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We derive the three-loop order renormalization group equations that describe the flat phase of polymerized
membranes within the modified minimal subtraction scheme, following the pioneering one-loop order computa-
tion of Aronovitz and Lubensky [Phys. Rev. Lett. 60, 2634 (1988)] and the recent two-loop order one of Coquand,
Mouhanna, and Teber [Phys. Rev. E 101, 062104 (2020)]. We analyze the fixed points of these equations and
compute the associated field anomalous dimension η at three-loop order. Our results display a marked proximity
with those obtained using nonperturbative techniques and reexpanded in powers of ε = 4 − D. Moreover, the
three-loop order value that we get for η at the stable fixed point, η = 0.8872, in D = 2, is compatible with known
theoretical results and within the range of accepted numerical values.
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Introduction. The flat phase of polymerized membranes
has been recently the subject of intense investigations mainly
motivated by the fact that it seems to encode in a sat-
isfying way the elastic degrees of freedom of materials
such as graphene [1,2] and, more generally, graphene-like
systems (see, e.g., [3]). Early, first-order, perturbative com-
putations [4,5] have revealed the stability of such a phase,
ensured by a mechanism of coupling of the capillary (flexu-
ral), h, modes with the elastic (phonons), u, modes, allowing
one to circumvent the Mermin-Wagner theorem; see, e.g., [6]
for an explanation. This flat phase is controlled by a fully
stable infrared fixed point, characterized by power-law behav-
iors for the phonon-phonon and flexural-flexural correlation
functions [5,7–9]:

Guu(q) ∼ q−(2+ηu ) and Ghh(q) ∼ q−(4−η), (1)

where ηu and η are nontrivial anomalous dimensions re-
lated by a Ward identity: ηu = 4 − D − 2η [5,7–9]. A major
challenge in this context is an accurate determination of
the exponent η at the stable fixed point. Due to the dis-
tance between the upper critical dimension, Duc = 4, and
the physical dimension, D = 2, as well as of the intricacy
of the diagrammatic analysis involved in the perturba-
tive approach of membranes, the pioneering works have
been followed by various nonperturbative approaches able
to tackle the physics directly in dimension D = 2: 1/d
expansion [7–12], self-consistent screening approximation
(SCSA) [13–17], and the so-called nonperturbative renor-
malization group (NPRG) [18–25]. The two last ones have
produced roughly compatible results: ηl

scsa � 0.821 [13,17] at
leading order (ηnl

scsa � 0.789 at controversial next-to-leading
order [14]) and ηnprg = 0.849 [18]. As for Monte Carlo sim-
ulations of membranes, they have also led to scattered values
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η = 0.81(3) [26], η = 0.750(5) [27], and η = 0.795(10) [28]
and Monte Carlo simulations of graphene to η � 0.85 [29].
In order to get a better understanding of the structure of the
underlying field theory, several groups have, very recently,
engaged in perturbative studies of both pure [30,31] and dis-
ordered membranes [32] going beyond leading order. The
two-loop order approach performed in particular in [31] has
revealed an intriguing agreement between the perturbative and
nonperturbative approaches in the vicinity of the upper critical
dimension. Moreover, the value of the two-loop order anoma-
lous dimension in D = 2, η2l = 0.9139 [31], when compared
to the one-loop order one, η1l = 0.96 [5,7–9], has been found
to move in the right direction when referring to the generally
accepted values that lie in the range [0.72,0.88].

We extend here the work done in [31] by means of a
three-loop order, weak-coupling, perturbative approach per-
formed near the upper critical dimension Duc = 4 within the
modified minimal subtraction (MS) scheme. We compute the
renormalization group (RG) equations at this order for both
the flexuron-phonon two-field model as well as for the flexural
effective model, which are both defined below. We determine
the fixed points and the corresponding field anomalous di-
mensions at order ε3. We finally compare our results to those
obtained within the nonperturbative context either reexpanded
in powers of ε or directly in the physical dimensions D = 2.

As will be seen in the following, our analysis confirms
unambiguously the order-by-order agreement between pertur-
bative and nonperturbative approaches, already identified in
our previous work [31]. Moreover, the value that we get for
the three-loop order anomalous dimension in D = 2, η3l =
0.8872, is compatible with the analytical and numerical non-
perturbative results. Such a fast convergence raises the issue
of the unusual nature of the series in ε obtained in this context.

