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When a randomness is introduced at the level of real matrix elements, depending on its particular realization,
a pair of eigenvalues can appear as real or form a complex conjugate pair. We show that in the limit of large
matrix size the density of such real eigenvalues is proportional to the square root of the asymptotic density
of complex eigenvalues continuated to the real line. This relation allows one to calculate the real densities up
to a normalization constant, which is then applied to various examples, including heavy-tailed ensembles and
adjacency matrices of sparse random regular graphs.
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Introduction. It is almost impossible to imagine a quantita-
tive field in which a diagonalization of nonsymmetric matrices
is not used. Following the pioneering works of Wigner [1] and
Dyson [2], spectra of random matrices have been intensively
studied in physics and mathematics. Ginibre initiated studies
of random matrices lacking symmetries [3], but real matrices
turned out to be the most difficult path on the Dyson threefold
way [4], and it took more than 40 years to pave the way for
fully solving the real Ginibre ensemble [5–13].

Density of real asymmetric random matrices consists of
two components: density of purely real eigenvalues ρr (x) and
the density of complex eigenvalues ρc(z). Since the number
of real eigenvalues of random matrices grows slower than
the matrix size [6], ρr (x) is subleading in the large N limit.
Nevertheless, for matrix sizes encountered in practice, real
eigenvalues significantly mark their presence in the spectrum
by condensing on the real axis and repelling other eigenvalues
from its vicinity; see Fig. 1.

Although there exist many analytic techniques for evalu-
ating ρc(z) in large N , including Feynman diagrams [14–16],
free probability [17–19], and cavity equations [20,21], there
is no systematic way of calculating the asymptotic density of
real eigenvalues if the asymptotic density of complex eigen-
values touches the real line, as it is in the Ginibre ensemble
(see Fig. 1). All known formulas for ρr (x) are obtained by
laboriously taking the N → ∞ limit in exact expressions for
finite size [6,22–25], but this procedure is limited to exactly
solvable ensembles.

This notorious difficulty can be explained with the two
arguments. First, a standard way of calculating the density
relies on embedding the support of eigenvalues into a higher-
dimensional space (complex for real spectra and quaternions
for complex spectra [26]), evaluate the Green’s function in
the extended space and study its behavior in the vicinity of
the spectrum. Density of real eigenvalues should then be em-
bedded into a complex space, but the complex-valued Green’s
function is then not defined in the vicinity of the real line, due
to the presence of complex eigenvalues nearby. If the support
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of the asymptotic density of complex eigenvalues is separated
from the real line, then these standard tools can be applied;
see, e.g., Ref. [27]. Second, the density of real eigenvalues is
a 1/

√
N correction to the asymptotic density [6], thus a priori

inaccessible by perturbative 1/N expansion using Feynman
diagrams.

In this work, assuming additionally orthogonal invariance
of the probability of matrix elements, we show that if the
density of complex eigenvalues extends to the real axis, i.e.,
real eigenvalues can switch into complex ones, depending on
the realization of randomness, the asymptotic densities of real
and complex eigenvalues are related via a remarkably simple
formula:

ρr (x) ∼
√

ρc(z = x + 0i). (1)

Real partial schur decomposition. Let x1 and x2 be real
eigenvalues of a N × N real matrix X . Then, it can be rep-
resented as X = O1X1OT

1 , where

X1 =

⎛
⎜⎝

x1 t12

0 x2
T1

0 Y1

⎞
⎟⎠ (2)

and the matrix Y1 is of size (N − 2) × (N − 2). The or-
thogonal matrix O1 is obtained by a composition of
two Householder reflections and the matrix T1 is of size
2 × (N − 2).

