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We present a random matrix realization of a two-dimensional percolation model with the occupation probabil-
ity p. We find that the behavior of the model is governed by the two first extreme eigenvalues. While the second
extreme eigenvalue resides on the moving edge of the semicircle bulk distribution with an additional semicircle
functionality on p, the first extreme exhibits a disjoint isolated Gaussian statistics which is responsible for the
emergence of a rich finite-size scaling and criticality. Our extensive numerical simulations along with analytical
arguments unravel the power-law divergences due to the coalescence of the first two extreme eigenvalues in the
thermodynamic limit. We develop a scaling law that provides a universal framework in terms of a set of scaling
exponents uncovering the full finite-size scaling behavior of the extreme eigenvalue’s fluctuation. Our study may
provide a simple practical approach to capture the criticality in complex systems and their inverse problems with
a possible extension to the interacting systems.
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Random matrix theory (RMT) and percolation theory are
considered as two cornerstones of probability theory with nu-
merous applications in statistical physics and descriptions of
various complex systems [1–8]. There have been also simul-
taneous contributions of both theories in the past to describe
diverse physical problems ranging from the integer quantum
Hall effects [9] to wireless communications [10]. RMT and
percolation offer their own distinct universal classification
schemes characterized by universal distribution functions of
their extremes and a set of critical exponents, respectively.
The emergence of an extreme value theory in the dynamics
of percolation models has just recently been reported [11].
However, to our best knowledge, there has been no report if
these two theories are mixed. Here, we aim to fill this gap by
presenting a random matrix realization of a two-dimensional
(2D) percolation model, and discuss how a universal scaling
framework emerges near the criticality.

We directly map a percolation problem with occupation
probability p on a square lattice of linear size L, to an L × L
random matrix M′ where every element M′

i j is equal to +1
with probability p or −1 with probability 1 − p. A bond-
percolation model of this kind is known [6–8] to exhibit a
continuous phase transition at the critical threshold pc = 1/2
with a steplike percolation probability function about pc in the
thermodynamic limit, and a power-law divergent correlation
length ξ ∝ |p − pc|−ν and mean cluster size χ ∝ |p − pc|−γ

with many characteristic universal exponents ν, γ , etc. In this
Letter, we report on a manifestation of such critical concepts
in the random matrix realization of a percolation problem.
We shall indeed refer to the matrix and percolation ensembles
interchangeably. It is worth nothing that assigning random ele-
ments ±1 is a common step in both bond- and site-percolation
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models. However, in our mapping the assignment of a +1
element is equivalent to an instant creation of a (horizontal
or vertical) bond, which directly implies the construction of
the percolation clusters. Therefore, our mapping is related
to the bond-percolation rather than a site-percolation prob-
lem. Although, every bond-percolation model is proven to
have an equivalent site-percolation representation and not vice
versa [12–14].

In our mapping, the matrix elements M′
i j are chosen to

be either −1 or +1 (instead of being 0 or 1), to satisfy the
mean zero condition at pc = 1/2 which typically appears in
the random matrix literature, and the additional advantage of
symmetry M′

i j ↔ −M′
i j when p ↔ 1 − p. Here, the statis-

tics of extreme eigenvalues is of interest. In order to have real
eigenvalues, we use symmetrization M = (M′ + M′T )/2,
where (·)T denotes the transpose of the matrix. Thus, the real
symmetric matrix M has 1

2 L(L + 1) independent elements
Mi j which can take values −1, 0, and +1 with probabilities
(1 − p)2, 2p(1 − p), and p2, respectively, for i > j. The diag-
onal elements Mii can be either −1 or +1 with probabilities
(1 − p) or p, respectively. Every element has the average μ =
〈Mi j〉 = 2p − 1. The zero-mean condition thus only holds for
pc = 1/2.

The limiting distribution of eigenvalues of various random
symmetric matrices is given by Wigner’s semicircle law as the
size of the matrix approaches infinity, i.e., L → ∞ [15,16].
This law was originally stated for matrices with entries taking
the values ±1 each with probability 1/2 [15], and then it has
been generalized to matrices with entries distributed symmet-
rically about zero and having finite moments of all orders [16].

