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Fluctuation theorem for irreversible entropy production in electrical conduction
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Linear irreversible thermodynamics predicts that the entropy production rate can become negative. We demon-
strate this prediction for metals under AC driving whose conductivity is well described by the Drude-Sommerfeld
model. We then show that these negative rates are fully compatible with stochastic thermodynamics, namely, that
the entropy production does fulfill a fluctuation theorem. The analysis is concluded with the observation that the
stochastic entropy production as defined by the surprisal or ignorance of the Shannon information does not agree
with the phenomenological approach.
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Introduction. The only processes that are fully describable
by means of traditional thermodynamics are infinitely slow
successions of equilibrium states [1]. Whereas considering
such idealized situations is well suited to formulate univer-
sal statements, its practical insight is somewhat limited. All
real processes occur at finite rates, and, therefore, entropy is
irretrievably lost into the environment. Historically the first
attempt to quantify this entropy “production” was developed
in linear irreversible thermodynamics [2,3]. The central as-
sumption of this generalized theory is that fluxes depend only
linearly on the forces driving the system away from equilib-
rium. Its results are obtained from a combination of the local
equilibrium hypothesis with conservation laws. The textbook
example is heat conduction generated by a temperature gradi-
ent, which is described by Fourier’s law [4].

An even more widely known example of such linear prob-
lems is electrical conduction, that is described by Ohm’s law.
Nevertheless, there are still subtleties to be unveiled. Only
recently, we showed in Ref. [5] that the entropy production in
noble metals under AC driving exhibits nonmonotonic growth
as a function of time. In other words, in electrical conduction
the entropy production rate can become negative. Such nega-
tive rates occur in situations in which the external driving is
too fast for the system to react, and, hence, the response lacks
behind the overall dynamics. Similar observations have been
reported in, e.g., viscoelastic fluids [6] and single-level quan-
tum dots [7] under oscillatory driving and in freely expanding
ideal gases [8]. Interestingly, negative entropy production
rates in open systems undergoing non-Markovian dynamics
are somewhat commonplace [9–13]. However, our analysis is
entirely based on the lag of response [14,15], which also gives
rise to negative rates in Markovian settings [5,16].

Even more remarkably, negative entropy production rates
are not indicative of scenarios operating far from thermal equi-
librium, but they can be observed fully within the regime of
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linear irreversible thermodynamics [16]. Since this approach
fully rests on phenomenological and macroscopic arguments,
the considered entropy production is often considered as gen-
uinely thermodynamic.

A more modern approach to nonequilibrium problems is
stochastic thermodynamics [17]. Arguably, the most central
notion is the stochastic entropy production, which is de-
fined as a statistical or rather information theoretic quantity.
Whereas in linear irreversible thermodynamics the entropy
production is expressed as a bilinear form of fluxes and
forces, in stochastic thermodynamics, we have the “sur-
prisal,” i.e., the logarithm of the system’s distribution in state
space [18]. The main results of stochastic thermodynamics
are the fluctuation theorems, which quantify that negative
fluctuations of the entropy production are exponentially
suppressed [18–20].

The natural question arises, whether the two paradigms
are consistent with each other, or rather whether the two
“versions” of entropy production are equivalent. In particular,
the occurrence of negative rates in irreversible thermodynam-
ics [5,6,16] appears incompatible with the strict positivity of
the stochastic entropy production rate often discussed in the
literature [21–34].

In the present Letter, we show that the entropy produc-
tion as defined in linear irreversible thermodynamics indeed
fulfills a fluctuation theorem. For pedagogical reasons and
for specificity we focus on electrical conduction in Drude-
Sommerfeld metals [35–38] under AC driving. Despite its
somewhat crude approximations, experiments have shown
that the Drude model, combined with Fermi-Dirac statistics,
does describe properties of real metals, such as gold, copper,
and silver [39,40] at room temperature and low photon en-
ergies. However, the validity of our results is not restricted
to electric conduction. Rather, it is easy to see that our anal-
ysis remains valid for other situations that can be described
with the linear framework. Finally, we will also see that the
irreversible entropy production and the stochastic entropy
production are typically different, and that they only become
identical in the limit of infinitely slow driving.
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Irreversible thermodynamics. To keep the discussion self-
contained, we begin by briefly reviewing the approach, and
by establishing notions and notations. In our analysis, we
use irreversible thermodynamics to derive an expression for
the entropy production (EP) rate for a situation in which
monochromatic and polarized light is shined on a piece of
metal. In this case, the balance equation for the electromag-
netic energy density uEM(r, t ) reads

∂uEM

∂t
+ ∇ · S = −Je · E, (1)

where S is the Poynting vector. Equation (1) contains a source
term which describes the power density lost to the charge
carriers, which is the product of the electrical current density
Je and the electric field E.