If X has a pair of complex conjugate eigenvalues z =
x + iy and z̄ = x − iy, then the upper-left block cannot be
brought to the upper-triangular form without leaving the field
of real numbers. Instead, the decomposition X = O2X2OT

2
uses slightly different form of X2:

X2 =

⎛
⎜⎝

x b
−c x

T2

0 Y2

⎞
⎟⎠. (3)

Eigenvalues of the upper-left block are z and z̄, thus y2 = bc.
There remains one additional degree of freedom, namely
η = b − c is not fixed. This is a counterpart of t12 from (2).
These decompositions are the real partial Schur
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FIG. 1. (a) Eigenvalues of 10 random real Ginibre matrices of
size N = 100. (b) Section of density of complex eigenvalues at
x = 0.5, corresponding to the histogram obtained by collecting large
number of eigenvalues falling into the red rectangle. Spike at y = 0 is
a consequence of accumulation of real eigenvalues, while the notch
in the complex density originates from the repulsion between real
and complex eigenvalues.

decompositions–the building blocks of the iterative
construction of the Schur decomposition algorithm.

If the matrix X is random, then its elements are given by
some probability measure P(X )dX . The flat measure over
the matrix elements transforms under the nonlinear change of
variables induced by the partial Schur decomposition. In case
of two real eigenvalues it reads [6]

dX = |(x1 − x2) det(x1 − Y1) det(x2 − Y1)|
× dx1dx2dt12dY1dT1dO1, (4)

where dO1 is the measure on the orthogonal matrix (see [6] for
details). In case of a pair of complex conjugate eigenvalues,
the flat measure transforms to [7]

dX = 2|ηy|√
η2 + 4y2

| det(z − Y )|2dxdydηdT2dO2dY2. (5)

After integrating all variables but x1 and x2, we obtain the
two-point density of real eigenvalues ρr (x1, x2), though not
normalized to unity. Integrating out all variables except x
and y in the second case, we obtain the one-point density of
complex eigenvalues ρc(z), normalized to the average number
of complex eigenvalues (see also Refs. [6,7]). Orthogonal
matrices O1 and O2 are not related to each other, but assuming
additionally orthogonal invariance of the probability measure,
i.e., P(X ) = P(OXOT ), integration over them yields only con-
stants.

The two-point density can be represented as a product
of one-point densities and a connected density, ρr (x1, x2) =
ρr (x1)ρr (x2) + ρr

conn(x1, x2). At this point we use the large
matrix size regime, at which we are working. Correlations
between eigenvalues decay on scales much larger than the typ-
ical separation of eigenvalues (∼1/

√
N), thus the connected

part of the two-point density is a subleading correction in
the matrix size. This fact was shown in many models using
diagrammatic methods and loop equations [28,29]. Fur-
thermore, Ref. [11] provides an explicit calculation of the

connected density of real eigenvalues for the real Ginibre
ensemble, showing its exponential decay. This result is ex-
pected to be universal in the bulk of the spectrum. Therefore,
the repulsion term |x1 − x2| in Eq. (4) does not play a role
in the large N limit, only the product of two determinants
and the initial probability density function are relevant. In
the large N limit the two-point density factorizes ρr (x1, x2) =
ρr (x1)ρr (x2).

The term 2|ηy|√
η2+4y2

in Eq. (5) originates from the repul-

sion between a pair of complex conjugate eigenvalues as
it decays to 0 when the eigenvalues come closer. It is re-
sponsible for a notch in the (one-point) density of complex
eigenvalues at the vicinity of the real line (see Fig. 1). The
size of the notch decreases with the matrix size, showing
that also in this case the eigenvalue repulsion is immaterial
in the large N limit. Again, only the squared modulus of the
characteristic polynomial and the probability density P(X ) are
relevant.

Furthermore, decomposition Eqs. (2) and (3) are almost
identical. Although in general P(X ) is transformed into
different forms under the real and complex partial Schur
decompositions, the resulting difference stems from the
upper-left 2 × 2 block, which is expected not to play a role
in the large N limit, given its finite size. The crucial difference
between the real and complex partial Schur decompositions
lies in their Jacobians, cf. Eqs. (4) and (5). Last, let us notice
that when setting x1 = x2 = x in Eq. (4) and z = z̄ = x in
Eq. (5), the characteristic polynomials are the same. Taking
the above considerations into account, we conclude that upon
taking the large N limit the continuation of the density of
complex eigenvalues to the real axis is proportional to the
square of the density of real eigenvalues, hence the relation
Eq. (1).

