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Universal properties of active membranes
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We put forward a general field theory for nearly flat fluid membranes with embedded activators and analyze
their critical properties using renormalization group techniques. Depending on the membrane-activator coupling,
we find a crossover between acoustic and diffusive scaling regimes, with mean-field dynamical critical exponents
z = 1 and 2, respectively. We argue that the acoustic scaling, which is exact in all spatial dimensions, leads to
an early-time behavior, which is representative of the spatiotemporal patterns observed at the leading edge of
motile cells, such as oscillations superposed on the growth of the membrane width. In the case of mean-field
diffusive scaling, one-loop corrections to the mean-field exponents reveal universal behavior distinct from the
Kardar-Parisi-Zhang scaling of passive interfaces and signs of strong-coupling behavior.

DOI: 10.1103/PhysRevE.105.L012604

Active membranes are fluctuating surfaces, which are
driven out of thermodynamic equilibrium by the constant
action of nonthermal, or active forces [1,2]. Understanding
their behavior is key to capture the fundamental physics
of advancing, or growing, biological interfaces. Indeed, the
paradigmatic example of an active membrane is the plasma
membrane of eukaryotic cells. Here, activity might enter in
many different ways: from intramembranous force sources,
such as ion channels [3,4] or ATP-consuming membrane
proteins [5–8]; from the coupling with the underlying cy-
toskeleton [9–11]; and from interactions with walls [12,13].

Besides having a decisive influence on the membrane
fluctuations [14], activity creates a slew of intriguing and
nontrivial spatiotemporal patterns, such as lamellipodia or
advancing fronts [15,16], longitudinal and transverse waves
[17], clustering and nonequilibrium phase separation [18].
These phenomena occur across a vast variety of biological
settings; as such, they may be considered universal aspects
of cell motility [17,19]. Previous theoretical studies of active
membranes, however, have focused on specific applications
or systems of interest [3–10,12]: for instance, one set of equa-
tions describes the dynamics of curved proteic activators on
the membrane [5,20], while another set studies the instabilities
induced by the coupling with the actin cortex [10]. A more
general approach, which we adopt here, is to start from a
broader framework and ask whether it is possible to identify
universality classes within which to catalog the dynamics of
active membranes.

To address this question we derive equations for the
long-wavelength fluctuations of an active membrane with
embedded activators. Such activators induce the membrane
motion by means of a force normal to the membrane and
proportional to their local density. Already at the mean-field
level, this model displays two dynamical scaling regimes
characterized by distinct values of the dynamical exponent
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z: an acoustic regime with z = 1 and a diffusive regime with
z = 2. The acoustic regime potentially describes the afore-
mentioned universal aspects of motile cells dynamics. The
diffusive regime contains three different phases: we present
minimal models for each, while discussing the resulting scal-
ing laws and their possible relevance in a biophysical context.
Corrections to mean-field scaling exponents are calculated
within a field-theoretic renormalization group approach (RG)
[21–24]. This framework, which has proven instrumental in
the understanding of equilibrium critical phenomena, has
also elucidated universal scaling in active systems made of
self-propelled agents [25–30] and growing, albeit passive,
interfaces such as the celebrated Kardar-Parisi-Zhang (KPZ)
equation [31,32]. The details of our one-loop analysis, exact
to order ε = dc − d , with dc the upper critical dimension (ucd)
are provided in a companion paper [33].

