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Thermodynamic constraints on the nonequilibrium response of one-dimensional diffusions
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We analyze the static response to perturbations of nonequilibrium steady states that can be modeled as
one-dimensional diffusions on the circle. We demonstrate that an arbitrary perturbation can be broken up into a
combination of three specific classes of perturbations that can be fruitfully addressed individually. For each
class, we derive a simple formula that quantitatively characterizes the response in terms of the strength of
nonequilibrium driving valid arbitrarily far from equilibrium.
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Introduction. Linear response theory developed as a tool
to rationalize the response of equilibrium systems to external
perturbations and internal fluctuations. Its central organiz-
ing prediction, the fluctuation-dissipation theorem (FDT) [1],
characterizes such response in terms of experimentally mea-
surable equilibrium correlation functions. This result has been
immensely useful, helping to form the statistical-mechanical
foundation of hydrodynamics, establishing Green-Kubo rela-
tions [2,3], as well as providing the theoretical scaffolding for
light scattering and microrheology experiments [4].

Motivated by these early successes, it is now customary to
probe a system’s behavior, no matter how far from equilib-
rium, in terms of responses to perturbations and correlation
functions. Examples can be found in studies of active matter
[5-8] as well as in analyses of biological function [9-14].
However, without the simplicity of the equilibrium FDT as
a guiding principle, disparate analysis methods have emerged.
One approach has been to re-establish the connection between
response and correlation functions around nonequilibrium
steady states [15]. While the correlation functions require
detailed knowledge of the system’s microscopic dynamics, re-
cent theoretical insights from stochastic thermodynamics have
provided them with crisp physical interpretations in terms of
stochastic entropy production and dynamical activity [16—18].
A complementary approach has been to characterize viola-
tions of the equilibrium-version of the FDT, either through the
introduction of effective temperatures [19-21] or for Brown-
ian particles by connecting the violation directly to the steady
state entropy production via the Harada-Sasa equality [22,23].

In the tradition of studying violations of the FDT, one of
us recently demonstrated that the magnitude of the response
to an external perturbation can be quantitatively constrained
by the degree of nonequilibrium driving [24]. These predic-
tions were limited to static (or zero-frequency) response in
nonequilibrium steady states that could be modeled as discrete
continuous-time Markov jump processes with a finite number
of states. In this article, we expand this framework to the
static response of nonequilibrium steady states described by
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one-dimensional diffusion processes with periodic boundary
conditions. This class of systems not only encompasses a
variety of experimental situations, such as a driven colloidal
particle in a viscous fluid [25-27], but is also analytically
tractable, which has made it a paradigmatic theoretical model
within stochastic thermodynamics [28].

Our main contribution is to unravel an arbitrary perturba-
tion of a diffusive steady state into a linear combination of
three classes of perturbations that can be individually ana-
lyzed. For each class we prove an equality or inequality that
quantifies how thermodynamics and nonequilibrium driving
constrain the response.

Setup. Our focus is a single periodic degree of freedom x
that evolves diffusively on a circle of length L. The dynamics
are completely characterized by the probability density p(x, t)
as a function of time ¢ and position x whose evolution is
governed by the generic Fokker-Planck equation [29],

do(x,1) = =3, JA)p(x, )] + 8, [B(x)d,p(x, )]
= Lp(x, 1), (1)

with periodic functions A(x) and B(x). Equation (1) has a
unique steady state distribution 7 (x), given as the periodic
solution of £ (x) = 0. In general, 7 (x) represents a nonequi-
librium steady state. However, when the functions A(x) and
B(x) satisfy the potential condition fOLA(z)/B(z)dz =0, the
dynamics are detailed balanced and the resulting steady state
describes an equilibrium situation 7%9(x) ox e¥™ with con-
servative potential ¥ (x) = f(; A(z)/B(z)dz [29]. Indeed, the
magnitude of the breaking of the potential condition can be
identified with the thermodynamic force F = fOL A(z)/B(z)dz
driving the system away from equilibrium, when the dynamics
are thermodynamically consistent [30,31].

Parametrizing steady-state response. Our aim is to char-
acterize how steady state averages of observables (Q) =
fOL Q(z)m (z)dz change in response to variations in A(x) and
B(x). Our main contribution here is to recognize that it
is useful to parametrize changes in the dynamics with a
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constant f and two periodic functions u(x) and U(x) via
A(x) = p()[=U'(x) + fland B(x) = p(x):

Lo = =3{u0)[=U'®) + flp} + dln@)d.pl. (2)

We were led to this parametrization by first discretizing the
diffusion process and then comparing the result to the decom-
position introduced previously in [24] for discrete Markov
jump processes. This mapping then suggested that deriva-
tives with respect to u, U, and f could have interesting
thermodynamic limits. While the analysis here is completely
self-contained given the definitions in (2), we do include for
reference the discretization mapping in [32].