The models. We now present the two models studied
here. One describes a membrane as a D-dimensional man-
ifold embedded in a d-dimensional Euclidean space. The
parametrization of a point x ∈ RD in the membrane is real-
ized through the mapping x → R(x) with R ∈ Rd . The flat
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configuration of a membrane is given by R0(x) = (x, 0dc )
where 0dc is the null vector of codimension dc = d − D. To
parametrize the fluctuations around this configuration one de-
composes the field R into R(x) = [x + u(x), h(x)] where u
and h represent D longitudinal (phonon) and d − D transverse
(flexural) modes, respectively. The action in the flat phase is
given by [4,5,7–10,31]

S[h, u] =
∫

dDx

{
κ

2
(�h)2 + λ

2
u2

ii + μ u2
i j

}
, (2)

where, as usual, one neglects a term (�u)2 in the curva-
ture energy contribution (�R)2. In Eq. (2), ui j is the strain
tensor that encodes the elastic fluctuations around the flat
phase configuration R0(x): ui j = 1

2 (∂iR.∂ jR − ∂iR0.∂ jR0) =

1
2 (∂iR.∂ jR − δi j ). It is given by neglecting nonlinearities in
the phonon field u:

ui j � 1
2 [∂iu j + ∂ jui + ∂ih.∂ jh]. (3)

In Eq. (2), κ is the bending rigidity constant, whereas λ and μ

are the Lamé (elasticity) coefficients; stability considerations
require κ , μ, and the bulk modulus B = λ + 2μ/D to be all
positive. The action (2) together with Eq. (3) defines the two-
field model.

Now one can take advantage of the fact that the phonon
field u appears quadratically in the action (2) to integrate
over it exactly. In this way one gets an effective action de-
pending only on the flexural field h. It reads, in Fourier
space [13,17,31],

Seff[h ] = κ

2

∫
k

k4 |h(k)|2 + 1

4

∫
k1,k2,k3,k4

h(k1) · h(k2) Rab,cd (q) ka
1 kb

2 kc
3 kd

4 h(k3) · h(k4), (4)

where
∫

k = ∫
dDk/(2π )D and q = k1 + k2 = −k3 − k4. The

q-transverse tensor Rab,cd (q) reads [13,17,31]

Rab,cd (q) = b Nab,cd (q) + μ Mab,cd (q) (5)

with Nab,cd and Mab,cd given by

Nab,cd (q) = 1

D − 1
PT

ab(q) PT
cd (q),

Mab,cd (q) = D − 1

2
[Nac,bd (q) + Nad,bc(q)] − Nab,cd (q), (6)

where PT
ab(q) = δab − qaqb/q2 is the transverse projector.

In Eq. (5) we have defined the coupling constant b =
μ (Dλ + 2μ)/(λ + 2μ), which is proportional to the bulk
modulus B and has a nontrivial D-dependence. The action (4),
together with Eqs. (5) and (6), defines the flexural effective
model. Working with this model allows a strong check of
the computations performed with the action (2). However, we
would like to emphasize that, in order to have a complete cor-
respondence between the physical quantities computed with
both the two-field and the flexural effective models, one has to
consider b as a D-independent coupling constant when com-
puting within the modified minimal subtraction (MS) scheme;
see [31,33]. Moreover, b is also treated as a coupling constant
independent of λ and μ.

The renormalization group equations at three-loop order.
We have derived the RG equations at three-loop order for
the flexural-phonon, two-field, model (2) and then for the
flexural effective model (4), both within the modified mini-
mal subtraction (MS) scheme and in the massless case. As
discussed in [9,31], the renormalizability of the models relies
on Ward identities following the (partially broken) rotation
invariance in the flat phase [7,9]. Our computations have been
performed using techniques of massless Feynman diagram
calculations; see, e.g., the review [34]. Their automation has
been implemented using Qgraf [35] for the generation of the
diagrams, as well as Mathematica to perform the numerator
algebra. LiteRed [36,37] has also been used to reduce the loop
integrals to a finite set of master integrals.

In the case of the two-field model, we had to evaluate 32
distinct three-loop diagrams for the flexuron self-energy (note
that there were only five distinct diagrams at two-loop order
and one diagram at one-loop order) and 19 diagrams for the
three-loop phonon self-energy (there were only three distinct
diagrams at two-loop order and one at one-loop order). In
the case of the flexural effective model, we had to evaluate
15 distinct three-loop diagrams for the flexuron self-energy
(there were only three distinct diagrams at two-loop order
and one diagram at one-loop order) and 11 diagrams for the
effective three-loop polarization (there were only two distinct
diagrams at two-loop order and one at one-loop order). As for
the masters, the analytic result of [38–40] was used in order to
compute complicated primitively two-loop master diagrams
with a noninteger index on the central line. More details will
be given in [33].