By comparing two Schur decomposition Eqs. (2) and (3),
we implicitly assumed that the same pair of eigenvalues can
occur as real and complex conjugate. In other words, dif-
ferent realizations of randomness in X may lead to a pair
of complex conjugate eigenvalues as well as a pair of real
eigenvalues, though such events not necessarily need to be
equiprobable. This scenario is not realized in ensembles with
topological constraints put on eigenvalues. For example, the
Perron-Frobenius eigenvalue is guaranteed to be real, thus the
branch Eq. (3) never applies there. Additionally, pseudosym-
metric matrices form another class of matrices violating this
assumption. Let A and B be real symmetric matrices with B
positive definite. While their product AB is not symmetric,
its spectrum is real, because the product is isospectral with
a symmetric matrix B1/2AB1/2.

Although the orthogonal invariance of the probability
density function (pdf) of matrix elements was assumed
throughout the derivation, it is not clear whether this assump-
tion is necessary. In the next section we provide an example
of an ensemble with noninvariant pdf, to which Eq. (1) still
applies upon taking into account topological eigenvalues. Last
but not least, we remark that taking large N limit is essential
in the derivation, thus we do not expect the main result to hold
for ensembles the density of which is obtained in a double
scaling limit as, e.g., in weak asymmetry regime of the elliptic
ensemble [23,30].
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(a) (b) (c)

FIG. 2. (a) Density of real eigenvalues of products of k spherical ensembles. The inset presents densities on double-logarithmic scales to
emphasize power-law tails. The solid lines are given by Eq. (7). (b) Density of real eigenvalues of a synaptic connectivity matrix introduced
by Rajan and Abbott [35] with parameters σE = 0.15, σI = 0.9 and fE = 0.8. The inset presents complex eigenvalues of a single realization,
bounded by the circle of radius r2 = (1 − fE )σ 2

I + fEσ 2
E . (c) Density of real eigenvalues of a matrix following the real Ginibre diffusion,

starting at the initial condition with half of its eigenvalues equal to 1, and half equal to −1. The solid line is given by Eq. (10) with the
constant c(1) = 0.6105. The inset shows all eigenvalues on the complex plane for a single realization. All numerical results are obtained by
diagonalization of 104 matrices of size N = 1000.

Applications. The relation Eq. (1) determines the den-
sity of real eigenvalues up to the normalization constant.
It cannot predict the expected number of real eigenvalues,
thus in all considered examples we assume normalization∫ ∞
−∞ ρr (x)dx = 1.

(0) All known results on the asymptotic density of real
eigenvalues, which were calculated by taking the large N
asymptotics of exact densities, can be recovered from the
knowledge of the asymptotic density of complex eigenvalues.
This includes the ratio of two Ginibre matrices [6], products of
real Ginibre matrices [22], truncated orthogonal matrices [24],
and their products [25,31]. Moreover, this relation applies also
to the spectra of random Lindblad operators [32], where it was
numerically observed for the first time and inspired this study.
Furthermore, it allows us to obtain a series of novel results for
models in which the density of real eigenvalues was not even
attempted before.

(1) Products of spherical ensembles. Let X1 and X2 be
two independent Ginibre matrices. The product Y = X1X −1

2
is distributed according to the spherical ensemble [33]. The
density of complex eigenvalues of a product of k such matrices
is heavy-tailed and given by [34]

ρc(z) = 1

πk

|z| 2
k −2

(1 + |z|2/k )2
. (6)

Therefore, the density of real eigenvalues reads

ρr (x) = 1

πk

|x| 1
k −1

1 + |x|2/k
. (7)

See Fig. 2 for the numerical verification.
(2) Rajan-Abbott model of synaptic connectivity matri-

ces [35]. Matrix elements of W are Gaussian random numbers
with mean μi and variance σi/

√
N , where i ∈ {I, E} and

I denotes inhibitory neurons, while E stands for excitatory
neurons. There are N fE excitatory neurons and N (1 − fE ) in-
hibitory ones. One also imposes the excitatory/inhibitory bal-
ance by demanding that fIμI + fEμE = 0 and

∑N
k=1 Wjk = 0.

