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Local elastic properties of polystyrene nanocomposites increase significantly due to nonaffine
deformations
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We investigate the local elastic properties of polystyrene doped with SiO2 nanoparticles by analyzing the
local density fluctuations. The density fluctuations were established from coarse-grained molecular dynamics
simulations performed with the MARTINI force field. A significant increase in polystyrene stiffness was revealed
within a characteristic range of 1.4 nm from the nanoparticle, while polystyrene density saturates to the bulk
value at significantly shorter distances. The enhancement of the local elastic properties of the polymer was
attributed to the effect of nonaffine deformations at the length scale below 1 nm, which was further confirmed
through the random matrix model with variable strength of disorder.
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Polymer nanocomposites have attracted significant atten-
tion due to their unique properties and enormous potential
as future materials [1]. Experimental investigations have
demonstrated that due to the nanoscale inclusions, polymer
nanocomposites could possess tailored mechanical, electrical,
and thermal properties, as compared to the pure polymers
[2–4]. Among many characteristics, the elastic properties of
pure polymers and associated nanocomposites have histori-
cally attracted considerable attention [5–7]. It was established
that polymer doping with nanoparticles even in small concen-
trations could lead to significant changes in the elasticity of
the host material [8–12]. For example, doping of polymethyl-
methacrylate with just 3 wt. % of SiO2 nanoparticles may
increase the storage modulus of the nanocomposite by 50%
[13].

It is well known that for a homogeneous elastic medium the
classical elasticity theory defines the relation between local
strain and local stress [14]. In the case of doped polymers,
the Eshelby theory can be used to determine the deformation
of the nanoparticles and the surrounding medium caused by
the macroscopic external stress [15]. The resulting overall
stiffness of nanocomposites can then be calculated using the
Mori-Tanaka approach [16,17]. However, the Eshelby theory
becomes inaccurate once the nanoparticles appear to be of the
nanometer scale.

Elastic properties of nanocomposites have also been de-
scribed by the so-called three-phase model [18]. The model
assumes that the structure of a polymer is perturbed around
the nanoparticle, which results in an effective interface layer
around the nanoparticle with intermediate elastic properties.
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Due to the large total surface area of a nanoparticle, the inter-
facial layer has a strong influence on the overall stiffness of
the nanocomposite. However, the properties and the thickness
of the interfacial layer are generally unknown and at present
the three-phase model was used phenomenologically [19–23].

Here we investigate local elastic properties of a polymer
medium surrounding a nanoparticle and consider polystyrene
doped with amorphous SiO2 nanoparticles as an example.
The results demonstrate a significant increase of polystyrene
local elastic properties in a nanometer-large shell around the
nanoparticles, where the internal structure of the polystyrene
is only slightly perturbed. To elucidate the role of disorder in
the studied system, we have further utilized the random matrix
model with variable strength of disorder which permitted us to
attribute the observed effect to nonaffine deformations in the
polymer [24]. The specific case study illuminates a general
and versatile approach that can easily be adapted to the study
of arbitrary polymer nanocomposites.

An important property of a polymer nanocomposite is the
inhomogeneity of its constituents at a microscopic length
scale. The effect becomes especially significant for a polymer
matrix since its constituent monomers have a much larger
size than the individual atoms. Moreover, since polymers
surrounding an embedded nanoparticle are often found in a
glassy state, monomers’ disorder of positions and orientations
makes the polymer matrix even more inhomogeneous.

The presence of disorder leads to the so-called nonaffine
deformations under homogeneous external load, which could
not be described by a combination of local stretches or shears.
Nonaffine deformations play a crucial role in macroscopic
elasticity properties and were observed in many disordered
solids; examples include metallic glasses [25], polymer hy-
drogels [26], supercooled liquids [27], silica glass [28]. In
the case of Lennard-Jones glass it was shown that the clas-
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FIG. 1. (a) Characteristic configuration of pure polystyrene in-
side the simulation box obtained after MD equilibration [33].
Polystyrene is modeled in a coarse-grained representation, where
each styrene monomer is represented through four beads denoted
as particles R1, R2, R3, and B in the inset. (b) An illustrative con-
figuration of the system featuring an amorphous SiO2 nanoparticle
embedded into the polystyrene matrix.

sical elasticity theory description fails below a length scale
of tens of molecular sizes [29]. Disorder in the polymer ma-
trix is also expected to affect the influence of nanoparticles
on the macroscopic elastic properties of the nanocomposite.
It was particularly demonstrated recently that nanoparticles
in a strongly disordered medium have a stronger impact on
the macroscopic elastic properties than nanoparticles in an
ordered matrix [30].

