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Have you ever taken a disputed decision by tossing a coin and checking its landing side? This ancestral “heads
or tails” practice is still widely used when facing undecided alternatives since it relies on the intuitive fairness
of equiprobability. However, it critically disregards an interesting third outcome: the possibility of the coin
coming at rest on its edge. Provided this evident yet elusive possibility, previous works have already focused
on capturing all three landing probabilities of thick coins, but have only succeeded computationally. Hence,
an exact analytical solution for the toss of bouncing objects still remains an open problem due to the strongly
nonlinear processes induced at each bounce. In this Letter we combine the classical equations of collisions with
a statistical-mechanics approach to derive an exact analytical solution for the outcome probabilities of the toss of
a bouncing object, i.e., the coin toss with arbitrarily inelastic bouncing. We validate the theoretical prediction by
comparing it to previously reported simulations and experimental data; we discuss the moderate discrepancies
arising at the highly inelastic regime; we describe the differences with previous, approximate models; we propose
the optimal geometry for the fair cylindrical three-sided die; and we finally discuss the impact of current results
within and beyond the coin toss problem.
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I. INTRODUCTION

Since long ago, a great number of scientists have struggled
to solve the problem of the face-landing probabilities in real
physical tosses. In the seventeenth century, Galilei, Cardano
and Huygens already wrote about the die throw and the coin
toss problem [1,2]; and Pascal and de Fermat exchanged let-
ters discussing dice games [3]. But, perhaps, the essence of
the problem was best put forward by Newton: “If a die bee not
a regular body but a parallelepipedon or otherwise unequally
sided, it may bee found how much one cast is more easily gotten
then another” [4].

More than a century later, Simpson [5] suggested a model
in which the outcome probabilities were proportional to the
solid angle of each face. As such, this model only captured
the outcome of a perfectly nonbouncing toss.

Simpson’s model has been experimentally rejected for
more realistic tosses as reported by Buden [6], Singmaster [7],
and Heilbronner [8], yet it is still adopted in current scientific
outreach [9] and in recent studies due to its simplicity [10].
Extended versions take into account constraints in the angular
momentum [11–14] but still provide a solution for the non-
bouncing toss only.

Beyond Simpson’s geometrical approach and its exten-
sions, two new classes of models have arisen in the past
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decades to assess realistic bouncy tosses. On one hand,
some studies suggested probabilistic models grounded on the
chaotic properties of the coin toss [11,15] as well as phe-
nomenological models based on the Gibbs distribution from
equilibrium thermodynamics [16] or on Markovian processes
with heuristic transition rates [17,18]. On the other hand,
dynamical models grounded on the equations of partially in-
elastic collisions [19–21] have also been proposed.

As for the latter, a computational model has successfully
captured outcome probabilities of partially inelastic bouncing
tosses of short cylinders, i.e., coins [19]. Yet, an exact ana-
lytical solution has only been found at most for up to two
bounces [20].

Of note, coin tossing contributions are not only rele-
vant due to the originality and intrinsic interest of the
topic but are also known to entail a well-established im-
pact on a widespread range of cutting-edge physics research
fields [12,15].

Here we present the first exact solution of the toss of a
bouncing object (i.e., the coin toss with arbitrarily inelas-
tic bouncing) grounded on the equations of collisions from
classical mechanics [19], and tackled by means of nonequi-
librium statistical mechanics under a priori equiprobability of
phase states. The latter is simply achieved by highly random
initial linear and angular velocities in the toss, and/or by
the randomization of these variables after enough partially
inelastic collisions take place. The final analytical expres-
sion is provided and validated from reanalyzed experimental
and numerical data; the specific case of the fair three-sided
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FIG. 1. Coin sketch. The coin, a homogeneous and incompress-
ible cylinder of radius r and height h, is tossed with an initial c.m.
height zâz and with vertical velocity vâz. The coin’s initial orientation
with respect to the z axis is depicted by the polar angle θ âθ with re-
lated angular velocity −ωâx , and the dynamics are fully captured by
{z, v; θ, ω} alone. The critical angle θc corresponds to the maximum
polar angle at which the coin does not tip over its edge.

cylindrical die is considered; and the implications of the
current results within and beyond the coin toss problem are
discussed.