The two-field model. For the two-field model one in-
troduces the renormalized fields hR and uR through h =
Z1/2κ−1/2hR and u = Zκ−1uR and the renormalized coupling
constants λR and μR through λ = kεZ−2κ2ZλλR and μ =
kεZ−2κ2ZμμR, where k is the renormalization momentum
scale and ε = 4 − D. Within the MS scheme, one moreover
introduces the scale k

2 = 4πe−γE k2 where γE is the Euler
constant. One then defines the RG β-functions βλR = ∂tλR

and βμR = ∂tμR, with t = ln k as well as the field anomalous
dimension:

η = βλR

∂ ln Z

∂λR
+ βμR

∂ ln Z

∂μR
,

where, for simplicity, we have omitted all explicit references
to k in our notations of the renormalized coupling constants.

The RG functions are too long to be displayed in the
main text; they are given in Sec. I of the Supplemental Ma-
terial [41]. Here we discuss only the fixed points and the
corresponding field anomalous dimensions, whose expres-
sions are explicitly provided in Sec. II of [41]. Similarly to
what happens at one [5,7–9] and two-loop [31] orders, the
three-loop order RG equations display four fixed points (note
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that, for simplicity, we omit the R indices on the renormalized
coupling constants):

(1) The Gaussian fixed point P1 with μ∗
1 = 0, λ∗

1 = 0 and
η1 = 0; it is twice unstable.

(2) The shearless fixed point P2 with μ∗
2 = 0, λ∗

2 =
16π2 ε/dc and η2 = 0 whose coordinates are the same as
those obtained at one- and two-loop orders. It lies on the
stability line μ = 0; it is once unstable.

(3) The fixed point P3 whose coordinates μ∗
3, λ∗

3 and
anomalous dimension η3 are given in Table I of [41]. It is
once unstable. For this fixed point, whose bulk modulus B
vanishes at one-loop order, B∗

3 = λ∗
3 + 2μ∗

3/(4 − ε) receives
negative contributions of order ε2 at two-loop order and of
order ε3 at three-loop order. As observed in [31], P3 is thus
apparently located out of the stability region of the model (2)
that requires B � 0. However, as emphasized in [31], this
could be an artifact of the perturbative computation; see be-
low. It is instructive to consider the physical case dc = 1 for
the anomalous dimension. One gets from Table I of [41]

η3 = 0.4762 ε − 0.01776 ε2 − 0.00872 ε3 + O(ε4). (7)

This series shows, up to, and including, the order ε3, a strong
decrease of its coefficients.

(4) The flat phase fixed point P4 whose coordinates μ∗
4, λ∗

4
and anomalous dimension η4 are given in Table II of [41]. It
is fully stable and thus controls the asymptotic behavior of
the flat phase. Note that, at one-loop order, this fixed point
is located on the line 3λ + μ = 0, which is stable, in the RG
sense, at one-loop order. In D dimensions, it corresponds to
the line (D + 2)λ + 2μ = 0. However, at two- [31] and three-
loop orders, the coordinates of the fixed point P4 no longer
obey the relation (D + 2)λ∗

4 + 2μ∗
4 = (6 − ε)λ∗

4 + 2μ∗
4 =

0. This results in the following nonvanishing anomalous
ratio:

δ1 = λ∗
4

μ∗
4

+ 1

3
= 0.00889 ε + 0.02434 ε2 + O(ε3); (8)

see discussion below Eq. (11) for further details.
Finally, considering the physical case dc = 1 one gets from

Table II of [41]

η4 = 0.4800 ε − 0.01152 ε2 − 0.00334 ε3 + O(ε4), (9)

which was referred to simply as η in the Introduction. This
series in ε behaves in a way similar to Eq. (7) with even a
stronger decrease of the coefficients than at the fixed point P3.