To study local elastic properties of polymer nanocom-
posites, two structures were considered in the present
investigation: (i) a reference system of pure polystyrene, as
illustrated in Fig. 1(a), and polystyrene doped with an amor-
phous SiO2 nanoparticle, see Fig. 1(b). Pure polystyrene was
modeled as a mixture of 216 polystyrene chains consisting
of 120 monomers inside a 17.25 nm × 17.25 nm × 17.25 nm
simulation box. The interaction of coarse-grained polystyrene
beads was described by the MARTINI potential [31,32], con-
sistent with earlier studies [32,33]. The polystyrene chains
were coarse-grained to permit longer simulations and ensure
equilibration of the system. Each styrene monomer was sub-
stituted with four coarse-grained beads, as illustrated in the
inset of Fig. 1(a). The backbone carbon atoms of polystyrene
were modeled through one bead of type B, while three beads
of type R represent the styrene side chain. After an extensive
equilibration [33], an additional 200-ns-long molecular dy-
namics (MD) simulation was carried out at 300 K with the
use of NAMD 2.13 software [34]. The simulations assumed
periodic boundary conditions within the NVT-statistical en-
semble, where the temperature of the system was controlled
through the Langevin thermostat with the damping coefficient
of 1 ps−1.

A single amorphous SiO2 nanoparticle with a diameter of
3.6 nm was embedded into the equilibrated polystyrene matrix
to model doped polystyrene. Accordingly, the simulation box
was increased up to 17.285 nm × 17.285 nm × 17.285 nm
to accommodate the nanoparticle and preserve the equilib-
rium density of the polystyrene matrix. An amorphous SiO2

nanoparticle was constructed using the programs VMD [35],
and MBN STUDIO [36] and embedded into the polystyrene
matrix. Since periodic boundary conditions were employed in

the simulation, the studied system is essentially represented
by an infinite medium with embedded nanoparticles, which
corresponds to polystyrene doping with a mass fraction of
1.6%. This value is consistent with the value typically used for
nanocomposites [13]. The van Beest, Kramer, and van Santen
(BKS) potential [37] was used to describe the interatomic
interactions inside the nanoparticle and its interaction with
the polystyrene matrix. The doped polystyrene was simulated
for 280 ns using the same parameters as for pure polystyrene.
To ensure that the doped polystyrene systems reached equi-
librium, and was suitable for the following analysis, the first
simulated 80 ns were used to calculate and analyze the spatial
distribution of polystyrene density in the simulation box. The
approach was identical to the one used previously for pure
polystyrene [33] and revealed an equilibrated polystyrene sys-
tem with SiO2 nanoinclusion.

To understand the macroscopic elastic properties of
nanocomposites, it is essential to study local elastic moduli
around the nanoparticles. One can, for example, analyze stress
or strain fluctuations by means of the fluctuation-dissipation
theorem [38–42]. The relation between elastic moduli and
stress fluctuations contains the Born term, which relies on
an involved analysis of the interaction potential between the
constituents of the system [43]. On the other hand, the strain
fluctuations can readily be obtained directly from MD trajec-
tories.

In this Letter, we analyze the strain fluctuations of a
polystyrene nanocomposite and determine its local elastic
properties. We focus on studying the density fluctuations,
which can be established without the knowledge of the precise
equilibrium positions of atoms.

Let us define the relative density of the system at the
position r and the time instance t as

ξ (r, t ) =
∑

i

Viφ[ri(t ) − r], (1)

where ri(t ) characterizes the position of the ith particle and
Vi is the volume of the Voronoi cell attributed to the ith par-
ticle and averaged over the observation time. The smoothing
function φ(r) reads as

φ(r) = 1

(2πw2)3/2
exp

(
− r2

2w2

)
, (2)

where w represents the spatial scale of the smoothing func-
tion. Thus, the parameter w determines the spatial resolution
of the relative density ξ (r, t ). This parameter plays an impor-
tant role in the evaluation of the local elastic moduli by the
analysis of the fluctuations of ξ (r, t ). For disordered media,
such as polystyrene, larger values of the spatial scale w lead
to a better precision of the elastic properties, but poorer spatial
resolution; the resolution is important to analyze the elastic
properties of the nanoinclusion and its surrounding medium.
In the present Letter, the dependence of local elastic moduli
on the spatial scale w has been analyzed.

