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Optimizing thermodynamic cycles with two finite-sized reservoirs
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We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs
with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of
the two reservoirs at final time τ is bounded from below by the entropy production σmin ∝ 1/τ . We discover a
general power-efficiency tradeoff depending on the ratio of heat capacities (γ ) of the reservoirs for the engine,
and a universal efficiency at maximum average power of the engine for arbitrary γ is obtained. For practical
purposes, the operation protocol of an ideal gas heat engine to achieve the optimal performance associated with
σmin is demonstrated. Our findings can be used to develop a general optimization scenario for thermodynamic
cycles with finite-sized reservoirs in real-world circumstances.
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Introduction. Thermodynamic constraints exist in all kinds
of energy-conversion machines. Among these constraints,
Carnot efficiency serves as the upper bound for efficiency of
heat engines. Such a bound is only achieved by reversible
thermodynamic cycles under the quasistatic limit [1], and
is therefore not tight for practical heat engines with finite
cycle time. Considering the restriction of operation time,
abundant tighter thermodynamic constraints were obtained for
finite-time thermodynamic cycles [2–6], for example, the ef-
ficiency at maximum power [7–17], tradeoff relation between
power and efficiency [18–23], and thermodynamic uncertainty
relation [24,25]. In particular, the power-efficiency tradeoff
determines the feasible operation regime for finite-time heat
engines and has attracted considerable attention.

Recently, to deal with another practicality that the heat is
basically stored by a finite amount of material with finite heat
capacity, the finiteness of the reservoir size is also taken into
account as a physical restriction on thermodynamic cycles
[26–33]. This issue is crucial for responding to the increas-
ingly severe energy crisis with limited material resources, and
the efficiency at maximum work (EMW) [26,28,33,34] and
efficiency at maximum average power (EMAP) [27,29,30,33]
were proposed as typical thermodynamic constraints in this
case.

As two fundamental restrictions in energy conversion pro-
cesses, the finiteness of operation time and reservoir size
usually coexist in real-world circumstances. Hence, a more
practical question naturally arises: Is there a power-efficiency
tradeoff associated with finite-sized reservoirs? In this Letter,
we address this question by studying the finite-time perfor-
mance of a linear irreversible heat engine operating between
two finite-sized reservoirs. We discover a general tradeoff
relation between power and efficiency, and a universal EMAP
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is obtained. Furthermore, we find the optimal operation of the
engine to achieve the boundary of the tradeoff.

Minimum entropy production and the uniform temperature.
As illustrated in Fig. 1, we consider a linear irreversible heat
engine operating between a hot reservoir with initial tempera-
ture T [i]

h and a cold reservoir with initial temperature T [i]
c . Both

of these two reservoirs are of finite size with the heat capacity
Ch and Cc, respectively. As follows, we focus on the case
of constant heat capacity Ch(c). From the initial time t = 0,
the engine converts the heat to work consecutively through a
control parameter λ until the two reservoirs finally reach the
thermal equilibrium state at t = τ with a uniform temperature
T [ f ]

c = T [ f ]
h ≡ T̃ . Here, we stress that the heat capacity of at

least one reservoir needs to be finite, otherwise the tempera-
tures of the two reservoirs will always maintain their initial
values instead of reaching the same within finite time. In the
following, we adopt the assumptions used in Refs. [29,30,33].

(i) Both of the two reservoirs relax rapidly such that they
are always in the quasiequilibrium states with time-dependent
temperatures Th(t ) and Tc(t ).

(ii) The total operation time τ (macrotime scale) is much
larger than the cycle time τc (microtime scale, treated as a
unit of time hereafter), and hence the engine undergoes suffi-
ciently many cycles, namely, M ≡ τ/τc � 1, before it stops
operating.