II. EXACT MODEL

A. Initial assumptions and approach

The coin is conceptualized as a perfect incompressible
cylinder of radius r and height h (Fig. 1). The tossing imbues
a linear velocity �v and an angular speed �ω to the coin such
that the first vector is purely vertical, and the latter vector
is applied to a rotational axis that crosses the coin’s center
of mass (c.m.) on its diameter parallel to the floor (x axis).
The angle of the coin around the x axis is depicted by θ (t ).
The coin bounces multiple times on the floor in successive
inelastic collisions (characterized by a constant coefficient
of restitution γ ) with a given dissipation of energy at each
bounce and with neglected air and ground frictions. States in
the phase space are assumed to be independent of the initial
conditions as long as enough bounces take place [15,21].
Hence, we may consider equiprobability of states in the phase
space.

B. Model derivation

1. Potential, kinetic, and minimum potential energy

The potential energy U is directly determined by the ver-
tical height z of the c.m. of the coin as U = mgz, where m is
the mass of the coin, and g is the acceleration of gravity. The
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FIG. 2. Minimum potential energy. The minimum potential is
proportional to the height of the c.m. when, at least, one of the
corners of the coin is in contact with the ground and is set by angle
θ as depicted by the solid line. Solid circles on the line depict the
position of the c.m. for each instance of the polar angle. Different
colors (shades in gray scale) show the instantaneous outcome of
the toss, set by the domain of the current θ . When the mechanical
energy is lower than the critical value (E < Ec = mgz∗), the coin
cannot overcome the potential energy at all angles, the angle domains
become disjoint, and the final outcome of the toss is bound to its
current instantaneous value. Red circles on the x axis depict the
coin-ground contact points, i.e., the colliding corners.

kinetic energy corresponds to

T = mv2

2
+ Iω2

2
, (1)

where I is the moment of inertia of the coin around the
rotational axis described previously.

It will be useful to define the minimum potential energy
Umin(θ ) = mgzmin(θ ) as the profile of the potential energy
depending on θ when, at least, one corner of the coin is in
contact with the floor (Fig. 2). Under the previous constraint,
the height of the c.m. reads

zmin(θ ) = z∗ cos(|θ | − θc), (2)

where z∗ =
√

r2 + (h/2)2 is the semidiagonal of the coin’s
cross section, and θc ≡ arctan( h

2r ) is the critical angle of the
coin (see Figs. 1 and 2).

2. Critical energy

In a coin toss, the system dissipates energy at each collision
up to the final (meta)stable state. We define the critical energy
Ec as the energy threshold below which the coin is not able to
overcome the potential energy barrier that separates its now
disjoint θ domains so that the final outcome of the toss is
already determined. The critical energy Ec is directly set by
the maximum potential energy of the coin when it is in contact
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with the floor,

Ec = mgz∗. (3)

3. Critical collision

We define the crit ical collision as the single collision at
which the energy of the coin becomes lower than Ec (as
linear and angular velocities are then small, air friction can
be neglected). Since angle θ does not change during instanta-
neous collisions, its value in the immediately prior state to the
critical collision already determines the final outcome of the
toss.

The states immediately prior to the critical collision are
constrained by Eq. (2), i.e., a physical contact between the
coin and the floor, and the distribution of states is governed by
the equations of partially inelastic collisions.

4. Partially inelastic collision

Partially inelastic collisions are characterized by the
change in the vertical velocity of the coin’s colliding corner
u′, that becomes u′′ = −γ u′ after the collision with γ as
the constant restitution coefficient. The vertical velocity of
the colliding corner fulfills u = v + y(θ )ω, where v is the
c.m.’s vertical velocity, ω is the angular velocity, and y depicts
the horizontal position of the coin’s c.m. with respect to the
colliding corner (see Fig. 2). The angular momentum is con-
served when considering a shifted rotational axis that crosses
the contact point between the floor and the coin, providing
I �ω = my �v.