Figure 1 presents the probability distribution function of
the eigenvalues for an ensemble of rescaled symmetric ran-
dom matrices {M} as a realization of a percolation model
on a square lattice with occupation probabilities p = 0.2, 0.5,
and 0.8. The matrices for all p’s are rescaled by a factor of
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FIG. 1. Eigenvalue distribution of an ensemble of rescaled sym-
metric random matrices as a realization of a percolation model on a
square lattice of size L = 210 with occupation probabilities p = 0.2,
0.5, and 0.8. For p = 0.5 (the red dashed line) which satisfies the
zero-mean condition, reproduces the Wigner’s semicircle law with
edges exactly located at ±√

2. The distributions for p = 0.2 and
0.8 have two parts: (i) a semicircle law for the bulk eigenvalues
whose edges approach zero, and due to the symmetry p ↔ 1 − p,
both collapse on the top of each other for p = 0.2 and 0.8, and
(ii) a disjoint isolated Gaussian distribution of the extremes (insets).
Supplemental Fig. S1 [17] presents the details of simulations and the
same analysis for different system sizes L = 29, 210, 211, and 212.

1/
√

L, so that the edges of the semicircle distribution function
of eigenvalues would lie in the interval [−√

2,
√

2]. As shown
in Fig. 1, since the zero-mean condition holds for p = 0.5,
the distribution of eigenvalues (the red dashed line) coincides
with the Wigner’s semicircle law with edges exactly located
at ±√

2. However, the distribution of eigenvalues for p = 0.2
and 0.8 consists of two parts: (i) a semicircle part for the bulk
eigenvalues whose edges approach zero as |p − pc| → 1/2,
and due to the symmetry p ↔ 1 − p, both collapse on the top
of each other for p = 0.2 and 0.8, and (ii) a disjoint isolated
distribution of the extremes including the largest (smallest)
eigenvalues for p = 0.8 (0.2) with a perfect Gaussian distri-
bution (shown in the insets of Fig. 1).

For real symmetric (orthogonal) random matrices, it is
known [18] that the limiting distribution of the largest eigen-
value sitting at the spectral edge is given by the Gaussian
orthogonal ensemble (GOE) Tracy-Widom distribution [19]
with the characteristic skewness ∼0.293 46 and excess kur-
tosis ∼0.165 24. In Fig. 2, we report our estimates for the
skewness and the excess kurtosis of the largest eigenvalue
λmax as a function of p, compared with the corresponding
predictions for the GOE and Gaussian distributions (shown
by the horizontal dashed lines). Our results suggest the fol-
lowing: (i) The isolated Gaussian distribution for p > pc

(p < pc) (see Fig. 1) only includes the first largest (smallest)
eigenvalues, and, the second largest (smallest) eigenvalues
are sitting at the spectral edges. (ii) The steplike behavior
in Fig. 2 is suggestive of a sharp transition very close to
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FIG. 2. The skewness and the excess kurtosis of the largest
eigenvalues λmax estimated from an ensemble of 105 independent
percolation realizations on a square lattice of size L = 211 as a
function of p. The horizontal dashed lines indicate the corresponding
predictions for the GOE and Gaussian distributions. Supplemental
Fig. S2 [17] shows the same results for various system sizes L = 210,
211, and 212 with much larger ensemble size.

the critical threshold, i.e., p → pc, when the two Gaussian
and GOE distributions merge [20]. We noted that a sim-
ilar observation has been recently reported in a different
context [21] for the extremal eigenvalues of sparse Erdős-
Rényi graphs. As we will see in the following, this merging
in our model is accompanied by some power-law diver-
gences in the statistics of the first largest/smallest extremes
which can be described within a remarkable universal scaling
framework.