The entropy production rate reads σ̇ = −Q̇h/Th + Q̇c/Tc,
where Q̇h = −ChṪh represents the heat absorption from the
hot reservoir to the engine of a cycle, and Q̇c = CcṪc is the
heat release from the engine to the cold reservoir of a cycle.
As a result, the total entropy production σ (τ ) ≡ ∫ τ

0 σ̇dt is

σ (τ ) = Cc ln
T̃

T [i]
c

+ Ch ln
T̃

T [i]
h

. (1)

The uniform temperature T̃ is thus determined by the entropy
production as

T̃ = T̃ (σ ) = [
T [i]

h

] 1
γ+1

[
T [i]

c

] γ

γ+1 exp
[ σ

Ch + Cc

]
, (2)
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FIG. 1. Demonstration of a heat engine operating between two
finite-sized heat reservoirs. The heat engine operates between a
finite-sized hot (cold) reservoir with initial temperature T [i]

h (T [i]
c ).

The heat engine stops working when the two reservoirs reach a
the final uniform temperature T [ f ]

c = T [ f ]
h ≡ T̃ . Cc (Ch) denotes the

heat capacity of the cold (hot) reservoir. The increase in entropy
production σ will increase the final temperature T̃ [Eq. (2)].

namely, the uniform temperature rises as the entropy pro-
duction increases. Here the heat capacity ratio γ ≡ Cc/Ch

quantifies the asymmetry in size of the reservoirs. Tb ≡
T̃ (σ = 0) is the final temperature in the reversible case with
no entropy production. The reversible case is discussed in the
Supplemental Material (SM) [35].

Then, we exploit the linear irreversible thermodynamics to
obtain σ (τ ) as well as T̃ explicitly in the finite-time regime.
Under the tight-coupling condition q ≡ L21/

√
L11L22 = 1, the

entropy production rate reads [29,30]

σ̇ = Q̇2
h

L22
= C2

h Ṫ 2
h

L22
, (3)

where Li j (i, j = 1, 2) is the Onsager coefficient, and L22

corresponds to the thermal conductivity [36–38]. The adopted
tight-coupling condition can be practical realized, e.g., by a
finite-time ideal gas Carnot engine [36].

The Cauchy-Schwarz inequality
[∫ τ

0
(
√

σ̇ )2dt

](∫ τ

0
dt

)
�

(∫ τ

0

√
σ̇dt

)2

(4)

implies that the entropy production σ (τ ) = ∫ τ

0 σ̇dt =∫ τ

0 (
√

σ̇ )2dt has a lower bound, namely [35],

σ (τ ) � �min

τ
≡ σmin. (5)

In this inequality, only the first order of τ−1 is kept in the
long-time regime [16], and the equal sign is saturated with
constant entropy production rate, i.e., σ̇ = �min/τ

2 (Q̇h =√
L22�min/τ ). The minimum dissipation coefficient �min ≡

(
∫ Tb

T [i]
h

ChdTh/
√

L22)2, characterizing how irreversible entropy

production increases away from the reversible regime, is a τ -
independent dissipation coefficient. Generally, �min depends

on the specific form of L22 and relates to the thermodynamic
length [38–41]. In the simplest case with constant L22, �min =
C2

h [T [i]
h − Tb]2/L22. The typical 1/τ scaling of irreversibility

shown in Eq. (5) has also been discovered in the finite-time
isothermal processes [13,23,42–44].

We remark here that although the minimum entropy pro-
duction σmin in Eq. (5) is obtained with the tight-coupling
condition, σmin actually serves as the overall lower bound
for entropy production σ with arbitrary q. This is because σ

decreases monotonically with the increase of |q| (see SM [35]
for strict proof). Therefore, for general cases within the linear
response regime, the uniform temperature is bounded from
below by the minimal entropy production as T̃ � T̃ (σmin).