Accordingly, the balance equation for the internal energy
density u(r, t ) of the charge carriers becomes,

∂u

∂t
+ ∇ · Ju = Je · E, (2)

where Ju denotes the flux of internal energy and due to energy
conservation the source term has the opposite sign. Further
assuming a constant number of charge carriers, we also have
the balance equation for the entropy density s(r, t ),

∂s

∂t
+ ∇ · Js = �̇, (3)

whose source term is the EP rate we want to obtain.
Combining Eqs. (2) and (3) with the local equilibrium

hypothesis [see Eq. (A3) and Appendix A], we obtain

�̇ = Ju · ∇
(

1

T

)
− Jn · ∇

(
μ

T

)
+ Je · E

T
, (4)

whose last term is the contribution from electrical conduction.
The quantities T and μ denote, respectively, the temperature
and the chemical potential imposed on the set of charge carri-
ers as scalar fields, and Jn is the particle flux.

Temperature, chemical potential, and pressure gradients
are constrained by the Gibbs-Duhem equation [41] (see Ap-
pendix A), which implies that under uniform temperature and
pressure, the EP rate simply becomes

�̇ = Je · E
T

. (5)

Additionally, phenomenological linear relations between
currents and forces are assumed to hold. In electrical conduc-
tion, such a relation exists in the frequency domain [42],

Ĵe,i(ω) =
∑

j

σi j (ω)Ê j (ω), (6)

i.e., between the Fourier transforms of the electrical current
Ĵe,i(ω) and the electric field Ê j (ω) along the i and j directions,
respectively. Note that Eq. (6) is nothing but Ohm’s law with
the conductivity tensor σi j (ω).

To evaluate the EP rate �̇ (5), an expression for the current
in time domain is required. The inverse Fourier transform of
Eq. (6) reads

Je,i(t ) =
∫ t

−∞
dt ′ ∑

j

�i j (t − t ′)Ej (t
′), (7)

where �i j (t ) denotes the response function [42]. Equation (7)
describes possible memory effects since current and electric
field are not evaluated at the same instant in time [14,42].
Combining Eq. (7) and the bilinear form (5) for �̇, we obtain

�̇ = 1

T

∑
i, j

Ei(t )
∫ t

−∞
dt ′�i j (t − t ′) Ej (t

′). (8)

This expression contrasts the more common case in which
thermodynamic forces are evaluated at the same instant in
time, and the EP rate remains strictly positive, see, for in-
stance, Refs. [24,29,30].

Drude-Sommerfeld entropy production. In the Drude
model, the charge carriers in an ideal metal are described as
a classical free electron gas which obeys Maxwell-Boltzmann
statistics [35,36]. In its extension to the quantum domain, the
equilibrium statistics is upgraded to the Fermi-Dirac one, and
the quantum effects are encoded in the density N of charge
carriers at the Fermi level, in the behavior of the relaxation
time with temperature, and in the effective (band) mass m of
the electrons [37,38,43].

Whereas an ideal gas is strictly free of collisions, assum-
ing a finite relaxation time in the Drude model implies a
finite mean free path. This mean free path is justified by
considering the scattering of the charge carriers with phonons
and impurities [38]. It can be phenomenologically introduced
expressing the collision term of the Boltzmann equation as
[43], (∂ρ/∂t )coll = −δρ/τR, where τR, ρ, and δρ = ρ − ρ0

denote the relaxation time, the nonequilibrium distribution,
and the deviation from the initial equilibrium distribution ρ0,
respectively.

Hence, we obtain for the conductivity,

σ (ω) = σ0

1 − iω τR
, (9)

where σ0 = Nq2τR/m is the DC conductivity in the zero-
frequency limit [43] and q denotes the electric charge.