We begin by describing the system within the Monge
gauge [34], where the membrane is nearly flat and can be
described by specifying its height with respect to a reference
plane. The dynamics obey a pair of coupled stochastic dif-
ferential equations, for the height of the membrane and the
density of activators. We denote with x (components xa) the
parametrization of the d-dimensional membrane and with ∂a

the partial derivative along the ath spatial direction. Rather
than the absolute height and density, we consider fluctuations
about a uniform membrane, with height λt and density ρ0,
moving with velocity λ. Equations for the fields h(x, t ) (height
fluctuations) and φ(x, t ) (excess density) can be derived by
separating the forces acting on the membrane-protein system
into normal and tangential directions: normal forces affect
only the membrane, whereas tangential ones displace both
membrane and activators. As a result, to leading order in fields
and derivatives [33],

∂t h = νh∂
2
a h + λ

2
(∂ah)2 + ahφ + α

2
φ2 − ch∂

2
a φ

+
√

2Dhξn, (1a)
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FIG. 1. Pictorial representation of the kinematic coupling be-
tween vertical motion on the membrane (yellow double-chain) and
lateral motion of the activators (blue). The normal force results in
vertical displacement of the membrane (∂t h ∝ φ) and horizontal,
slope-dependent displacement of the activators [∂tφ ∝ ∂a(∂ah)].

∂tφ = νφ∂2
a φ + λ∂a(φ∂ah) + aφ∂2

a h − cφ∂4
a h

+ κ

2

[
∂2

a (∂bh)2 − 2∂a
(
(∂ah)∂2

b h
)]

+ ∂a(
√

2Dφξa), (1b)

where ξn and ξa are independent space-time white Gaussian
noises. We stress that (1) contains all leading-order terms that
are invariant under reparametrizations of the membrane in the
Monge gauge, such as infinitesimal membrane tilts.

The first two terms in the height equation Eq. (1a), νh∂
2
a h

and λ
2 (∂ah)2, represent, respectively, interfacial tension and

a nonlinear correction due to the membrane moving along
its own normal—this is analogous to the nonlinear term in
the KPZ equation [31]. The terms ahφ and αφ2 arise from
the Taylor expansion of a generic density-dependent driving
force f (φ), whereas the term −ch∂

2
a φ represents the action of

activators, which induce a certain curvature on the membrane
[20,35,36]. The evolution of the activator density Eq. (1b) en-
tails a diffusive term νφ∂2

a φ and the advective terms λ∂a(φ∂ah)
and aφ∂2

a h. Such advection by the slope, proportional to
the membrane velocity λ (aφ = λρ0) arises kinematically be-
cause of the vertical motion of the membrane (see Fig. 1
and Ref. [33] for details). The other linear terms, −cφ∂4

a h ≡
−cφ∂2

a (∂2
b h) and −ch∂

2
a φ, form an action-reaction pair, which

takes into account the possibility that activators possess an in-
trinsic curvature, which influences the membrane’s curvature
[37–40]. Both cφ and ch are, in principle, proportional to such
intrinsic curvature. The nonlinear term proportional to κ is
the divergence of a nonequilibrium current ∂a ja: it includes
a correction to the curvature coupling term [∂2

a (∂bh)2], which
causes the activator flow to depend on the local slope as well
as the curvature [41], and a nongradient contribution, which
has a similar origin [42]. Thermal fluctuations are represented
by the noise terms

√
2Dhξn and ∂a(

√
2Dφξa).

We first consider the deterministic, linearized version of
Eq. (1), which corresponds to the mean-field theory of the
problem. Assuming the plane-wave solution h(x, t ), φ(x, t ) ∝
ei(k·x−ωt ), implies a dispersion relation linking mode frequency
ω and wave vector k

−iω = −1

2

(
(νh + νφ )k2 ±

√
(νh + νφ )2k4 − 4�

)
, (2)