Tradeoff between power and efficiency. The work output in
the whole process is W (τ ) = Qh(τ ) − Qc(τ ), where Qh(τ ) =
Ch(T [i]

h − T̃ ) and Qc(τ ) = Cc(T̃ − T [i]
c ). The maximum ex-

tractable work Wmax ≡ limσ→0W (τ ) [35] is achieved in the
reversible case. Note that W (τ ) is a monotonically decreasing
function of T̃ [35], which indicates that, referring to Eq. (2),
the entropy production will reduce W (τ ) in comparison with
Wmax. In this sense, we define the finite-time dissipative work:

Wd ≡ Wmax − W (τ ) = (Ch + Cc)(T̃ − Tb). (6)

It follows from Eqs. (2), (5), and (6) that the constraint on
dissipative work is explicitly obtained as Wd � Tb�min/τ ≡
W (min)

d [35]. In terms of Wd , the efficiency in the finite-time
case, η ≡ W (τ )/Qh(τ ), reads

η = Wmax − Wd

Wmax/ηMW − Wd/(1 + γ )
, (7)

where the EMW ηMW = ηMW(γ ) reads [35]

ηMW ≡ 1 − γ

[
ηC

1 − (1 − ηC)γ /(γ+1) − 1

]
(8)

and is achieved in the reversible case [33], and ηC ≡ 1 −
T [i]

c /T [i]
h is the Carnot efficiency determined by the initial

temperatures of the reservoirs.
Expressing Wd in terms of η according to Eq. (7), the

constraint on dissipative work (Wd � W (min)
d ) becomes

Wd = Wmax(ηMW − η)

ηMW[1 − η/(1 + γ )]
� Tb�min

τ
. (9)

Eliminating the duration τ in this inequality with the average
power P ≡ W (τ )/τ of the whole process, we find the tradeoff
relation between power and efficiency [35]:

P̃ � 4λη̃(1 − η̃)

(λη̃ + 1 − η̃)2 . (10)

Here, λ ≡ 1 − ηMW/(1 + γ ), P̃ ≡ P/Pmax, η̃ ≡ η/ηMW, and
Pmax ≡ W 2

max/(4Tb�min) is the maximum average power. As
the main result of this paper, the above relation specifies
the complete optimization regime for the heat engines op-
erating between finite-sized reservoirs. The equal sign of
Eq. (10) is achieved with the minimum entropy generation
σmin, which determines the optimal performance of the heat
engine, namely, the maximum power for a given efficiency.
The optimal operation of the heat engine will be discussed
later. We emphasize that such a tradeoff constrains the perfor-
mance of all the heat engines operating in the linear response
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FIG. 2. “Phase diagram” P̃ − η̃ of the heat engine performance
between finite reservoirs. The blue dash-dotted curve and the (light
blue) area therein represent the tradeoff between P̃ = P/Pmax and
η̃ = η/ηMW in Eq. (10). Pmax is the maximum average power. The
efficiency at maximum work ηMW in Eq. (8) is plotted with the red
dashed line, while the corresponding Carnot efficiency ηC = 0.8 is
plotted with the black dotted line. In this example, we use γ =
Cc/Ch = 1.

regime, because σmin is the overall lower bound for irre-
versibility as we remarked below Eq. (5).

In the symmetric case with γ = 1 (see SM [35] for the
asymmetric cases with γ = 0.01, 100), the power-efficiency
tradeoff is illustrated in Fig. 2 with the blue dash-dotted curve
and the (light blue) area therein. The efficiency corresponding
to the maximum power (P̃ = 1) is denoted as ηMAP in this fig-
ure, and will be detailed in the following. ηC = 0.8 is used in
this plot. Due to the finiteness of the heat reservoirs, the (gray)
area between efficiency at maximum work ηMW (red dashed
line) and Carnot efficiency ηC (black dotted line) becomes a
forbidden regime in the “phase diagram” of the heat engine
performance. Particularly, in the limit of γ → ∞ with infinite
cold reservoir, the tradeoff in Eq. (10) reduces to a concise
form P̃ � 4η̃(1 − η̃).