The flexural effective model. As said in the Introduction,
we have also considered, as in [31], the flexural effective
model. This model provides a field theory structurally very
different from that provided by the two-field model. From a
practical point of view, the task seemed to be less imposing as
it involves only a total of 26 distinct diagrams. However, the
computational time remains the same as for the 51 diagrams
of the two-field model. From a more conceptual point of view,
analyzing this model allows one to get valuable insights about
phenomena observed in the context of the two-field model that
could correspond to artifacts of the corresponding perturbative
approach. Indeed, the two models, although nonperturbatively
equivalent, are parametrized by different sets of coupling con-
stants, (λ,μ) and (b, μ), respectively.

TABLE I. Anomalous η′
2 at order ε3 at the fixed point P′

2 obtained
from the three-loop order (this work), SCSA, and NPRG approaches.

Approach P′
2

Three-loop η′
2 = 0.4000 ε − 0.00133 ε2 + 0.00138 ε3

SCSA η′
2 = 0.4000 ε − 0.00133 ε2 + 0.00310 ε3

NPRG η′
2 = 0.4000 ε + 0.00867 ε2 + 0.00123 ε3

As for the two-field model, one introduces the renor-
malized field hR through h = Z1/2κ−1/2hR, the renormalized
coupling constants bR and μR through b = kεZ−2κ2Zb bR and
μ = kεZ−2κ2Zμ μR. One then defines the RG β-functions
βbR = ∂t bR and βμR = ∂tμR as well as the field anomalous
dimension:

η = βbR

∂ ln Z

∂bR
+ βμR

∂ ln Z

∂μR
.

Again, the RG functions are too long to be given in this
paper; they are given in Sec. III of [41], while the fixed
points and the corresponding field anomalous dimensions are
given in Sec. IV of [41]. We now discuss the fixed points
of these equations. At three-loop order one finds four fixed
points (once again, we omit the R indices on the renormalized
coupling constants):

(1) The Gaussian one P1 with μ∗
1 = 0, b∗

1 = 0 and η1 = 0,
which is twice unstable.

(2) A fixed point P′
2 with μ′∗

2 = 0 and nontrivial values
for both b′∗

2 and η′
2; see Table III of [41]. It is once unstable.

The series in ε for η′
2, in the physical dc = 1 case, is given in

Table I. Note that this fixed point has no counterpart within the
two-field model where b, which is proportional to μ, vanishes
at P′

2. One recalls that the two-loop order correction to this
fixed point has first been computed by Mauri and Katsnel-
son [30]. Considering the physical case dc = 1 one gets from
Table III of [41]

η′
2 = 0.4000 ε − 0.00133 ε2 + 0.00138 ε3 + O(ε4), (10)

where the coefficients of the ε-expansion are still small but,
contrary to what is observed in Eqs. (7) and (9), the three-loop
order coefficient is now slightly higher than the two-loop order
one. This may reveal the asymptotic nature of the expansion.
That this manifests at P′

2 rather than at P3 and P4 seems to
be due to the structure of the perturbative series involving
denominators that are odd powers of n + dc with n = 4 at
P′

2 while n = 20 at P3 and n = 24 at P4; see Tables VI, VII,
and VIII in [41], as well as the discussion below. We do
not exclude that, at higher orders, the coefficients of the ε-
expansions in Eqs. (7) and (9) may increase as well.

(3) The infinitely compressible fixed point P3 which is
characterized by b∗

3 = 0, thus for which the bulk modulus B
vanishes, and by nontrivial values for μ∗

3 and η3; see Table IV
of [41]. It is once unstable. This fixed point identifies with the
fixed point P3 of the two-field model. However, as discussed
above, the condition B∗

3 = 0 is violated at both two- and
three-loop orders for the two-field model. Therefore, the result
B∗

3 = 0 obtained within the flexural effective model seems to
indicate that this should be, in fact, an artifact of the per-
turbative (ε expansion) approach performed on the two-field
model and, more precisely, of the handling of D-dependent
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TABLE II. Anomalous η3 at order ε3 at the fixed point P3 ob-
tained from the three-loop order (this work), SCSA, and NPRG
approaches.

Approach P3

Three-loop η3 = 0.4762 ε − 0.01776 ε2 − 0.00872 ε3

SCSA η3 = 0.4762 ε − 0.01668 ε2 − 0.00700 ε3

NPRG η3 = 0.4762 ε − 0.01349 ε2 − 0.00649 ε3

relations as λ + 2μ/D that governs the value taken by the bulk
modulus at a given fixed point. Despite this, the series in ε for
the anomalous dimension η3 (see Table IV of [41]) coincides
exactly with that obtained within the two-field model; see
Table I of [41]. This quantity, in the physical dc = 1 case, is
given in Table II and obviously coincides exactly with Eq. (7).