Let us now investigate how the location of the semicircle
edges in Fig. 1 behaves as a function of p. To this end, we
have measured the average absolute value of the second ex-
tremes 〈|λ2nd|〉 in the limit of the infinite system size L → ∞
for various choices of p. Our computed data are shown by
symbols in Fig. 3. The best fit to our data suggests a perfect
agreement with a semiellipse functionality shown by the solid
line, i.e., [ 〈|λ2nd|〉√

2

]2

+
[

(p − 1/2)

1/2

]2

= 1. (1)

This can be used for the rescaling of the matrix M by an
additional factor 1/

√
1 − 〈Mi j〉2, to enforce the edges of the

semicircles to stay at ±√
2 for all p’s.

In the rest of the Letter, we shall focus our attention on the
statistical and scaling properties of the isolated extreme eigen-
value and its finite-size effects. It is shown in Ref. [22] that
for a real symmetric matrix with nonzero mean, there always
exists an eigenvalue whose magnitude is greater than or equal
to the mean of the sums of the elements in a row of the matrix.
This means that the absolute value of the largest eigenvalue
in M is in the order of |〈Mi j〉|L, i.e., 〈|λ̃max|〉 ∼ |2p − 1|L,
where the tilde denotes for the eigenvalues of “nonrescaled”
matrices. (Note that the largest eigenvalue of a deterministic
matrix Mi j = μ for i � j, is equal to μL, and all the other
eigenvalues are equal to zero. Thus the fluctuation of the
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FIG. 3. The average absolute value of the second extremes
〈|λ2nd|〉 in the limit of the infinite system size 1/L → 0 as a function
of p. The solid line shows a semiellipse functionality which well
describes our data. Supplemental Fig. S3 [17] presents the details
of our extrapolation procedure to the infinite system-size limit.

entries of the matrix each with the variance σ 2 for i > j,
changes λ̃max only with a normal random variable of ex-
pectation σ 2/μ and variance 2σ 2 not growing with the size
L—see Fig. 1.) The quantity of interest is indeed the aver-
age fluctuation of the extreme eigenvalue i.e., 〈|λ̃max|〉c :=
〈|λ̃max|〉 − |2p − 1|L in the asymptotic limit L → ∞.

We have carried out extensive Monte Carlo simulations
of extremely large system sizes 100 � L � 146 400 of our
model in the vicinity of the critical occupancy pc = 1/2
involving strong finite-size effects, to estimate 〈|λ̃max|〉c for
every p in the limit L → ∞. As shown in the left inset of
Fig. 4, the finite-size effects necessarily become essential near
the critical point and the convergence of 〈|λ̃max|〉c occurs at a
much larger system size when p → pc. Our estimates for the
asymptotic 〈|λ̃max|〉c as a function of p in the vicinity of pc

are shown in the main panel of Fig. 4. The best fit to our data
suggests the following power-law behavior:

〈|λ̃max|〉c = 1
4 |p − pc|−1. (2)

This finding confirms our above-mentioned expectation that
the average fluctuations about μL should asymptotically be
given by σ 2/μ = 2p(1 − p)/(2p − 1), which gives rise to the
scaling relation given in Eq. (2) as p(1 − p)|p − pc|−1 with
the identification that the prefactor p(1 − p) → 1/4 when
p → pc = 1/2.

Although Eq. (2) is asymptotically true in the infinite-
size limit L → ∞, the left inset in Fig. 4 suggests that the
extreme eigenvalue’s fluctuation generally depends on the
length scale of observation: At a given p, the fluctuation
grows with system size until a characteristic length scale
L∗ above which it saturates to a size-independent value. We
are interested in if, in analogy with the roughness growth
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FIG. 4. The scaling law developed for the finite-size behavior of
the fluctuations of the first extreme eigenvalues. Main: Asymptotic
estimates of the average fluctuation of the largest absolute eigenvalue
vs p − pc. The solid line is the power law with exponent −1 which
best describes our data. Left inset: The average fluctuation of the
largest eigenvalue for five occupation probabilities with p > 0.5
as a function of inverse system size. The average fluctuation in-
creases with system size up to L∗ after which it saturates to the
asymptotic value. Right inset: All data that are shown in the left
inset collapse onto a single universal curve when they are suitably
normalized according to the scaling formalism proposed in Eq. (4)
with α = 1, β = 1/2, and z = 2. At each p > 0.51, the averages are
taken over 105 independent samples for system sizes L = 5 × 103,
104, 1.5 × 104, 2 × 104, 2.5 × 104. Close to the critical threshold,
the simulations were performed for an extremely large system sizes
100 � L � 146 400 with an ensemble size of 102 independent sam-
ples for L � 5 × 104, 104 realizations for 104 < L < 5 × 104, and
105 realizations for L � 104.