With the obtained power-efficiency tradeoff, it is straight-
forward to find the efficiency at an arbitrary given power P̃
being bounded in the region of η̃− � η̃ � η̃+, where η̃± are
defined as [35]

η̃± ≡ 1 − λP̃

(1 ±
√

1 − P̃)2 + λP̃
. (11)

The upper bound η̃+, serving as the maximum efficiency for
an arbitrary average power, returns to its counterpart in the
infinite-reservoir case by replacing ηMW with ηC [19,20,23].
Obviously, η̃+ approaches 1 in the quasistatic regime of
P̃ → 0, namely, η → ηMW, as shown in Fig. 2.

Efficiency at maximum average power. When the heat en-
gine achieves its maximum average power (P̃ = 1), the upper

FIG. 3. Dependence of ηMAP and ηMW on γ and ηC. (a) ηMAP and
ηMW as a function of γ . The red solid curve and black dashed curve
represent ηMAP and ηMW, respectively. In this example, ηC = 0.8.
(b) ηMAP and ηMW as a function of ηC. The upper (lower) bound ηU

(ηL) of ηMAP in Eq. (13) is plotted as the red dash-dotted (dotted)
curve; the (light red) area between the dash-dotted curve and dotted
curve is the available range of ηMAP. The upper (lower) bound of ηMW

is represented by the black solid (dashed) curve, and the (gray) area
between the solid curve and dashed curve is the achievable range of
ηMW.

and lower bound in Eq. (11) converge to the EMAP:

ηMAP = ηMW

2 − ηMW/(1 + γ )
, (12)

which is a monotonically decreasing function of γ as shown
by the red solid curve in Fig. 3(a). In contrast, ηMW (black
dashed curve) increases with γ monotonically [34]. The upper
bound (ηU) and lower bound (ηL) of ηMAP satisfy

ηL ≡ η
(max)
MW

2
� ηMAP � η

(min)
MW

2 − η
(min)
MW

≡ ηU, (13)

where η
(max)
MW ≡ ηMW(γ → ∞) and η

(min)
MW ≡ ηMW(γ = 0). As

the result of the opposite monotonicity, there exists a com-
petitive relation between ηMAP and ηMW. Namely, ηMAP

achieves its maximum even when ηMW is minimum in the
limit γ → 0, and vice versa. The lower bound of this general
EMAP recovers the result obtained in the special case with
infinite large cold reservoir [29]. In addition, for the sym-
metric case (γ = 1) demonstrated in Fig. 2, ηMW = ηCA and
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ηMAP = 2ηCA/(4 − ηCA). Here ηCA ≡ 1 −
√

T [i]
c /T [i]

h is the
Curzon-Ahlborn efficiency [7–10] determined by the initial
temperatures of the reservoirs.

Figure 3(b) shows the dependence of ηMAP on ηC, where
the (light red) area between ηU (red dash-dotted curve) and
ηL (red dotted curve) is the available range of ηMAP. In com-
parison, the achievable range of ηMW is represented with the
(gray) area between the black solid curve and the black dashed
curve. As demonstrated in this figure, in the small-ηC regime,
there exist γ -independent scalings for ηMAP and ηMW. Such
universalities can be explicitly obtained by expanding ηMAP

and ηMW with respect to ηC:

ηMW = 1

2
ηC + 1

6

(
1 − 1/2

γ + 1

)
η2

C + O
(
η3

C

)
, (14)

ηMAP = 1

4
ηC + 1

12

(
1 + 1/4

γ + 1

)
η2

C + O
(
η3

C

)
. (15)

Obviously, the first-order coefficients of both ηMW and ηMAP

are independent of the heat capacity ratio γ , as we inferred
from Fig. 3(b). Up to the first order of ηC, the universality of
ηMAP scales as ηMAP ∼ ηC/4. Meanwhile, the universality of
ηMW follows as ηMW ∼ ηC/2, which has also been revealed
in previous studies [33,34]. Nevertheless, the coefficients cor-
responding to the second order of ηC are γ dependent for
ηMAP and ηMW. The signs of the terms containing γ in ηMAP

and ηMW are opposite, which is consistent with the opposite
monotonicity of ηMAP and ηMW (with respect to γ ).