Computing the inverse Fourier transform of Eq. (9), we
obtain the response function,

�(t ) = 
(t )
σ0

τR
exp (−|t |/τR), (10)

and 
(t ) is the Heaviside step function. Hence, the EP rate (8)
becomes

�̇ = σ0

T τR
E (t )

∫ t

0
dt ′ exp (−|t − t ′|/τR)E (t ′). (11)

Assuming a monochromatic electric field, E (t ) =
E0 sin(ω0t ), and employing Eq. (11), the entropy production
rate (8) reads

�̇ = 1

T

σ0 E2
0 sin (ω0t )

1 + (ω0τR)2
[ω0τR exp (−t/τR)

−ω0τR cos (ω0t ) + sin (ω0t )]. (12)

Figure 1 illustrates Eq. (12) for different values of ω0τR. As
discussed in Ref. [5], negative values of �̇ persist within a
small vicinity of ω0t = nπ , n = 1, 2, 3, . . ., as ω0τR decreases
and vanishes only in the limit ω0τR → 0.

The emergence of negative values of �̇ can be understood
qualitatively from Eq. (11). �̇ is given by the product of a
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FIG. 1. Entropy production rate (12) as a function of t/τR for
different values of ω0τR. Solid-blue, dashed-red, and dotted-brown
lines correspond to ω0τR = 0.8, 0.5, and 0.2, respectively. Units are
�̇0 ≡ σ0E 2

0 /T .

time-dependent electric field and a convolution between the
same field (evaluated at a previous time) and the response
function. This describes a delay between the response of the
system and the electric field. Thus, if the function E (t ) is
nonmonotonic and acquires negative values, negative values
of �̇ occur [44].

Fluctuation theorem. As mentioned before, Drude orig-
inally considered the charge carriers as a classical gas of
particles following Maxwell-Boltzmann statistics. Although
this leads to wrong predictions of the DC conductivity σ0, it
does not change the form of σ (ω) given by Eq. (9). This means
that the qualitative features of the EP rate �̇ and its expression
(12) remain unaltered in the original Drude model, although
with a different value of σ0.

For the next part of the analysis, we restrict ourselves to the
classical Drude model and develop the corresponding stochas-
tic thermodynamics. Here, N denotes the number (instead
of density) of noninteracting charge carriers, and by Je, we
denote the electrical current (instead of current density). We
start by combining Ohm’s law (6) with the Drude conductivity
(9),

Ĵe(ω) = σ0

1 − iωτR
Ê (ω), (13)

which in the time domain takes the form of the following
equation of motion for Je(t ):

dJe

dt
+ Je

τR
= σ0

τR
E (t ). (14)

Recalling that Je(t ) is defined as Je(t ) = Nq〈p(t )〉/m, where
〈p(t )〉 is the average momentum of a charge carrier along the
direction of the electric field, Eq. (14) yields

d〈p(t )〉
dt

+ 〈p(t )〉
τR

= qE (t ), (15)

and σ0 = Nq2τR/m.
Fluctuations can be introduced by removing the average in

Eq. (15) and introducing a Gaussian-distributed white-noise
fi(t ) with zero mean acting on the ith charged particle. The
equation of motion for the fluctuating linear momentum of

the ith charge along the direction of E(t ) then reads

d pi(t )

dt
+ pi(t )

τR
= qE (t ) + fi(t ), (16)

which is nothing but Brownian motion under the external
force qE (t ). The fluctuating current je(t ) then is as follows:

je(t ) = q

m

N∑
i=1

pi(t ), (17)

and we define the fluctuating entropy production,

�(t ) = 1

T

∫ t

0
dt ′ je(t ′)E (t ′), (18)

inspired by irreversible thermodynamics [see Eq. (5)].
Since the pi(t ) are Gaussian distributed and �(t ) is a linear

transformation of their sum, the probability distribution of
�(t ) will be Gaussian as well. See Refs. [45,46] for similar
arguments. From the solution of Eq. (16) and expression (18),
it can be shown that (see Appendix B)

〈�(t )〉 = Nq2

mT

∫ t

0
dt ′

∫ t ′

0
dt ′′E (t ′) exp [−(t ′ − t ′′)/τR]E (t ′′).

(19)
when the linear momenta of the charge carriers are distributed
according to Maxwell’s distribution at t = 0.