in nonequilibrium stochastic surface-growth phenomena, a
“Family-Vicsek”-like scaling law provides a universal frame-
work for our observations summarized in Fig. 4. We have
examined our hypothesis, and the answer was surprisingly
consistent. We find that the following spatio-occupational
scale-invariant behavior governs the fluctuations of the first
extreme eigenvalue

〈|λ̃max|〉c(p, L) = |p − pc|−αF
((

1

L

)
|p − pc|−z

)
, (3)

where the universal function F(x) → 1/4 as x → 0 [see
Eq. (2)] and F(x) ∼ x−α/z as x → ∞, so that 〈|λ̃max|〉c grows
with size as Lα/z until it saturates to (1/4)|p − pc|−α when
L ∼ |p − pc|−z. More specifically,

〈|λ̃max|〉c(p, L) ∝
{|p − pc|−α if L∗ � L,

(1/L)−β if L � L∗, (4)

with L∗ being a saturation length proportional to |p − pc|−z,
and α, β, and z = α/β are three positive scaling exponents
featuring the universality of the extreme eigenvalue’s fluctua-
tion.

As shown in the right inset of Fig. 4, we find that a perfect
collapse onto a universal function F is achieved when the
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data are appropriately rescaled by the following examined
(conjectured) exponents

α = 1, β = 1/2, z = 2.

Within the standard Family-Vicsek scaling law in surface-
roughness growth, one may note that the same corresponding
set of exponents describes the universality of the linear
Edward-Wilkinson (EW) equation [23] [with exactly known
exponents α = (2 − d )/2, β = (2 − d )/4, and z = 2] in 0 +
1 dimensions.

Until now, we have focused on the scaling properties of
the “nonrescaled” average extreme eigenvalue fluctuations
around the mean value |2p − 1|L ∝ L1. This means that the
leading size contribution in the “rescaled” average extreme
eigenvalue is proportional to Lζ with ζ = 1/2. We are inter-
ested in realizing to what extent the exponent ζ = 1/2 for
the average extreme eigenvalue 〈|λmax|〉 remains valid when
p → pc. Without loss of generality, in the following we dis-
cuss the supercritical regime p > pcwith a straightforward
extension to p < pc regime due to the symmetry p ↔ 1 − p.
Our attempt to carefully validate the exponent ζ = 1/2 has led
to capture the power-law behavior we have already observed
for L∗ in more detail.

In order to delicately estimate the exponent ζ character-
izing the dominant size dependence of 〈λmax〉, we define an
effective exponent ζeff which allows us to easily monitor the
approach to the true asymptotic behavior. For a given occupa-
tion probability p, ζeff(Lk ) is defined by the successive slopes
of the line segments connecting two neighboring points of
[Lk−1, 〈λmax〉(Lk−1)] and [Lk, 〈λmax〉(Lk )] in which 〈λmax〉(Lk )
stands for the average largest eigenvalue for a system size Lk ,

ζeff(Lk ) = ln[〈λmax〉(Lk )/〈λmax〉(Lk−1)]

ln[Lk/Lk−1]
. (5)

It is plotted against 1/L in Fig. 5 for various choices of p
to capture their extrapolations in the infinite-size limit. We
observe that the effective exponent increases almost linearly
with 1/L for all p > pc with a clear extrapolation to ζ = 1/2
in the limit 1/L → 0 (the solid lines). However, our remark-
able observation from Fig. 5 is that in the sufficiently large
system-size regime where the effective exponent ζeff increases
linearly with the inverse system size,

