, Appl. Surf. Sci. 257, 6102 (2011).

[15] M. Meixner, E. Schöll, V. A. Shchukin, and D. Bimberg,
Self-Assembled Quantum Dots: Crossover from Kinetically
Controlled to Thermodynamically Limited Growth, Phys. Rev.
Lett. 87, 236101 (2001).

[16] L. Pyziak, I. Stefaniuk, I. Virt, and M. Kuzma, Monte Carlo
simulation of CdTe layers growth on CdTe(001) and Si(001)
substrates, Appl. Surf. Sci. 226, 114 (2004).

[17] L. Nurminen, A. Kuronen, and K. Kaski, Kinetic Monte Carlo
simulation of nucleation on patterned substrates, Phys. Rev. B
63, 035407 (2000).

[18] D. Schwarcz and S. Burov, The effect of disordered substrate
on crystallization in 2D, J. Phys.: Condens. Matter 31, 445401
(2019).

[19] D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L.
Jiang, W. Hu, and Y. Liu, Uniform hexagonal graphene flakes
and films grown on liquid copper surface, Proc. Natl. Acad. Sci.
USA 109, 7992 (2012).

[20] M. Zeng, L. Tan, J. Wang, L. Chen, M. H. Rümmeli, and L.
Fu, Liquid metal: An innovative solution to uniform graphene
films, Chem. Mater. 26, 3637 (2014).

[21] T. Boeck, F. Ringleb, and R. Bansen, Growth of crystalline
semiconductor structures on amorphous substrates for photo-
voltaic applications, Cryst. Res. Technol. 52, 1600239 (2017).

[22] K. Zhang, X. B. Pitner, R. Yang, W. D. Nix, J. D. Plummer, and
J. A. Fan, Single-crystal metal growth on amorphous insulating
substrates, Proc. Natl. Acad. Sci. USA. 115, 685 (2018).

[23] D. Chen, Y. Zheng, L. Liu, G. Zhang, M. Chen, Y. Jiao, and
H. Zhuang, Stone–Wales defects preserve hyperuniformity in
amorphous two-dimensional networks, Proc. Natl. Acad. Sci.
USA 118, e2016862118 (2021).

[24] A. J. Stone and D. J. Wales, Theoretical studies of icosahedral
C60 and some related species, Chem. Phys. Lett. 128, 501
(1986).

[25] F. Iacopi et al., Short-ranged structural rearrangement and en-
hancement of mechanical properties of organosilicate glasses
induced by ultraviolet radiation, J. Appl. Phys. 99, 053511
(2006).

[26] R. Klajn, K. J. M. Bishop, and B. A. Grzybowski, Light-
controlled self-assembly of reversible and irreversible nanopar-
ticle suprastructures, Proc. Natl. Acad. Sci. USA 104, 10305
(2007).

[27] J. Kotakoski, A. V. Krasheninnikov, U. Kaiser, and J. C. Meyer,
From Point Defects in Graphene to Two-Dimensional Amor-
phous Carbon, Phys. Rev. Lett. 106, 105505 (2011).

[28] M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marza,
Directed self-assembly of nanoparticles, ACS Nano 4, 3591
(2010).

[29] M. O. Blunt, J. Adisoejoso, K. Tahara, K. Katayama, M. Van
der Auweraer, Y. Tobe, and S. De Feyter, Temperature-induced
structural phase transitions in a two-dimensional self-assembled
network, J. Am. Chem. Soc. 135, 12068 (2013).

[30] K. Momeni et al., Multiscale computational understanding and
growth of 2D materials: A review, npj Comput. Mater. 6, 22
(2020).

[31] F. Elsholz, E. Schöll, and A. Rosenfeld, Control of surface
roughness in amorphous thin-film growth, Appl. Phys. Lett. 84,
4167 (2004).

[32] W. K. Burton, N. Cabrera, and F. C. Frank, The growth
of crystals and the equilibrium structure of their surfaces,
Philos. Trans. R. Soc. London A 243, 299 (1951).

[33] G. H. Gilmer and P. Bennema, Simulation of crystal growth
with surface diffusion, J. Appl. Phys. 43, 1347 (1972).

[34] M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic Scaling of
Growing Interfaces, Phys. Rev. Lett. 56, 889 (1986).

[35] M. J. Patitz, An introduction to tile-based self-assembly and a
survey of recent results, Nat. Comput. 13, 195 (2014).

[36] Y. Brun, Arithmetic computation in the tile assembly model:
Addition and multiplication, Theor. Comput. Sci. 378, 17
(2007).