Under the same assumptions, we have (see Appendix B)

〈�2(t )〉 = 〈�(t )〉2 + kB
Nq2

mT

∫ t

0
dt ′

∫ t

0
dt ′′E (t ′)

× exp (−|t ′ − t ′′|/τR)E (t ′′), (20)

and we obtain

Var[�(t )] = 〈�2(t )〉 − 〈�(t )〉2 = 2kB〈�(t )〉. (21)

The probability distribution of � then reads

P(�) = 1√
2πVar[�]

exp

(
− [� − 〈�〉]2

2Var[�]

)
, (22)

which implies the detailed fluctuation theorem,

P(�)

P(−�)
= exp

[
2〈�〉�
Var(�)

]
= exp

(
�

kB

)
. (23)

and its integral version, 〈exp (−�/kB)〉 = 1.
Note that the average EP rate is as follows:

〈�̇(t )〉 = Nq

mT
〈p(t )〉E (t ), (24)

whose time integral is identical to Eq. (19) and with different
values and units of σ0 in Eq. (11). Hence, we conclude that
negative values of the EP rate are not incompatible with the
fluctuation theorem (23) and, hence, the second law.

Entropy production from microreversibility. As a next step,
we show that the expression (18) for the EP appears natu-
rally from microreversibility [19], i.e., from the comparison
of probabilities of observing a given trajectory and its time-
reversed conjugated twin [47–50].

Considering Eq. (16) for a single charge carrier, its cor-
responding Fokker-Planck equation reads [51] (we have
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dropped the index i)

∂

∂t
W (p, t ) = − ∂

∂ p

[(
− p

τR
+ qE (t )

)
W (p, t )

]

+ ∂2

∂ p2

(
mkBT

τR
W (p, t )

)
, (25)

where W (p, t ) denotes the probability density of linear mo-
mentum at a given t . Following the standard procedures [51],
it is straightforward to obtain the path-integral solution of
Eq. (25) [47,48,51].

In this formulation, the time evolution of W (p, t ) is ex-
pressed in terms of probabilities of trajectories. Denoting by
P[�|p0] the conditional probability of observing a trajectory
� that starts at p0, its expression reads

P[�|p0] = N exp

{
−

∫ t

0
dt ′L[p(t ′), ṗ(t ′); E (t ′)]

}
, (26)

where

L[p(t ′), ṗ(t ′); E (t ′)] = { ṗ(t ′) − [−p(t ′)/τR + qE (t ′)]}2

(4mkBT/τR)
,

(27)
and N is a normalization factor [51].

Following Ref. [47], we define �† as the time-reversed
conjugated twin of � for the time-reversed electric field ER(t ).
Thus, the probability of observing �† is given by

P[�†| − pt ] = N exp

{
−

∫ t

0
dt ′ L[p†(t ′), ṗ†(t ′); ER(t ′)]

}
,

(28)

where the initial condition −pt of �† is the time-reversal of
the final point of �.

Combining Eqs. (26) and (28) we have the microreversibil-
ity condition (see Appendix C),

P[�|p0]

P[�†| − pt ]
= exp

{
−

(
p2

t −p2
0

)
2mkBT

+ q

mkBT

∫ t

0
dt ′ p(t ′)E (t ′)

}
,

(29)

where the second term in the exponent is proportional to the
single-particle version of Eq. (18). This term can be under-
stood as proportional to the fluctuating power input due to the
electric field. On the other hand, the first term in the exponent
is proportional to the variation of the stochastic internal en-
ergy (which in the present case is purely kinetic) between the
final and the initial states. Hence, energy conservation implies
that the entire exponent is equal to the heat absorbed by the
heat bath in units of kBT [19,47,48,50].

Entropy production from Shannon information. In the
preceding sections, we showed how the fluctuating entropy
production can be found in full consistency with linear ir-
reversible thermodynamics. In stochastic thermodynamics,
however, the EP is often obtained from the Shannon infor-
mation [17],

S(t ) = −kB

∫
d pW (p, t ) ln W (p, t ), (30)

for the solution W (p, t ) of Eq. (25) [18]. Following standard
arguments [17,28], we have

1

kB

dS

dt
= τR

mkBT

∫
d p

J (p, t )2

W (p, t )
+ 1

mkBT

∫
d p pJ (p, t )

= (t ) − �(t ), (31)

where

J (p, t ) = − p

τR
W (p, t ) − ∂

∂ p

(
mkBT

τR
W (p, t )

)
. (32)

The term denoted by �(t ),

�(t ) = − 1

mkBT

∫
d p pJ (p, t ) (33)

is typically called the entropy flux [17] and the non-negative
term,

(t ) = τR

mkBT

∫
d pW (p, t )

( J (p, t )

W (p, t )

)2

(34)

is taken as the EP rate [17,27,28].
The terminology and interpretation of the terms in Eq. (31)

make contact with the balance equation (3) introduced in
the macroscopic approach of irreversible thermodynamics.
However, the fact that (t ) is always non-negative already
shows a strong disagreement with the EP rates discussed in
the previous sections. Additionally, it is easy to see that (t )
does not have the bilinear form discussed in Sec. II.