ζeff = 1

2
− ξ ∗(p)

(
1

L

)
, (6)

the corresponding slope ξ ∗(p) exhibits a power-law diver-
gence as the critical threshold pc is approached (see the inset
of Fig. 5). Our best fit to our data provides the following
conjecture in perfect agreement with our data,

ξ ∗(p) = 1
8 |p − pc|−2. (7)

The length scale ξ ∗(p) should be identical with L∗ ∝ |p −
pc|−z with z = 2, as the only relevant length scale in our
study. This is independently verified when we have marked
(1/L∗)|p − pc|−2 with the vertical dotted line in the right
inset of Fig. 4 where it crosses the horizontal axis at 8. For
every p > pc, ξ ∗(p) remains finite and the exponent ζ = 1/2
is always achieved in the asymptotic limit L → ∞. Exactly
at the critical occupancy pc, the extreme eigenvalues reside
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FIG. 5. Main: The effective exponent ζeff defined in Eq. (5) as a
function of 1/L for different values of occupation probability p in
the vicinity of the critical point pc. All data behave linearly with 1/L
with a negative slope ξ ∗(p) and clear extrapolations to 1/2 in the
infinite-size limit (solid lines). Inset: Power-law divergence of ξ ∗(p)
measured from the data presented in the main panel. The solid line
shows the power law 1

8 |p − pc|−2 which best describes our data. The
averages are taken over 105 independent realizations for system sizes
up to L = 2.8 × 104 for p = 0.506, L = 2.3 × 104 for p = 0.508,
L = 1.7 × 104 for p = 0.510, and L = 1.9 × 104 for p = 0.55.

on the spectral edges in the finite interval [−√
2,

√
2] which

necessarily needs ζ = 0.
Our study can be appropriately generalized to construct a

random matrix representation of a 2D bond-percolation model
described by a sum of two independent random real matrices
M′h and M′v , one for the horizontal and one for the vertical
bonds, M′ = M′h + iM′v , in which M′h

i j and M′v
i j denote

the horizontal and vertical bonds to the right respectively
above site (i, j). This associates with each open/closed hor-
izontal bond a value ±1, and to each open/closed vertical
bond a complex value ±i. Therefore, each bond configuration
corresponds to a matrix M′ with elements ±1 ± i. Thus 2D
bond percolation on the square lattice is associated with an
ensemble of asymmetric complex matrices.

We have carried out simulations to analyze the eigenvalue
spectrum of an ensemble of such matrices after symmetriza-
tion M = (M′ + M′t )/2, where (·)t denotes the conjugate
transpose of the matrix. We find that the same scaling laws
proposed in Eqs. (3) and (4) with the same scaling ex-
ponents α = 1, β = 1/2, and z = 2 well describe the 2D
bond-percolation model with the only difference being that
here the corresponding prefactors in Eqs. (2) and (7) take
on exactly twice values, i.e., 〈|λ̃max|〉c = 1

2 |p − pc|−1, and
ξ ∗(p) = 1

4 |p − pc|−2.
To conclude, we have presented a random matrix re-

alization of a 2D percolation model which offers another
formalism to study complex systems in a rather simple ap-
proach that is in all aspects consistent with the concepts
in critical phenomena. We find that the behavior of the
model is encoded in the fluctuations of the extreme isolated
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eigenvalues whose divergence signals the criticality in the
vicinity of the critical point. We have established a scaling
law, which provides a universal framework characterizing
the finite-size effects in terms of a set of critical exponents.
Self-consistency conditions along with analytical arguments
let us make exact conjectures for the exponents and pref-
actors in perfect agreement with our computations which,
however, calls for future mathematical attempts for their rig-
orous proofs. The random matrix realization of interacting
and/or correlated statistical models may provide an inroad for

progress towards the understanding of elusive models in two
dimensions.
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