By combining these constraints, we obtain the expressions
for the changes in the velocity of the c.m., the angular velocity,
and the kinetic energy,

�v = −(1 + γ )
I

I + my2
(v′ + yω′), (4)

�ω = −(1 + γ )
my

I + my2
(v′ + yω′), (5)

and

�E = −1 − γ 2

2

mI

I + my2
(v′ + yω′)2

. (6)

These results are consistent with the reduced equa-
tions used in the computational study of Ref. [19]. Also in
that study it is shown that, whereas the coin may exhibit
a “chattering” regime (a regime with very high, increasing
bouncing frequency), this transient behavior does not yield a
significant energy loss and, thus, does not contribute to critical
collisions.

5. Phase space density of prior states

By definition, states immediately prior to the critical colli-
sion must have a mechanical energy such that E ′(θ, v, ω) �
Ec, whereas their energy immediately after the collision has
to fulfill E ′′(θ, v, ω) < Ec with E ′′ = E ′ + �E following
Eq. (6). Note that, prior to the collision, the vertical velocity
of the coin’s colliding corner has to be negative u′ < 0.

The first condition provides an inequality relating v′ and ω′
with an active constraint (case “=”) that, regarding Eqs. (1)–
(3), follows the elliptic surface:[

1

2g(z∗ − zmin)

]
v2 +

[
I

2mg(z∗ − zmin)

]
ω2 � 1. (7)

The second condition introduces an inequality with a con-
straint surface that follows the tilted ellipse:[

Iγ 2 + my2

2g(I + my2)(z∗ − zmin)

]
v2 +

[
Iy2γ 2 + I2/m

2g(I + my2)(z∗ − zmin)

]
ω2

+
[

Iy(1 − γ 2)

−g(I + my2)(z∗ − zmin)

]
vω < 1. (8)

And the third condition enforces v + yω < 0.
To derive the density function of prior states ρ depending

on θ , we integrate the prior phase subspace over all possi-
ble values of the linear and angular momenta p = mv and
L = Iω, just before the critical collision. Note that because
we are directly integrating the constrained two-dimensional
(2D) volume of this subspace, we are implicitly assuming
equiprobability of prior states, as discussed in Sec. II A.

As shown in Fig. 3, the aforementioned integration is
equivalent to computing the area delimited by the tilted ellipse
of Eq. (8), subtracting the area delimited by the ellipse of the
complementary of Eq. (7), and halving the result to capture
u′ < 0. Hence, we take into account all prior states at fixed
θ that will have less energy than Ec after the collision and
discard those that already have below-critical energy.

A general ellipse of the form AX 2 + BY 2 + CXY = 1 en-
closes a total area S = 2π/

√
4AB − C2. Hence, after some

algebra, the density function of prior states ρ in terms of θ

becomes

ρ(θ ) = πm3/2g
√

I

h2

1 − γ

γ
[z∗ − zmin(θ )], (9)

where h2 is the phase space volume occupied by a single
state and the variable y(θ ) is canceled out such that θ only
contributes through zmin(θ ) as in Eq. (2). A multiplicative
prefactor mI/h2 has been introduced in order to properly nor-
malize the phase space (composed of two pairs of conjugated
variables: {z, p = mv} and {θ , L = Iω}). However, note that
this factor cancels out during the computation of the outcome
probabilities in the next section.

6. Edge landing probability

The probability of a coin toss landing on edge can be
derived as the fraction of prior states in the phase space
whose angle θ fulfills −θc � θ � θc (see Fig. 2). Due to coin’s
symmetry, we can collapse the whole θ domain to the first
quadrant, which yields

PE =
∫ θ=θc

θ=0 ρ(θ )dθ∫ θ=π/2
θ=0 ρ(θ )dθ

= θc − sin(θc)

π/2 − [sin(θc) + cos(θc)]
, (10)

that, interestingly, only depends on the geometry of the coin
(i.e., θc), and not on the restitution coefficient γ . For the
examples of 1 £, 1 €, and a quarter $ coins, the theory predicts
an edge outcome probability of 1 over ∼1000, 3000, and 8000
tosses, respectively.