The density ξ (r, t ) in Eq. (1) can be considered as a
smoothed three-dimensional histogram with weights Vi. Since
Vi is the volume attributed to the ith particle, the density ξ (r, t )
is expected to be close to unity. Due to the thermal fluctua-
tions, the density deviates from the average value, 〈ξ (r, t )〉t ,
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where the deviation of density is then defined as δξ (r, t ) =
ξ (r, t ) − 〈ξ (r, t )〉t .

The thermal fluctuations of density allow determining the
local elasticity modulus M as

M(r) = (
θ3

3

(
e−4π2w2/L2) − 1

) kBT 〈ξ (r, t )〉2
t

L3〈δξ 2(r, t )〉t
, (3)

where θ3(x) is the third Jacobi theta function, L defines the
dimension of the simulation box, kB is the Boltzmann con-
stant, and T is the temperature of the system. The derivation
of Eq. (3) is given in the Supplemental Material [44] using
thermal equilibrium analysis of a reference isotropic homoge-
neous elastic body. For small spatial scales w � L holds and
Eq. (3) can be further simplified as

M(r) = 1

8π3/2

kBT 〈ξ (r, t )〉2
t

w3〈δξ 2(r, t )〉t
. (4)

The elasticity modulus M is known as the P-wave modulus
and determines the propagation velocity of longitudinal elastic
waves as vl = √

M/ρ, where ρ is the density [45]. It is related
to other elastic moduli through the Poisson’s ratio ν [46],
which for glassy polymers is usually close to 1/3 [47].

The smooth relative density ξ (r, t ) was computed during
the MD simulation of bulk polystyrene and polystyrene with
an embedded nanoparticle. In the latter case, the sum in
Eq. (1) includes atoms of the nanoparticle. Since the direct
calculation of the convolution in Eq. (1) takes considerable
calculation time, we use the smooth histogram method de-
scribed in the Supplemental Material [44].

Figures 2(a)–2(c) show the computed elastic modulus
M(r) for bulk polystyrene obtained for different spatial scales
w. One notes strong spatial fluctuations of the elastic modulus
in the case of w = 0.4 nm, while the spatial fluctuations
decrease for the larger w values. The dependence of the mean
elastic modulus 〈M〉 and the standard deviation δM as a func-
tion of the spatial scale w is presented in Figs. 3(a) and 3(b).
With increasing w, 〈M〉 tends to its macroscopic value and
δM decreases. For the investigated values of w one observes
δM ∝ 1/w; in the case of uncorrelated noise one would ex-
pect that δM will decrease with the increase of the smoothing
length as 1/w3/2. It is thus important to study the correlation
function C(r) = 〈(M(r′) − 〈M〉)(M(r′ + r) − 〈M〉)〉r′ of the
local elastic modulus to determine the relevant correlation
length in the system. The obtained correlation function C(r),
averaged over the different spatial directions in the sample, is
presented in Fig. 3 for several spatial scales w. One can see
the exponential behavior of the correlation function C(r) ∝
exp(−r/λc) with λc ≈ 1.4 nm. Significant fluctuations of the
local elastic modulus for small spatial scales and its correlated
behavior make it necessary to study the nanoscale elastic
properties in more detail.

Figures 2(d)–2(f) show the elastic modulus M(r) obtained
for polystyrene with an embedded nanoparticle. Far from the
nanoparticle, one observes fluctuations of the elastic modulus
M(r) similarly as for bulk polystyrene; see Figs. 2(a)–2(c).
Inside the nanoparticle, the elastic modulus is significantly
larger, M = 70−100 GPa, corresponding to the typical values
for SiO2 [45,48] (see the Supplemental Material [44] for more
details). It is, however, remarkable that the elastic modulus of

FIG. 2. Spatial distribution of the elastic modulus M(r) for pure
polystyrene (a)–(c) and doped polystyrene sample around a SiO2

nanoinclusion of 3.6 nm diameter (d)–(f). The results are shown for
the central cut plane in the sample (for the doped sample it passes
through the center of the nanoinclusion). The nanoinclusion is shown
schematically with a circle. Results are shown for the three spatial
scales w = 0.4, 0.8, and 1.5 nm.

polystyrene surrounding the nanoparticle is noticeably larger
than the corresponding bulk value. The relative elastic modu-
lus of polystyrene and the SiO2 nanoparticle are analyzed in
Fig. 4 as a function of distance from the nanoparticle center.