Optimal operation protocol of the heat engine. As a process
function, the path dependence of entropy production σ in the
parameter space makes it rely on the control protocol applied
to the working substance [43,44]. Therefore, the efficiency
and power of the heat engine are inseparable from the specific
operation protocol of the cycle. To achieve the boundary of
the tradeoff (10) or the EMAP (12), we demonstrate the opti-
mal operation of the heat engine associated with the minimal
entropy production σmin with a specific example. For a finite-
time Carnot heat engine the working substance of which is
the ideal gas with volume V (control parameter), the minimal
entropy production condition, i.e., Q̇h = √

L22�min/τ , allows
us to find the optimal control protocol for V (t ) from the
energy conservation relation of the gas [35].

The optimal operation protocol of the heat engine is shown
in Fig. 4, where A (C) represents the finite-time isothermal
expansion (compression) process with duration t (m)

h (t (m)
c ) in

the mth (m = 1, 2, 3, . . . , M) cycle. During the isothermal
expansion (compression), the gas volume changes expo-
nentially with time as V (m)

h (t̃ ) = V (m)
h,i exp(Γ (m)

h t̃ ) [V (m)
c (t ′) =

V (m)
c,i exp(−Γ (m)

c t ′)] with t̃ ≡ t − (m − 1)τc [t ′ ≡ t − (m −
1)τc − t (m)

h ]. Here, the initial volume of the gas in the isother-
mal expansion process V (m)

h,i = Vh,i is fixed in each cycle, while

the initial volumes of the other three processes (V (m)
h, f , V (m)

c,i ,

and V (m)
c, f ) are determined by the full operation protocol. Γ

(m)
h(c)

represents the isothermal expansion (compression) rate of the
mth cycle [35]. The adiabatic equation of ideal gas is satisfied
in the adiabatic processes B and D, the duration of which is

FIG. 4. The diagram of the optimal operation protocol of the mth
cycle with the control parameter V (gas volume). In the isothermal
expansion (expression) process A (C) of duration th (tc), V changes
exponentially with time, while in adiabatic processes (B and D) V is
quenched with the adiabatic equation of ideal gas being satisfied.

ignored in comparison with that of the isothermal processes
[15,44,45]. It is worth mentioning that a recent study [46]
obtained similar optimal operation to realize the efficiency at
maximum power of a Brownian heat engine between constant
temperature reservoirs. This reminds us that such an optimal
operation scheme may be universal for some types of finite-
time heat engines.

Conclusion and discussion. In summary, we successfully
obtained a general power-efficiency tradeoff for heat engines
operating between two finite-sized reservoirs within the lin-
ear response regime. With such a tradeoff, we showed the
achievable range of efficiency for a given average power,
and the universal efficiency at maximum average power. To
achieve the optimal performance of the heat engine, corre-
sponding to the boundary of the power-efficiency tradeoff,
the optimal operation protocol of an ideal gas heat engine is
demonstrated. The predicted results can be tested on some
state-of-art platforms [44,47]. Moreover, by replacing ηMW

with ηC, some typical constraints in the finite case become
their corresponding counterparts in the infinite case. These
thermodynamic constraints specify the full operation regime
of the heat engines in real-world circumstances. This paper
paves the way for the joint optimization of the thermody-
namic cycle by adjusting the ratio of the heat capacities of the
reservoirs and controlling the operation of the cycle, and may
shed light on investigating the irreversibility of nonequilib-
rium thermodynamic processes off the thermodynamic limit.

The temperature-dependent feature of the reservoir’s heat
capacity [33], the quantumness of the reservoir [48–50], the
deviation of entropy production from 1/τ scaling beyond the
slow-driving regime [23,43,44,51], and the fluctuations in heat
engine performance [52–54] are expected to be taken into
future considerations.
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