Consider the solution of Eq. (25) [46,52],

W (p, t ) = (2πmkBT )−1/2 exp

(
− [p − 〈p(t )〉]2

2mkBT

)
(35)

for an initial Maxwell-Boltzmann distribution. Then, the av-
erage momentum 〈p(t )〉 is as follows:

〈p(t )〉 =
∫ t

0
dt ′ exp [−(t − t ′)/τR]qE (t ′), (36)

which is obtained from Eq. (15). Plugging expression (35) in
Eq. (34), it is straightforward to show that,

kB(t ) = 〈p(t )〉2

mT τR
, (37)

which is clearly different from current q〈p(t )〉/m times ther-
modynamic force E (t )/T , which we had before in Eq. (24).
However, note that Eqs. (24) and (37) do become identi-
cal in the limit of infinitely slow driving, i.e, ω0τR → 0.
Equation (13) tells us that the delay between Je(t ) and E (t )
vanishes in this limit, i.e., the current becomes simply propor-
tional to the electric field.

Additionally, the solution (35) leads to the following ex-
pression for the entropy flux �(t ):

kB�(t ) = 〈p(t )〉2

mT τR
. (38)

Together with Eq. (37), this implies that the time derivative of
the Shannon information (30) is zero whether the system is in
the transient or long-time state.

Concluding remarks. Motivated by the macroscopic ap-
proach of irreversible thermodynamics, we have defined an
expression for the fluctuating EP in the classical Drude model.
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We have shown that this quantity fulfills a fluctuation theorem
despite the existence of negative values of its corresponding
rate. Hence, this shows, for a paradigmatic example, that
negative entropy production rates are not incompatible with
the fluctuation theorem and the second law. Moreover, we
have shown that the entropy production rate obtained from the
Shannon entropy and the Fokker-Planck equation contrasts
with our expression and does not have the bilinear form pre-
dicted by irreversible thermodynamics. In addition, we have
shown that the Shannon information remains constant along
the transition from the initial equilibrium state to long-time
nonequilibrium one and that the entropy production obtained
from it is simply proportional to the power related to the fric-
tion force. Our expression, however, is a measure of the total
amount of energy absorbed by the insulated system composed
of the set of charge carriers and its heat bath.
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APPENDIX A: IRREVERSIBLE THERMODYNAMICS

In this Appendix, we give a short derivation of Eq. (5) for
the EP rate in irreversible thermodynamics. The hypothesis
of local equilibrium allows to extend standard relations of
equilibrium thermodynamics to the nonequilibrium regime
[41]. For instance, the combination of the first with the second
law,

T ds = du − μ dn, (A1)

and the Gibbs-Duhem equation,

s dT = −dP − n dμ (A2)

are assumed to hold when the temperature T , the pressure
P, and the chemical potential μ along with the densities of
entropy s, internal energy u, and particles n, are treated as
scalar fields.

Using Eqs. (A1) and (A2), it is possible to write [41]

du

dt
− T

ds

dt
− μ

dμ

dt
= ∂u

∂t
− T

∂s

∂t
− μ

∂μ

∂t
= 0, (A3)

through which the balance equations can be connected. Con-
sidering Eqs. (2), (3), and conservation of particles,

∂n

∂t
+ ∇ · Jn = 0, (A4)

it is possible to find for the entropy flux,

Js = Ju

T
− μ

Jn

T
, (A5)

and the EP rate,

�̇ = Ju · ∇
(

1

T

)
− Jn · ∇

(μ

T

)
+ Je · E

T
. (A6)

Under the conditions of uniform temperature and pressure,
the Gibbs-Duhem equation in the form

∇P + s ∇T + n ∇μ = 0 (A7)

implies that ∇μ = 0 and Eq. (A5) reduces to

�̇ = Je · E
T

. (A8)

APPENDIX B: THE FIRST TWO MOMENTS OF �(t )

To calculate the first moment 〈�(t )〉, we start with Eq. (18)
and the solution p(t ) of Eq. (16),

pi(t ) = pi(0)e−t/τR +
∫ t

0
dt ′ exp [−(t − t ′)/τR]qE (t ′)

+
∫ t

0
dt ′ exp [−(t − t ′)/τR] fi(t

′). (B1)

Assuming that the system is in equilibrium at t = 0, we insert
the previous expression in Eq. (18) and, after taking the aver-
age, Eq. (19) is obtained using 〈pi(0)〉 = 0 and 〈 fi(t )〉 = 0.