[37] A. Chatterjee and D. G. Vlachos, An overview of spatial
microscopic and accelerated kinetic Monte Carlo methods,
J. Comput.-Aided. Mater. 14, 253 (2007).

[38] M. Biehl, Lattice gas models and kinetic Monte Carlo simula-
tions of epitaxial growth, Int. Ser. Numer. Math. 149, 3 (2005).

[39] G. O. Jordi and J. M. Sancho, in Noise in Spatially Extended
Systems (Springer, New York, 1999), pp. 1–10.

[40] D. Chandler, J. D. Weeks, and H. C. Andersen, Van der Waals
picture of liquids, solids, and phase transformations, Science
220, 787 (1983).

[41] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.105.L022601 for Gaussian noise simulation
details and Voronoi tessellation picture explanation and updates.

[42] C. Moukarzel and H. J. Herrmann, A vectorizable random lat-
tice, J. Stat. Phys. 68, 911 (1992).

[43] C. J. O’Keeffe and G. Orkoulas, Parallel canonical Monte Carlo
simulations through sequential updating of particles, J. Chem.
Phys. 130, 134109 (2009).

[44] G. Kabbe, C. Wehmeyer, and D. Sebastiani, A coupled molec-
ular dynamics/kinetic Monte Carlo approach for protonation
dynamics in extended systems, J. Chem. Theory Comput. 10,
4221 (2014).

[45] G. Bisker and J. L. England, Nonequilibrium associative re-
trieval of multiple stored self-assembly targets, Proc. Natl.
Acad. Sci. USA 115, E10531 (2018).

[46] M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Optimized
Interactions for Targeted Self-Assembly: Application to a Hon-
eycomb Lattice, Phys. Rev. Lett. 95, 228301 (2005).

[47] T. D. Nguyen, E. Jankowski, and S. C. Glotzer, Self-assembly
and reconfigurability of shape-shifting particles, ACS Nano 5,
8892 (2011).

[48] Z. Lu and O. Raz, Nonequilibrium thermodynamics of the
Markovian Mpemba effect and its inverse, Proc. Natl. Acad.
Sci. USA 114, 5083 (2017).

[49] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochas-
tic resonance, Rev. Mod. Phys. 70, 223 (1998).

[50] Y. Guo, M. Vucelja, and A. Amir, Stochastic tunneling across
fitness valleys can give rise to a logarithmic long-term fitness
trajectory, Sci. Adv. 5, 3842 (2019).

[51] A. J. Ballard, R. Das, S. Martiniani, D. Mehta, L. Sagun, J. D.
Stevenson, and D. J. Wales, Energy landscapes for machine
learning, Phys. Chem. Chem. Phys. 19, 12585 (2017).

L022601-6

https://doi.org/10.1016/j.vacuum.2003.08.013
https://doi.org/10.1021/jp212149c
https://doi.org/10.1016/j.apsusc.2011.02.004
https://doi.org/10.1103/PhysRevLett.87.236101
https://doi.org/10.1016/j.apsusc.2003.11.008
https://doi.org/10.1103/PhysRevB.63.035407
https://doi.org/10.1088/1361-648X/ab29c3
https://doi.org/10.1073/pnas.1200339109
https://doi.org/10.1021/cm501571h
https://doi.org/10.1002/crat.201600239
https://doi.org/10.1073/pnas.1717882115
https://doi.org/10.1073/pnas.2016862118
https://doi.org/10.1016/0009-2614(86)80661-3
https://doi.org/10.1063/1.2178393
https://doi.org/10.1073/pnas.0611371104
https://doi.org/10.1103/PhysRevLett.106.105505
https://doi.org/10.1021/nn100869j
https://doi.org/10.1021/ja405585s
https://doi.org/10.1038/s41524-020-0280-2
https://doi.org/10.1063/1.1755425
https://doi.org/10.1098/rsta.1951.0006
https://doi.org/10.1063/1.1661325
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1016/j.tcs.2006.10.025
https://doi.org/10.1007/s10820-006-9042-9
https://doi.org/10.1007/3-7643-7343-11
https://doi.org/10.1126/science.220.4599.787
http://link.aps.org/supplemental/10.1103/PhysRevE.105.L022601
https://doi.org/10.1007/BF01048880
https://doi.org/10.1063/1.3097528
https://doi.org/10.1021/ct500482k
https://doi.org/10.1073/pnas.1805769115
https://doi.org/10.1103/PhysRevLett.95.228301
https://doi.org/10.1021/nn203067y
https://doi.org/10.1073/pnas.1701264114
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1126/sciadv.aav3842
https://doi.org/10.1039/C7CP01108C