where � ≡ νhνφk4 + (ah + chk2)(aφk2 + cφk4). Linear sta-
bility requires Re[−iω] < 0, i.e., νh + νφ > 0 and �> 0. The
latter condition implies an infrared (IR) instability occurring
for ahaφ < 0 [43]. Such an instability might arise in a mem-
brane driven by an active force linearly proportional to the
activator density, in opposition to a passive homogeneous
force. When such instability occurs, the assumption of van-
ishing slopes (∂ah)2 � 1 might break down together with the
Monge-gauge description. Although exiting the Monge gauge
grants access to a variety of stationary shapes [44–46], in this
work we restrict our attention to the stable phase, and there-
fore set ahaφ � 0. Another IR instability, which also restricts
the portion of parameter space available to the stable phase,
arises for νhνφ + ahcφ + aφch < 0, the origin of which is the
interplay between curvature coupling and active growth [5].
Finally, an ultraviolet (UV) instability (k → ∞) occurs for
chcφ < 0. The latter instability does not influence the results
of this Letter, as the parameters ch and cφ do not appear
simultaneously in any of the critical regimes studied below,
and is easily cured by including higher-order corrections to
diffusion and bending rigidity terms.

In the case ahaφ � 0, where the system is linearly sta-
ble, the nature of the dispersion law Eq. (2) in the IR limit
k → 0 depends crucially on the value of ahaφ . For ahaφ �= 0
the dispersion law is acoustic, ω 	 ±(ahaφ )1/2k, i.e., ω ∼ kz

with z = 1, whereas for ahaφ = 0 it is diffusive, ω ∼ k2 thus
z = 2. This leads to two distinct scaling regimes depending on
whether ahaφ = 0 or not, as we now justify within the Wilso-
nian RG approach. This approach is well suited to describe
the crossover between the two regimes at the linear level: the
detailed field-theoretic RG analysis of the full model and the
calculation of one-loop corrections to scaling exponents can
be found in Ref. [33].

By rescaling spatial and temporal variables (x, t ) →
(x/b, t/bz ), and the parameters and fields according to ψ →
byψ ψ , we obtain the following RG equations for the coeffi-
cients of the lowest-order terms of Eq. (1),

∂l ah = (z − yφ + yh · · · )ah, (3a)

∂l aφ = (z − 2 + yφ − yh + · · · )aφ, (3b)

∂lνh = (z − 2 + · · · )νh, (3c)

∂lνφ = (z − 2 + · · · )νφ, (3d)

∂lDh = (z − d + 2yh + · · · )Dh, (3e)

∂lDφ = (z − d − 2 + 2yφ + · · · )Dφ, (3f)

where l = ln b. The dots denote corrections coming from
nonlinearities, which vanish in mean field. Scale invariance
is found at the fixed points of the RG equations, Eqs. (3a)–
(3f), which depend on the values of ah and aφ . For instance,
for aφ, ah > 0, for which the dynamical exponent is z = 1,
Eqs. (3c), (3d) show that any fixed point requires the pa-
rameters νh and νφ to be 0. The situation is fundamentally
different for ahaφ = 0, where z = 2. For example, if both ah

and aφ vanish in the starting model, the right-hand sides of
Eqs. (3a), (3b) vanish identically, and the right-hand sides of
Eqs. (3c), (3d) vanishes because z = 2. Therefore νh and νφ are
now marginal in the RG sense. In other words, the presence or

L012604-2



UNIVERSAL PROPERTIES OF ACTIVE MEMBRANES PHYSICAL REVIEW E 105, L012604 (2022)

FIG. 2. Phase diagram of the active interface model in the ah-aφ

plane. The linearly unstable region (second and fourth quadrant) can-
not be accessed within our framework. All membranes with strictly
positive ahaφ can be characterized with the same set of scaling ex-
ponents, corresponding to the generic active membrane universality
class. As shown by the drawing, the dynamics in this region of the
parameter space is dominated by coupled density and height waves
having speed v ∝ √

ahaφ . Tuning the wave speed to zero leads to
distinct scaling regimes whose properties are discussed in the text.

absence of the linear active terms involving ah and aφ in Eq.
(1) is crucial to determining the relevant dynamic exponent.

The projection of the phase diagram on the ah-aφ plane is
shown in Fig. 2. We now describe the scaling properties of
the various regimes and their relevance to active membranes
physics.