L022201-3



HERNÁNDEZ-NAVARRO AND PIÑERO PHYSICAL REVIEW E 105, L022201 (2022)

FIG. 3. Phase space prior and posterior to critical collisions.
Phase space in v and ω coordinates for an example collision angle
(θ = π/4), coin geometry (θc = π/6), and coefficient of restitution
(γ = 0.5) during a (critical) collision. Elliptical black circumference
illustrates the critical energy boundary of Eq. (7). The dashed purple
line shows the limiting case u = 0. The filled solid area encircled
between the outer tilted ellipse of Eq. (8) and Ec depicts all the prior
states that fulfill u′ < 0 and will become subcritical after a critical
collision; the transparent area illustrates nonphysical u′ > 0. The
filled solid surface composed between Ec and the inner tilted ellipse
encloses all the phase states that are possible immediately after a
critical collision; the transparent surface depicts nonphysical u′′ < 0.
The inner tilted ellipse is obtained by reversing time with γ → γ −1

in Eq. (8). The angle of tilt for both prior and posterior ellipses are set
by collision angle θ . The golden arrows depict two example critical
collisions with the corresponding transitions from prior to posterior
phase states. The color map (grayscale) illustrates the kinetic energy
of the prior states for both the prior states themselves and the result-
ing posterior states. The inset: collision sketch.

A Taylor expansion of the above result for small θc pro-
vides the asymptotic edge landing probability,

PE ∼ θc
3

3(π − 2)
. (11)

III. DISCUSSION

To test the exact solution of Eq. (10), we compare it
to numerical simulations of coin tosses and experimental
data for brass nuts [19] as well as to experimental data of
the toss of very long cuboids [18] (see Fig. 4). Note that
here coin and cuboid tossing dynamics are equivalent be-
cause the latter rotate around their longest axis only (as a
2D die [18]).

On one hand, theory neatly captures edge landing probabil-
ities for all wooden and 3D-printed blocks (cuboids) falling on
tough carpet. On the other hand, it moderately underestimates
the probability for brass nuts and for blocks falling on medium
density fiberboard (MDF) where they “clatter” inelastically.
Lastly, coin toss simulations show that the more elastic the
bouncing, the better the exact solution captures the data.

FIG. 4. Theoretical, numerical, and experimental results. Com-
parison of the theoretical prediction to the experimental and
simulated data of two preexisting datasets. The solid symbols in-
dicate the experimental data reported in Ref. [18] for the toss of
wooden blocks and three-dimensional (3D)-printed blocks on tough
carpet (brown diamonds and green squares, respectively), and printed
blocks on MDF (red circles). The error bars show the binomial error.
The open red rectangles depict the experimental data of Ref. [19]
for the toss of brass nuts where their width and height show one
standard deviation around the mean; the open black symbols (tri-
angles, crosses, and diamonds) indicate their numerical simulations
performed for distinct values of the coefficient of restitution γ with
error bars smaller than symbols. The solid blue line depicts the the-
oretical prediction of Eq. (10), which only depends on the geometry
of the coin, and through the critical angle θc. The inset: data in
logarithmic scale; the golden (light gray) line depicts the power-law
fit to all data with an exponent of 3.0 ± 0.2, consistent with the
prediction of Eq. (11) for small θc.

The exact model predicts no dependency of PE on γ .
However, both experiments and simulations show a moderate
dependency of edge probability with the degree of inelasticity.
The first assumptions in Sec. II A were experimentally val-
idated in Ref. [19], thus, any discrepancy between data and
theory should derive solely from the assumption of equiprob-
ability of prior states, which is known to hold under air and
ground friction [15].

The phase space equiprobability assumption is either
grounded on random initial v and ω or grounded on the
chaotic properties of the coin toss, which dominate as the
number of collisions increases [15,22]. The limited initial
energy in simulated tosses (to avoid “increases in computing
time” [19]) greatly reduced the number of bounces, specially
for low γ , hindering the chaotic nature of the process [21].
This reduced bouncing is also observed in the tosses of long
cuboids on MDF but not in printed and wooden blocks on
a tough carpet, “a surface on which they roll, often through
many revolutions” [18]. In conclusion, the theory captures the
outcome probabilities of the coin toss with arbitrarily inelastic
bouncing provided that the initial velocities are random, or
that the coin bounces enough times. The latter case can be
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more readily achieved in a realistic setting if the bounces are
more elastic.