Then, the spectrum is insensitive to the means μi and the
density of complex eigenvalues possesses rotational symme-
try on the complex plane. The radial cumulative distribution

F (r) = 2π
∫ r

0 ρc(s = |z|)sds can be calculated using Feyn-
man diagrams [36] or free probability [37]. It satisfies the
equation

1 =
∑

i

fiσ
2
i

r2 − σ 2
i [F (r) − 1]

, (8)

which upon solving provides the density via ρc(r) =
1

2πr
dF (r)

dr . The density of real eigenvalues, which has not been
studied in this model, can be immediately obtained from
Eq. (8). The normalization constant needs to be calculated
numerically.

(3) Ginibre diffusion [38]. Let matrix elements of X un-
dergo diffusion with the diffusion constant 1/N . Such a
process, although trivial in the space of elements, induces
nontrivial dynamics in the space of eigenvalues and eigenvec-
tors [39,40]. Such a process has been studied only for complex
matrices [38–42]. If as an initial condition a matrix with
the spectral density 1

2δ(z − 1) + 1
2δ(z + 1) is chosen, then

the spectrum is bounded by the spiric section t (1 + |z|2) =
|1 − z2|2 and the density reads [42]

ρc(z) = − 1

8πx2
+ 1

πt
+ t

8πx2
√

16x2 + t2
. (9)

The density is constant in the imaginary direction. In the
real-valued diffusion the spectral density of complex eigen-
values remains the same, but there is an accumulation of real
eigenvalues with the density

ρr (x) = c(t )

[
− 1

8πx2
+ 1

πt
+ t

8πx2
√

16x2 + t2

]1/2

, (10)

where c(t ) is a normalization constant calculated numerically.
(4) Adjacency matrices of random regular graphs [20]. Let

G be a directed graph with N nodes such that each node has
exactly k outgoing edges and exactly k incoming edges and
X be its adjacency matrix. G is sampled uniformly from the
space of all graphs fulfilling this condition. Unlike in previous
examples, here the source of randomness in X is the topology
of the graph, not the distribution of weights. The pdf of ma-
trix elements is neither orthogonally invariant nor continuous.
Spectra of adjacency matrices random graphs possess a rich
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FIG. 3. Density of real eigenvalues of adjacency matrices of
random k-regular oriented graph. Numerical results obtained by
diagonalization of 5000 matrices of size N = 1000 for k = 2 and
14 000 matrices of size N = 200 for k = 3. Solid lines are given
by Eq. (12), which does not take into account the Perron-Frobenius
eigenvalue λisol = k and zero eigenvalues for 2-regular graphs. These
eigenvalues were excluded from the histograms so as not to affect the
normalization. The inset shows an example of a 2-regular oriented
graph with 20 vertices.

structure. The density consists of an absolutely continuous
part and point masses. Zero eigenvalues are a consequence
of the lack of strong connectivity, while an outlier is the
Perron-Frobenius eigenvalue [21,43]. The spectral density of

complex eigenvalues of X reads [20]

ρc(z) = k − 1

π

(
k

k2 − |z|2
)2

, (11)

hence the density of real eigenvalues is given by

ρr (x) = 1

log (
√

k+1)2

k−1

k

k2 − x2
. (12)

Equation (1) does not apply to eigenvalues that are always
real irrespective of the realization of the randomness. One
therefore needs to discard zero modes and Perron-Frobenius
eigenvalues from consideration, which also changes the nor-
malization constant. Once these eigenvalues are dropped from
the sample, Eq. (1) describes the continuous part of the density
of real eigenvalues as numerically verified in Fig. 3.

Conclusions. We presented a remarkably simple relation
linking the asymptotic density of real eigenvalues of random
real asymmetric matrices with the density of their complex
eigenvalues. This relation applies to eigenvalues that, depend-
ing on the realization of randomness, can be real or occur in
complex conjugate pairs. While the orthogonal invariance of
pdf was assumed in the derivation, there are evidences for
relaxing this assumption. Proving the main result with full
mathematical rigor remains an open problem. It is tempting
to speculate whether it can be extended to the nonorthogonal
eigenvectors, where the partial Schur decomposition opened a
new direction of research [39,44,45]
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