Generic active membrane. If aφah > 0, the natural dynamic
scaling is acoustic, with z = 1. As this is the typical case, we
call this the generic active membrane phase. In this regime,
the system behavior is controlled by kinematic waves [4,7,10]
with velocity v ∝ √

ahaφ . As the parameters ah and aφ are
connected to the average density of activators and the speed
of the membrane motion [33], this observation provides a
relation between the vertical speed of the membrane and the
lateral speed of membrane waves, which is amenable to exper-
imental testing. Rescaling under Eq. (3) leads to the following
linear stochastic model, which describes the acoustic regime:

∂t h = ahφ +
√

2Dhξn, (4a)

∂tφ = aφ∂2
a h + ∂a(

√
2Dφξa). (4b)

We stress that, although both viscosities νh and νφ have dis-
appeared, Eqs. (4) should be interpreted as an inviscid limit
νh = νφ → 0+. In fact, in the absence of viscosity (4) would
not admit a stationary state and the height and density fields
would grow unbounded [33]. In other words the viscous coef-
ficients νh, νφ in (1) are dangerously irrelevant parameters.

Remarkably, as far as the acoustic regime is concerned,
the other linear terms of Eq. (1), as well as the nonlinear
couplings, all turn out to be RG irrelevant. The fact that all

nonlinearities are irrelevant implies that the scaling expo-
nents derived within the mean-field approximation are exact
in all dimensions. However, the presence of vanishingly small
viscosities in (1) implies a steady-state behavior, which is ulti-
mately controlled by a diffusive scaling regime. The acoustic
regime is nonetheless relevant for the scaling of all phenom-
ena occuring across time and length scales, which are linearly
proportional to each other. The exponents are summarized in
the first row of Table I and we now discuss some implications
in the context of relaxation from a homogeneous initial con-
dition with h = φ = 0.

First, z = 1 is the natural exponent to describe the waves
of protrusion and activator density seen at the leading edge
of motile cells [17,18]. Second, the exponent yh controls
the scaling of height-height correlations. In the field of
kinetic roughening [47], one is often concerned with the de-
velopment in time of the height structure factor Sh(k, t ) ∝
〈h(k, t )h(−k, t )〉 after preparing the interface in a flat initial
condition. The height structure factor obeys the scaling rela-
tion,

Sh(k, t ) 	 k2yh−dSh(kzt ) (5)

for small wave vectors k ∼ 1/L with L the system size.
In the acoustic regime (times of order t ∼ 1/k) Sh(k, t ) 	
k−1Sh,1(kt ). The presence of a small viscosity νh causes
a crossover to a diffusive regime when t ∼ (νhk2)−1, with
Sh(k, t ) 	 k−2Sh,2(k2t ), which is the scaling observed in the
Edwards-Wilkinson (EW) equation for equilibrium interface
fluctuations [48] (exponents as in the second row of Table I).
The acoustic component of Sh(k, t ) influences macroscopic
observables such as the squared width of the interface, i.e., the
variance of the height profile w2 = ∑

k �=0 Sh(k, t ), implying
width oscillations with period diverging with L superposed
on the usual EW scaling. Such oscillations were observed
numerically in Ref. [7] for a lattice model, which falls in the
generic-active-membrane scenario. Similarly, the exponent yφ

controls the early-time scaling of the density-density correla-
tions, with structure factor in the acoustic regime Sφ (k, t ) 	
kSφ,1(kt ). It is worth noting the vanishing of the structure
factor for k → 0, which is typical of hyperuniform states
[49]. Also Sφ , because of the small viscosity νφ , crosses
over to a diffusive structure factor Sφ (k, t ) 	 Sφ,2(k2t ) when
∼(νφk2)−1.