To obtain the second moment 〈�2(t )〉, we take the average
of Eq. (18) squared, which reads

〈�2(t )〉 =
(

q

mT

)2 ∫ t

0
ds

∫ t

0
du E (s)E (u)

∑
i, j

〈pi(s)p j (u)〉.

(B2)

Using again the solution (B1), the initial condition
〈pi(0)p j (0)〉 = δi jmkBT and the white-noise property,

〈 fi(t ) f j (t
′)〉 = 2mkBT

τR
δi jδ(t − t ′), (B3)

where δi j is Kronecker’s δ and δ(t ) is Dirac’s δ function, it is
possible to show that

〈pi(s)p j (u)〉 = δi jmkBTe−|s−u|/τR

+ q2
∫ s

0
dt ′

∫ u

0
dt ′′ exp [−(s + u − t ′ − t ′′)/τR]E (t ′)E (t ′′).

(B4)

Plugging the previous expression into Eq. (B2), we finally
obtain

〈�2(t )〉 = 〈�(t )〉2

+kB
Nq2

mT

∫ t

0
ds

∫ t

0
du exp (−|s − u|/τR)E (s)E (u)

= 〈�(t )〉2 + 2kB〈�(t )〉. (B5)

APPENDIX C: CONDITIONAL PROBABILITY
OF TIME-REVERSED TRAJECTORIES

In this Appendix, we explain what is meant by the “ac-
tion” appearing in Eq. (28). First, we clarify that p†(t ′) =
−p(t − t ′), ṗ†(t ′) = ṗ(t − t ′), and ER(t ′) = E (t − t ′), where
p(t ) refers to the trajectory � whose evolution is subjected to
E (t ). Using then Eq. (27), we obtain

L[p†(t ′), ṗ†(t ′); ER(t ′)]

= { ṗ(t − t ′) − [p(t − t ′)/τR + qE (t − t ′)]}2

(4mkBT/τR)
. (C1)
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which implies that,

∫ t

0
dt ′L[p†(t ′), ṗ†(t ′); ER(t ′)]

=
∫ t

0
ds′ { ṗ(s′) − [p(s′)/τR + qE (s′)]}2

(4mkBT/τR)
, (C2)

after the change in variables s′ = t − t ′. Finally, the condi-
tional probability of observing the trajectory �† under the
time-reversed field ER(t ) reads

P[�†|−pt ]=N exp

{
−

∫ t

0
ds′ { ṗ(s′)−[p(s′)/τR+qE (s′)]}2

(4mkBT/τR)

}
,

(C3)

[1] H. Callen, Thermodynamics and an Introduction to Thermo-
statistics (Wiley, New York, USA, 1985).

[2] I. Prigogine, Introduction to Thermodynamics of Irreversible
Processes (Interscience, New York, 1961).

[3] S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics
(Dover, New York, 1984).

[4] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, Oxford, UK, 2001).

[5] M. V. S. Bonança, P. Nazé, and S. Deffner, Negative entropy
production rates in drude-sommerfeld metals, Phys. Rev. E 103,
012109 (2021).

[6] S. R. Williams, D. J. Evans, and E. Mittag, Negative entropy
production in oscillatory processes, C. R. Phys. 8, 620–624
(2007).

[7] J. Thingna, F. Barra, and M. Esposito, Kinetics and thermody-
namics of a driven open quantum systems, Phys. Rev. E 96,
052132 (2017).

[8] S. Chakraborti, A. Dhar, S. Goldstein, A. Kundu, and J. L.
Lebowitz, Entropy growth during free expansion of an ideal gas,
arXiv:2109.07742.

[9] S. Bhattacharya, A. Misra, C. Mukhopadhyay, and A. K.
Pati, Exact master equation for a spin interacting with a spin
bath: Non-markovianity and negative entropy production rate,
Phys. Rev. A 95, 012122 (2017).

[10] S. Marcantoni, S. Alipour, F. Benatti, R. Floreanini, and A. T.
Rezakhani, Entropy production and non-markovian dynamical
maps, Sci. Rep. 7, 12447 (2017).