(4) The fixed point P4, whose coordinates μ∗
4, b∗

4 and
anomalous dimension η4 are given in Table V of [41]. It is
fully stable and therefore controls the flat phase. It identifies
with the fixed point P4 of the two-field model. At two- and
three-loop orders, the coordinates of P4 differ from those
obtained from the two-field model; see Table II of [41]. Also,
these coordinates do not meet the condition (D + 1)b∗

4 −
2μ∗

4 = (5 − ε)b∗
4 − 2μ∗

4 = 0 corresponding to the one-loop
order stable line, a result already true at two-loop order [31].
The corresponding anomalous ratio reads, using λ = 2μ (μ −
b)/(b − D μ):

δ2 = λ∗
4

μ∗
4

+ 1

3
= 0.00519 ε + 0.02122 ε2 + O(ε3). (11)

One should notice that this ratio is different from the one
found via the two-field approach, Eq. (8), i.e., δ2 �= δ1,
therefore implying that corrections to λ/μ are very likely
scheme-dependent. This should also be the case for the Pois-
son ratio that is given by ν = λ∗

4/[2μ∗
4 + (D − 1)λ∗

4] since one
has ν = −1/3 + δν with δν(δ1) �= δν(δ2). This contrasts with
the anomalous dimension η4 (see Table V of [41]), which
coincides exactly with the one obtained within the two-field
model; see Table II of [41]. The corresponding value in the
physical dc = 1 case is given in Table III and coincides with
Eq. (9). Finally it is worth noticing that, contrary to the case of
the anomalous dimensions at the fixed points, the coefficients
of the series giving δ1 [Eq. (8)] and δ2 [Eq. (11)] increase with
the order of the expansion so that Eqs. (8) and (11) seem to
deserve resummations. Performing a simple symmetric Padé
approximant with ε = 2 reveals that both δ are very small
(∼10−3), implying small deviations from the line 3λ + μ = 0,
and thus a Poisson ratio close to −1/3.

Discussion: comparison with nonperturbative approaches.
We further discuss our results in particular in comparison with

TABLE III. Anomalous η4 at order ε3 at the fixed point P4

obtained from the three-loop order (this work), SCSA, and NPRG
approaches.

Approach P4

Three-loop η4 = 0.4800 ε − 0.01152 ε2 − 0.00334 ε3

SCSA η4 = 0.4800 ε − 0.01190 ε2 − 0.00349 ε3

NPRG η4 = 0.4800 ε − 0.00918 ε2 − 0.00333 ε3

those obtained using alternative methods: the SCSA and the
NPRG approaches that are known to have produced numer-
ical results in D = 2 rather close to the accepted—although
dispersed—values obtained by means of numerical compu-
tations. Also, these methods offer explicit expressions of the
various anomalous dimensions as functions of D that can be
expanded in powers of ε and compared to those obtained in
this work. The anomalous dimensions obtained within the
SCSA approach [13,17] are given in Table VII of [41] and
those obtained within the NPRG approach [18] in Table VIII
of [41]. One first has to note that the basic structure of the
series, where denominators are odd powers of n + dc with
n = 4, 20, 24, is recovered within all approaches. Also, as
already noted in [31], the agreement between the perturbative
approach and the SCSA is particularly good for all anomalous
dimensions up to two-loop order; see Table VI of [41], where
we have gathered all perturbative values of η, and Table VII
of [41]. The agreement is less pronounced with the NPRG
approach except for η4; see Table VIII of [41].

Due to the complexity of the numerators at three-loop
order, the comparison between these three approaches is not
obvious for an arbitrary codimension dc. We thus consider the
series in the physical case dc = 1. In this case one recovers
(see [31]) at the fixed point P′

2 the exact agreement between
the perturbative computation and the SCSA up to order ε2;
see Table I. The comparison, at three-loop order, with the
SCSA is less satisfying as with this last method one observes
a strong increase of the ε3 coefficient with respect to the ε2

one. Conversely the agreement with the NPRG approach is
not very good at order ε2—for unclear reasons one finds the
wrong sign at this order (see [31])—but satisfying at three-
loop order. Nevertheless at the fixed point P3 (see Table II)
and especially at P4 (see Table III), the agreement between all
approaches is particularly good—up to three significant digits
with the SCSA, a little bit less with the NPRG—at two-loop
but also at three-loop orders.