FIG. 3. (a) Mean 〈M〉 of the local elastic modulus for the doped
polystyrene as a function of the spatial scale w. (b) Standard de-
viation δM of the elastic modulus. The line shows the dependence
δM ∝ 1/w. (c) Correlation function of the local elastic modulus for
the four spatial scales w = 0.8, 1.0, 1.2, and 1.5 nm. The dashed line
shows the dependence exp(−r/λc ), where λc = 1.4 nm

L012501-3



BELTUKOV, CONYUH, AND SOLOV’YOV PHYSICAL REVIEW E 105, L012501 (2022)

FIG. 4. Relative increase of the elastic modulus M caused by the
SiO2 nanoinclusion computed as a function of distance from its cen-
ter. Results are shown for the four considered spatial scales w. The
vertical dotted line indicates the boundary of the nanoinclusion. The
inset shows the same dependence in the logarithmic scale together
with an asymptotic function exp(−r/λ), where λ = 1.4 nm (dashed
line).

A 10% enhancement of the elastic modulus is observed for
distances up to 1 nm from the nanoparticle surface. This result
is not significantly influenced by the smoothing length scale
w, as evidenced in the inset to Fig. 4, which indicates that
the observed enhancement of elastic modulus is not related to
the smoothing of density fluctuations. Such elastic behavior is
consistent with the description obtained from the three-phase
model of the nanocomposite [18], however, it is important to
discuss the nature of the enhanced elastic properties around
the nanoparticle.

The cause of the enhancement in the elastic properties
in the vicinity of the nanoparticle can be analyzed through
evaluating the density ρ(r) = ∑

i miφ(r − ri ) separately for
the nanoparticle and the polystyrene, as shown in Fig. 5.
Here mi is the mass of the ith coarse-grained particle and φ

FIG. 5. Radial local density of the SiO2 nanoparticle and the
polystyrene (PS) matrix. The vertical dotted line marks the boundary
of the nanoparticle. Solid and dashed lines show the density for
w = 0.1 nm and w = 0.4 nm, respectively. Inset shows a zoom for
PS density around the nanoparticle.

is the smoothing function defined in Eq. (2). For the small
smoothing value of w = 0.1 nm, one notes clear oscillations
of polystyrene density caused by coordination shells of the
polystyrene monomers around the nanoparticle. The oscil-
lations vanish for w = 0.4 nm, and the polystyrene density
approaches its bulk value with a deviation of less than 1%. At
the same time, Fig. 4 demonstrates a much larger deviation
of M(r), which shows that the enhancement of M(r) near the
nanoparticle is not directly related to the structural changes
of the polymer in the vicinity of the nanoparticle. Other
structural quantities also exhibit the same behavior near the
nanoparticle and in the bulk polystyrene. Volumes of Voronoi
cells around individual coarse-grain particles representing the
polymer have homogeneous distribution except a narrow layer
about 0.5 nm thick around the nanoparticle. Furthermore, the
orientation of monomers is isotropic near the nanoparticle as
well as in the bulk polystyrene. The detailed analysis of these
quantities is presented in the Supplemental Material [44].

In a strongly inhomogeneous medium, the local elastic
properties are not completely determined by its local structure
but depend on a large volume of the surrounding medium.
Indeed, all atoms in the system tend to find new equilibrium
positions for any applied macroscopic or microscopic stress.
This deviation of equilibrium positions can be described by
a continuous function u(r); however, at the nanometer length
scale, each atom has an additional nonaffine displacement una

i .
At the nanoparticle’s surface, the nonaffine displacements are
suppressed because the nanoparticle is more homogeneous
and stiffer than the surrounding polystyrene matrix, leading
to different stiffness of the polystyrene matrix in the vicinity
of the nanoparticle.