[11] Y. Y. Xu, J. Liu, and M. Feng, Positive entropy production rate
induced by non-markovianity, Phys. Rev. E 98, 032102 (2018).

[12] M. Popovic, B. Vacchini, and S. Campbell, Entropy produc-
tion and correlations in a controlled non-markovian setting,
Phys. Rev. A 98, 012130 (2018).

[13] P. Strasberg and M. Esposito, Non-markovianity and negative
entropy production rates, Phys. Rev. E 99, 012120 (2019).

[14] R. Zwanzig, Memory effects in irreversible thermodynamics,
Phys. Rev. 124, 983 (1961).

[15] J. A. McLennan, Entropy production for a medium with mem-
ory, J. Chem. Phys. 41, 1159 (1964).

[16] P. Nazé and M. V. S. Bonança, Compatibility of linear-response
theory with the second law of thermodynamics and the emer-
gence of negative entropy production rates, J. Stat. Mech.
(2020) 013206.

[17] L. Peliti and S. Pigolotti, Stochastic Thermodynamics
(Princeton University Press, New Jersey, 2021).

[18] U. Seifert, Entropy Production Along a Stochastic Trajectory
and an Integral Fluctuation Theorem, Phys. Rev. Lett. 95,
040602 (2005).

[19] G. E. Crooks, Entropy production fluctuation theorem and
nonequilibrium work relation for free energy differences,
Phys. Rev. E 60, 2721 (1999).

[20] M. Esposito and C. Van den Broeck, Three Detailed Fluctuation
Theorems, Phys. Rev. Lett. 104, 090601 (2010).

[21] H. Spohn, Entropy production for quantum dynamical semi-
groups, J. Math. Phys. 19, 1227 (1978).

[22] I. Prigogine and J. Géhéniau, Entropy, matter, and cosmology,
Proc. Natl. Acad. Sci. USA 83, 6245 (1986).

[23] D. Ruelle, Positivity of entropy production in nonequilibrium
statistical mechanics, J. Stat. Phys. 85, 1 (1996).

[24] C. Maes, F. Redig, and A.Van Moffaert, On the definition of
entropy production, via examples, J. Math. Phys. 41, 1528
(2000).

[25] J. I Belandria, Positive and negative entropy production in an
ideal-gas expansion, Europhys. Lett. 70, 446 (2005).

[26] M. Esposito and C. Van den Broeck, Three faces of the second
law. i. master equation formulation, Phys. Rev. E 82, 011143
(2010).

[27] C. Van den Broeck and M. Esposito, Three faces of the second
law. ii. fokker-planck formulation, Phys. Rev. E 82, 011144
(2010).

[28] T. Tomé and M. J. de Oliveira, Entropy production in ir-
reversible systems described by a fokker-planck equation,
Phys. Rev. E 82, 021120 (2010).

[29] M. Bauer, K. Brandner, and U. Seifert, Optimal performance
of periodically driven, stochastic heat engines under limited
control, Phys. Rev. E 93, 042112 (2016).

[30] K. Brandner and U. Seifert, Periodic thermodynamics of open
quantum systems, Phys. Rev. E 93, 062134 (2016).

[31] S. Deffner, Kibble-zurek scaling of the irreversible entropy
production, Phys. Rev. E 96, 052125 (2017).

[32] H. Jabraoui, S. Ouaskit, J. Richard, and J.-L. Garden, De-
termination of the entropy production during glass transition:
theory and experiment, J. Non-Cryst. Sol. 533, 119907
(2020).

[33] G. T. Landi and M. Paternostro, Irreversible entropy produc-
tion, from quantum to classical, Rev. Mod. Phys. 93, 035008
(2021).

[34] S. Deffner and M. V. S. Bonança, Thermodynamic control—An
old paradigm with new applications, Europhys. Lett. 131, 20001
(2020).

[35] P. Drude, Zur Elektronentheorie der Metalle, Ann. Phys. (NY)
306, 566 (1900).

[36] P. Drude, Zur Elektronentheorie der Metalle; II. Teil. Galvano-
magnetische und thermomagnetische Effecte, Ann. Phys. (NY)
308, 369 (1900).