We now discuss our result for η4 associated to the fully
stable fixed point P4. The series giving η4 is meant to be
asymptotic, and resummation techniques should be used in
principle. However, as far as the three-loop order is consid-
ered, the series appears to be convergent due to the large
regular denominator structure of the form εl/(n + dc)2l−1,
with l the loop order and n = 4, 20, 24. We expect the singular
nature of the series to show up at higher orders when the nu-
merators become large enough to overcome the denominators.
Since, up to three-loop order, the coefficients are small and de-
creasing, asymptotic analysis allows us to truncate the series
(up to the smallest coefficient) with minimum error and with-
out any resummation. This is the so-called “optimal truncation
rule” (see, e.g., [42]) and is supposed to give a good approx-
imation to an asymptotic series. At some higher loop order,
one should reach some increasing coefficients and need per-
forming resummations to get better approximations. At ε = 2
one gets successively at one-, two-, and three-loop orders:

η1l
4 = 24

25
= 0.96, η2l

4 = 2856

3125
� 0.9139,

η3l
4 = 2856

3125
+ 4[568 241 − 1 286 928 ζ (3)]

146 484 375
� 0.8872.
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Clearly, η4 gets closer and closer, order by order, to the
values obtained directly in D = 2 from the SCSA, where
η4 = 0.821 and the NPRG where η4 = 0.849. Moreover,
the three-loop order value we find is already compatible
with the value obtained by these techniques and within
the range [0.72,0.88] where many numerical values lie
[26–29,43–49].

Let us finally discuss our predictions about the anomalous
and Poisson ratios δ and ν. Our results, as well as those
already obtained at two-loop order [31], display (small) cor-
rections with respect to the leading order values. They contrast
with those obtained within both the SCSA and NPRG ap-
proaches that lead to δν = 0 and, thus, ν = −1/3. Several
comments are required. First, we have indicated that our
results for δ and ν are model-, and thus very likely, scheme-
dependent. It is very desirable to get scheme-independent
values for these quantities in order to compare our results with
those obtained from other methods in a relevant way. Then, if
these order-dependent corrections persist, one should inquire
about higher-order contributions of the series providing ν.
Finally, one should also inquire about the contributions that
have been neglected within the SCSA and NPRG approaches,
which could affect the leading order results. More generally,
this raises the question of the deviation of the Poisson ratio
with respect to the value −1/3, a fact that has been recently
proposed, notably in [50].

Conclusion. We have investigated the flat phase of poly-
merized membranes at three-loop order by means of a
weak-coupling, perturbative approach of two complemen-
tary models. We have determined the RG equations, their
fixed points, and the associated anomalous dimensions. The
agreement between the results obtained from the two mod-
els shows that we have obtained unambiguous control of
the renormalization procedure in both models. The details of
the—involved—computations will be given in a forthcoming
publication [33].

From our results, the order-by-order agreement found be-
tween the perturbative approach and the nonperturbative ones
when the later are reexpanded in powers of ε, which has

already been observed at two-loop order, is confirmed at three-
loop order. Let us add that, though our perturbative results are
supposed to be valid at weak coupling, they are nevertheless
exact order by order in the coupling constants. Hence, they
serve as a benchmark for nonperturbative and numerical tech-
niques that also rely on their own sets of approximations. In
this context, a noticeable feature of our results with respect
to the one- and two-loop orders calculations is that the value
found for the three-loop order critical exponent η4 in D = 2
(without any resummation of the ε-series) is compatible with
the usually accepted ones from (all orders) nonperturbative
methods.

Such an agreement raises the question of its very origin
and, thus, of the very nature of the field theory describing the
flat phase of membranes. This salient feature can be explained
by the smallness of the coefficients found in the ε-series; see
Eqs. (7) and (9). As can be seen from these equations, the
coefficients even get smaller with increasing the loop order,
thus seemingly alleviating the asymptotic nature of the series,
at least up to three loops. A higher order examination of these
coefficients would be very interesting but is beyond the scope
of this paper.

Finally, one can note that recent attempts have been made
to probe more deeply the nonperturbative structure of the
theory, notably concerning the relation between scale invari-
ance and conformal symmetry; see [51]. The result could be
considered as deceptive: the scale invariance at the infrared
fixed point not being promoted to conformal invariance at the
fixed point, the use of methods such as conformal bootstrap
techniques seems to be excluded. The crux of the matter still
lies ahead of us.
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