The inset in Fig. 4 shows that the additional stiffness
of polystyrene has an exponential behavior M(r)/M0 − 1 ∼
exp(−r/λ) with λ = 1.4 nm, where M0 is the mean local
elastic modulus far away from the inclusion (r > 8.6 nm) and
the length scale λ determines the characteristic length scale of
nonaffine displacements. The deviation from the exponential
law in the inset in Fig. 4 is determined by small fluctuations of
the local modulus M(r), which remain after averaging of local
modulus over a sphere with a given radius r. The obtained
length scale λ coincides with the correlation radius λc of
the obtained local modulus for the pure polystyrene (Fig. 3).
Note that the decay length λ ≈ 1.4 nm for the shell of higher
elastic modulus turns out to be close to the particle radius of
1.8 nm. The result suggests that a more systematic analysis of
λ on particle size is called for. Such an analysis is beyond
the scope of this investigation as significant computations
of polystyrene with nanoinclusions of different sizes would
be necessary, and should be completed independently in a
followup study.

The effect of disorder on local elastic properties around
nanoparticles in an amorphous medium can be further quan-
tified through employing the dimensionless random matrix
model [24]. The random matrix model describes many of the
general vibrational and mechanical properties of amorphous
solids [24,49,50] and is based on the fundamental property
that the dynamic matrix is positive definite for a system close
to an equilibrium.

In the framework of the random matrix model, the disorder
is controlled by the dimensionless parameter μ, where μ 
 1
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FIG. 6. Relative increase of the elastic modulus M near the
nanoinclusion computed within the random matrix model for differ-
ent values of the spatial scale: w = 1a0 (dots), w = 2a0 (diagonal
crosses), w = 3a0 (vertical crosses). Different colors correspond to
different values of the parameter μ = 10−4, 10−5, 10−6. Dotted line
shows the nanoinclusion size RNP = 10a0. Solid lines show the expo-
nential trend ∼ exp(−r/λ) for the corresponding values of μ. Inset
shows the dependence of the fitted values of λ on the parameter μ.

describes the regime with tiny fluctuations of the interaction
between atoms; the other regime, μ � 1 describes a strongly
disordered amorphous material [24]. To model a disordered
medium around the nanoparticle one can consider a simple cu-
bic lattice with the lattice constant a0 and strong fluctuations
of bond strength described by μ � 1. The nanoparticle is then
described as a spherical region with R < RNP and μ = μNP =
1 inside that region. The details of the random matrix model
and its analysis are presented in the Supplemental Material
[44].

Following the random matrix model, the radial dependence
of the calculated elastic modulus M(r) is presented in Fig. 6
which reveals the exponential dependence of the elastic mod-
ulus around the nanoparticle on distance from its center. In
the case of a stronger disorder (characterized by the smaller
values of μ), one notes a more prominent dependence that
is not strongly dependent on the smoothing parameter w.
For each value of the parameter μ, one can determine the

length scale λ of the exponential decay of M(r)/M0 − 1 ∼
exp(−r/λ), such that λ ∼ μ−α with α = 0.24 ± 0.02. The
found dependency is close to λ ∼ μ−1/4 (see inset to Fig. 6),
which is one of the known scaling regimes in the random
matrix model [24]. Since the random matrix model requires
less computational resources than the MD simulation, it was
used to verify whether the thickness λ of the induced elastic
shell is influenced by the radius of the nanoparticle. It was
revealed that this is not the case but the thickness λ was shown
to be affected by the disorder of the surrounding matrix (see
the Supplemental Material [44]).

The performed investigation concludes that an exponen-
tially decreasing induced elastic shell is formed around a
nanoparticle embedded inside a soft polystyrene matrix. Such
a shell increases the effective volume of nanoinclusions inside
polymeric materials, which leads to an increase in the effect
on the macroscopic elastic properties of nanocomposites.

The resulting elastic properties can approximately be
modeled using the three-phase model with the interphase
layer thickness λ ≈ 1.4 nm. The observed enhancement of
polystyrene’s elastic properties could not be explained by
the deviation of its density and other structural properties.
The result is consistent with a recent study for boehmite
nanolayer in epoxy [51]. We conclude that the increase
of elastic properties of the polystyrene matrix was caused
by its nonaffine deformations, which are strongly inhomo-
geneous at the nanometer length scale. This conclusion
was supported by the analysis within the random matrix
model with variable strength of disorder. We expect the
maximum effect on macroscopic elastic properties if a typ-
ical distance between nanoparticles is of the order of the
length scale λ and the induced elastic shells do not overlap
significantly.

The presented results show that detailed elasticity maps at
different length scales can be computed by the analysis of
the density fluctuations, which can be performed on the fly
during an MD simulation. The same analysis can be applied
to study local elastic properties in various soft inhomogeneous
mediums and liquids as well.
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