Active KPZ. At the point ah = aφ = 0 (see phase diagram in
Fig. 2), there is diffusive mean-field scaling in the thermody-
namic limit with z = 2. After simple rescaling, the evolution
of the membrane and activator fields is given by the following
coupled equations:

∂t h = νh∂
2
a h + λ

2
(∂ah)2 + α

2
φ2 + √

νhξn; (6a)

∂tφ = νφ∂2
a φ + λ∂a(φ∂ah) + ∂a(

√
νφξa), (6b)

Equation (6) constitutes what we call the active KPZ model,
which is the minimal model for ah = aφ = 0. Activity comes
from the α

2 φ2 term, which may arise physically when clus-
tering of activators is required to stimulate membrane growth
[50]. Our RG analysis shows this nonlinear growth term to be
marginal, thus influencing the critical properties of the model,
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TABLE I. Universal scaling exponents for ahaφ � 0 (generic active membrane) and for ah = aφ = 0 (active KPZ). MF denotes mean-field
exponents. The generic active membrane exponents are exact in any dimension, where those of active KPZ at the λ = 0 fixed point represent
one-loop results below d = 2.

Model z yh yφ

Generic active membrane 1 (d − 1)/2 (d + 1)/2
Active KPZ (MF) 2 (d − 2)/2 d/2
Active KPZ (λ∗ = 0) 2 d − 2 d/2
Curvotactic activators (MF) 2 (d − 4)/2 d/2
Passive sliders (MF) 2 (d − 2)/2 (d − 2)/2

only for ah = aφ = 0 and otherwise irrelevant. The ucd of the
model is dc = 2.

Just above the critical dimension, a perturbative unstable
fixed point at λ = λc (yellow dot in the right panel of Fig. 3)
marks the famous roughening transition of the KPZ equation
[51]. In the α-λ plane, the KPZ fixed point has an additional
marginal direction, implying that λc depends linearly on α

for α small. Inside the region bounded by the two dashed
lines, the scaling exponents attain their mean-field values
yh = (d − 2)/2 and yφ = d/2, which are the typical values at
the Gaussian fixed point for a nonconserved and conserved
order parameter, respectively. Outside this region the scaling
is controlled by a nonperturbative fixed point [32]. Below the
ucd dc = 2, the α term generates a novel perturbative fixed
point with λ = 0 [33] (yellow dot in the left panel of Fig. 3).
As λ = 0, this fixed point describes a membrane with no
net vertical motion, whose fluctuations are controlled by the
distribution of activators through the α term. One-loop cor-
rections to the scaling exponents are listed in the second row
of Table I. At lowest order in d−2, the dynamic and density
exponents retain their mean-field values yφ = d/2, and z = 2.
The exponent yh, instead, increases and equals yh = d − 2.
The physical implication is that active fluctuations generate
a much rougher interface than thermal fluctuations in d = 1,
with the square width w2 ∼ L2 instead of L.

Curvotactic activators. Along the line aφ = 0, scale invari-
ant behavior is characterized by yh = (d − 4)/2 and yφ = d/2
in mean field. Consequently, νh, νφ, ah, and Dφ are marginal in
the RG equations Eq. (3) and need to be included in the mini-

(a) (b)

FIG. 3. RG flow of the active KPZ model (6) in the α-λ plane.
For (a) d < 2, there is a perturbative fixed point on the λ = 0 line,
marked by the yellow dot. For d > 2 (b) the flow converges onto
the Gaussian fixed point along the α direction. The yellow dot on
the α = 0 line marks the IR-unstable fixed point associated with the
roughening transition of the KPZ equation.

mal model, whereas Dh flows to zero. The minimal equations
of motion have then the following form:

∂t h = νh∂
2
a h + λ

2
(∂ah)2 + ahφ, (7a)

∂tφ = νφ∂2
a φ + λ∂a(φ∂ah) − cφ∂4

a h + ∂a(
√

νφξa)

+ κ

2

[
∂2

a (∂bh)2 − 2∂a
(
(∂ah)∂2

b h
)]

. (7b)