L012105-6

https://doi.org/10.1103/PhysRevE.103.012109
https://doi.org/10.1016/j.crhy.2007.05.007
https://doi.org/10.1103/PhysRevE.96.052132
http://arxiv.org/abs/arXiv:2109.07742
https://doi.org/10.1103/PhysRevA.95.012122
https://doi.org/10.1038/s41598-017-12595-x
https://doi.org/10.1103/PhysRevE.98.032102
https://doi.org/10.1103/PhysRevA.98.012130
https://doi.org/10.1103/PhysRevE.99.012120
https://doi.org/10.1103/PhysRev.124.983
https://doi.org/10.1063/1.1726025
https://doi.org/10.1088/1742-5468/ab54ba
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1063/1.523789
https://doi.org/10.1073/pnas.83.17.6245
https://doi.org/10.1007/BF02175553
https://doi.org/10.1063/1.533195
https://doi.org/10.1209/epl/i2004-10508-7
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevE.82.011144
https://doi.org/10.1103/PhysRevE.82.021120
https://doi.org/10.1103/PhysRevE.93.042112
https://doi.org/10.1103/PhysRevE.93.062134
https://doi.org/10.1103/PhysRevE.96.052125
https://doi.org/10.1016/j.jnoncrysol.2020.119907
https://doi.org/10.1103/RevModPhys.93.035008
https://doi.org/10.1209/0295-5075/131/20001
https://doi.org/10.1002/andp.19003060312
https://doi.org/10.1002/andp.19003081102


FLUCTUATION THEOREM FOR IRREVERSIBLE ENTROPY … PHYSICAL REVIEW E 105, L012105 (2022)

[37] A. Sommerfeld, Zur Elektronentheorie der Metalle auf Grund
der Fermischen Statistik, Z. Phys. 47, 1 (1928).

[38] J. Bardeen, Electrical conductivity of metals, J. Appl. Phys. 11,
88 (1940).

[39] R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh,
G. D. Boreman, and M. B. Raschke, Optical dielectric function
of gold, Phys. Rev. B 86, 235147 (2012).

[40] H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker,
G. D. Boreman, and M. B. Raschke, Optical dielectric function
of silver, Phys. Rev. B 91, 235137 (2015).

[41] L. E. Reichl, A Modern Course in Statistical Physics (Wiley-
VCH, Weinheim, 2016).

[42] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics
II: Nonequilibrium Statistical Mechanics, Springer Series in
Solid-State Sciences Vol. 31 (Springer-Verlag, Heidelberg,
1991).

[43] N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Saunders College Publishing, Philadelphia, 1976).

[44] Note, however, that it has been shown that the entropy produc-
tion, � = ∫ t

0 dt ′ dot05F�, itself remains positive at all times
[5,16].

[45] R. van Zon and E. G. D. Cohen, Stationary and transient work-
fluctuation theorems for a dragged brownian particle, Phys. Rev.
E 67, 046102 (2003).

[46] J. I. Jiménez-Aquino, Entropy production theorem for a charged
particle in an eletromagnetic field, Phys. Rev. E 82, 051118
(2010).

[47] V. Y. Chernyak, M. Chertkov, and C. Jarzysnki, Path-integral
analysis of fluctuation theorems for general langevin processes,
J. Stat, Mech. (2006), P08001.

[48] A. Imparato and L. Peliti, Fluctuation relations for a driven
brownian particle, Phys. Rev. E 74, 026106 (2006).

[49] S. Deffner, M. Brunner, and E. Lutz, Quantum fluctuation the-
orems in the strong damping limit, Europhys. Lett. 94, 30001
(2011).

[50] P. S. Pal and S. Deffner, Stochastic thermodynamics of relativis-
tic brownian motion, New J. Phys. 22, 073054 (2020).

[51] H. Risken, The Fokker-Planck Equation (Springer-Verlag,
Berlin, 1996).

[52] L. Ferrari, Heavy (or large) ions in a fluid in an electric field:
The fundamental solution of the fokker-planck equation and
related questions, J. Chem. Phys. 118, 11092 (2003).

L012105-7

https://doi.org/10.1007/BF01391052
https://doi.org/10.1063/1.1712751
https://doi.org/10.1103/PhysRevB.86.235147
https://doi.org/10.1103/PhysRevB.91.235137
https://doi.org/10.1103/PhysRevE.67.046102
https://doi.org/10.1103/PhysRevE.82.051118
https://doi.org/10.1088/1742-5468/2006/08/P08001
https://doi.org/10.1103/PhysRevE.74.026106
https://doi.org/10.1209/0295-5075/94/30001
https://doi.org/10.1088/1367-2630/ab9ce6
https://doi.org/10.1063/1.1574779