Regarding alternative bouncing models, it is important to
acknowledge the contribution of Ref. [18], who heuristically
suggested that the transition probabilities from prior (super-
critical) states to posterior (subcritical) states in the perfectly
elastic limit might be proportional to the “activation energy”,
i.e., the difference between the critical energy and the lowest
potential energy possible for each outcome. As proven here,
the above transition probabilities are in fact proportional to the
difference between the critical energy and the angle-specific
minimum potential energy mgzmin(θ ) for any γ . Although the
perfectly elastic solution proposed by Ref. [18] was, thus,
inaccurate in the strict conceptual sense, it did quantitatively
approximate the exact general solution of Eq. (10), and their
insightful approach did point towards the right direction.

A natural follow-up for our Letter is the derivation of the
optimal geometry for the fair cylindrical three-sided die. In-
deed, one can constrain PE in Eq. (10) to the fair value of one
third and then solve numerically for θc. Thus, the predicted
critical angle for the fair three-sided die is θ fair

c 	 0.693 rad;
hence, the ratio of cylinder height vs diameter ηfair := h/2r 	
0.831. We note that this differs from Refs. [9,10,13] in which
it was argued that η 	 1/

√
3 	 0.577 because we take bounc-

ing into account. Our prediction is experimentally validated
by the data of Ref. [18] (see Fig. 4 for PE ∼ 1/3), and by a
recent numerical study that provides a value “close to (but not
exactly equal to) η 	 0.866” [23]. We note that our prediction
holds for either x-aligned or zero initial angular momentum
(see Fig. 1) and that deviations from this constraint may ef-
fectively lower ηfair .

IV. CONCLUSIONS

The coin toss problem has deep implications for a broad
range of modern research fields [12,15], for instance, in the
study of transient chaos [24] as well as in autonomous dis-
sipative systems, in general, for which the bouncing coin
arises as a paradigmatic example. As such, the resolution of
this long-standing emblematic problem opens new avenues
in autonomous dissipative dynamics, whose considerations,
in turn, impact the study of a wide spectrum of fields from
nonequilibrium chemical reactions [25] to gravitational bi-
nary systems [26] and viscous chaotic vortices [27]. Another
example of the impact of the bouncing coin problem in-
volves quantum statistical physics [28] in which the quantum
Ising chain has been shown to bear close analogies with the
tossed coin. Further fields influenced by the study of the coin
toss include classical and quantum chaos [24,28–30], deter-

minism and randomness [31], fluid mechanics [27,32], ecol-
ogy [33], climate dynamics [34], and hydrometeorological
systems [35].

This paper presents a detailed step-by-step derivation of
the long sought exact solution to the coin toss problem and,
as such, this Letter provides the first analytical guideline to
solve the toss of any bouncing physical object. Moreover, our
combination of the phase space integral technique with the
detailed description of critical collision dynamics can be gen-
eralized and applied to classical randomization mechanical
systems [36] as well as to autonomous dissipative systems,
in general [24,37], with direct implications to all fields men-
tioned in the previous paragraph.

To summarize, in this Letter we have first derived the
collision equations for the bouncing coin toss grounded on
standard assumptions of classical mechanics. Second, we have
obtained constraints on the phase states prior and posterior
to the critical collision, after which, the outcome of the toss
is set. Third, we have implemented a statistical-mechanics
approach by computing analytically the number of prior phase
states for heads, tails, and edge outcomes. And fourth, we have
derived the exact analytical outcome probabilities for the coin
toss with arbitrarily inelastic bouncing. In the last section, we
have validated the theoretical prediction with previous sim-
ulations and experimental data; we have discussed moderate
discrepancies arising at the highly inelastic regime due to the
limited number of bounces; we have highlighted the differ-
ences with previous, approximate models; we have proposed
the optimal geometry for the fair cylindrical three-sided die at
h/2r 	 0.831; and we have discussed the broad implications
of the present results in modern physics research.

Finally, we suggest that future extensions of this Let-
ter, including ground friction, heterogeneous mass density
or additional dimensions, might provide deep insight on the
landing probabilities for biased coins, as well as for the three-
dimensional die throw and for the general case of an arbitrarily
shaped bouncing object.
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