The most significant difference with respect to the cases dis-
cussed above is the irrelevance of the noise term in the height
equation. The fluctuations of the height are instead controlled
by the noise acting on the activator density, via the active term
ahφ. Such a noise transfer effect results in the interfacial width
scaling with system size with an exponent equal to −yh = (4 −
d )/2, resulting in more pronounced roughening with respect
to a KPZ interface at the mean-field level. However, around
the ucd dc = 4, the presence of the linear curvotactic term
∝cφ and the nonequilibrium current ∝ κ changes the nature
of the RG flow [33]. Our analysis shows that, in the one-loop
approximation, a new repulsive fixed point emerges below dc,
suggesting that the scaling properties of the model might be
governed by a nonperturbative fixed point.

Passive sliders. Finally, on the line ah = 0, scale invariant
behavior is characterized by yh = yφ = (d − 2)/2, thus νh, νφ ,
aφ and Dh are marginal and Dφ is irrelevant. The minimal
equations of motion for this model are

∂t h = νh∂
2
a h + λ

2
(∂ah)2 − ch∂

2
a φ + √

νhξn, (8a)

∂tφ = νφ∂2
a φ + λ∂a(φ∂ah) + aφ∂2

a h. (8b)

In the special case where ch = 0 the activators do not influence
the interface dynamics and the equations describe a system
of passive particles, which are advected by the slopes of a
fluctuating KPZ interface—the passive sliders model studied
in Refs. [52–54]. The passive sliders phase has naive ucd dc =
2, above which mean-field predictions should hold. Because
of a noise-transfer mechanism analogous to that seen in the
curvotactic activators model, the mean-field density scaling
exponent is much smaller than in the active KPZ model,
yφ = (d − 2)/2, resulting in pronounced number fluctuations.
This model is, however, nonrenormalizable as the RG proce-
dure generates and infinite number of marginal terms [33],
and standard methods cannot be used—this feature may be
considered a sign of nonuniversal behavior [55].

In summary, we have presented and studied a general
model for active membranes. The model describes a nearly
flat membrane, populated with an ensemble of activators,
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which stimulate its motion. The most important result of our
detailed RG analysis is the crossover between two distinct
scaling regimes, caused by structure of the membrane height
and activator density interaction. In the presence of linear
density-height couplings ahaφ > 0, the system belongs to the
generic active membrane universality class, characterized by a
linear dispersion law. Such a scenario is relevant to the physics
of lamellipodia formed at the leading edge of eukaryotic cells,
where transverse waves travel along the advancing membrane
[17]. Our analysis links the emergence of such waves to partic-
ular scaling laws for the fluctuations of membrane height and
activator density, which are testable in scattering experiments.

In the case where membrane growth requires a nonlinear
interaction between activators, or when the membrane is kept
stationary, the dispersion law (2) is quadratic in k in mean
field. Here, three different scaling limits are accessible de-
pending on how the condition ahaφ = 0 is realized. The active
force α

2 φ2 in the height equation emerges in the absence of
any linear interaction, and the resulting equations describe

the active KPZ model. A novel perturbative fixed point ex-
ists for nonadvancing interfaces, with a roughness exponent
larger than that of KPZ and other passive interfaces [31]. In
the advancing-interface case the RG flow shows a runaway
solution, indicative of a strong coupling behavior similarly to
passive KPZ interfaces [32]. Different diffusive regimes, the
curvotactic activators and passive sliders phases, appear when
aφ = 0 or ah = 0, respectively, both describing different phys-
ical scenarios. Simplified versions of these models appeared
in Refs. [5] and [52–54] on a phenomenological basis, which
demonstrates that our field-theoretic approach also leads to the
unification of previous studies of active membranes.
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[38] V. Kralj-Iglič, V. Heinrich, S. Svetina, and B. Žekš, Eur. Phys.

J. B 10, 5 (1999).
[39] S. May, Eur. Biophys. J. 29, 17 (2000).
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