More general perturbations in A(x) and B(x) can then be
built up as linear combinations of changes in wu, U, and f.
Indeed, if we perturb the dynamics by making infinitesimal
changes A(x) - A(x) + 3A(x) and B(x) — B(x) + §B(x),
then changes in our parameters can be conveniently expressed
in terms of A(x) = [8A(x)B(x) — 8B(x)A(x)]/B(x)? as [32]

Su(x) = 6B(x), €)]
X L
sU(x) = —/ A(z) dz + %/o A(z)dz+8U(0), (4)
0 Sf = ! LA d 5
f=3 /0 (2) dz. )

where §U(0) is an undetermined constant, which does not
affect the predictions.

While our parametrization is a mathematical convenience,
the notation here is meant to bring to mind the equation of
motion of a colloidal particle in a viscous fluid at (dimension-
less) temperature kg7 = 1 with spatially dependent mobility
1 (x) moving in an energy landscape U (x) driven by a constant
nonconservative mechanical force f. We will rely on this anal-
ogy for intuition, and often use this terminology. However,
we stress that this is only a mathematical equivalence and
our analysis is not restricted to a single overdamped particle,
but applies to any physical system that can be accurately
modeled as a one-dimensional diffusion. Indeed, any model
specified by A(x) and B(x) can be mapped to our parametriza-
tion. Moreover, our decomposition captures the most general
separation of the dynamics into a conservative contribution
U (x) and a nonconservative contribution f. This highlights
the fact that the only way to break the potential condition is
the inclusion of a force with a constant contribution f, with the
resulting thermodynamic force F = fOLA(Z)/B(z)dz = fL.
Thermodynamic equilibrium is then characterized by f =
% fOL A(z)/B(z)dz = 0, in which case the steady-state distri-
bution takes the Gibbs form 7%(x) oc e~U™ in terms of the
(dimensionless) energy landscape. From this point of view,
perturbations of A and B usually amount to affecting only U
or f [33]. We find here that by allowing for perturbations in p
in our theoretical analysis, we are able to unravel simple limits
on response, even if perturbations that end up only affecting
[ in experimental settings may not be common. Our main
predictions are then a series of equalities and inequalities for
the steady state averages of observables due to perturbations
in our three functions u, U, and f.

Our first prediction is an equality for the response of an
arbitrary observable Q to a coupled U and u perturbation,

8(0) 8(0)
= - (MK — (O)]. (6)
SU(y)  8lnuly)
For p perturbations, we derive an inequality on the ratio
of the averages of two non-negative observables Q| and O,

(01,02 2 0),

/’b §In({Q1)/{(Q2))
a 81In u(z)

Note that the restriction to non-negative observables does
not pose any serious limitation as we can always shift any
observable by its minimum to create a non-negative one.

Last, we find that constraints on f perturbations can most
naturally be expressed as responses to the thermodynamic
force F = fL,

dz| < tanh(|F|/4). (7

oF

By exploiting the freedom to choose the observables Q; and
(0>, we can arrive at bounds for a variety of quantities of inter-
est. For example, the choice Q;(z;x) = 6(z — x) and O, = 1,
gives bounds on the response of the steady-state density

LGN ®

b
/ 2070 4o < tanh(F1/4), 9)
a SInp(z)
dlnm(x)
‘T <1 (10)

We obtain our results by differentiating the known analytic
expression for the steady state distribution [29],

U+ e ,
T(x) = v e_fL/ V@@ g,
0

L
+/ eU(Z)thl“(z)dz], (11)

with A/ a normalization constant, and then reasoning about
the result. Derivations are presented in [32]. Here, we examine
and illustrate these formulas.

Equilibrium-like FDT. At thermodynamic equilibrium
(F = 0), the response to perturbations in the energy landscape
U (x) is well characterized by the FDT in terms of equilibrium
correlation functions. Imagine we perturb an equilibrium sys-
tem by slightly altering an externally controllable parameter
A that affects the energy as U, (x) = U(x) — AV (x), which
defines the coordinate conjugate to the perturbation V (x). The
equilibrium FDT then predicts that the response of an arbitrary
observable Q(x) can be expressed as [34]

3 (Q) = Coveg(Q. V), 12)

in terms of the fluctuations via the equilibrium covariance
Coveq(Q. V) = (QV )eq — (Qeq (V )eg-

Away from thermodynamic equilibrium (F # 0), the re-
sponse to U (x) perturbations is generally more challenging to
characterize. However, when we combine changes in U with
w1 as in (6), we find a response that is exactly equivalent to
the response of an equilibrium Gibbs distribution to changes
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FIG. 1. Example of perturbing the energy landscape: Pictured is
the “effective potential” as a function of position x before the per-
turbation Uy(x) — fx (gray dashed) and after lowering the energy in
the region x € [a, b] by Alj, (x) (black). This shifts the steady state
distribution 7 (x) from the orange dotted curve to the red long-dashed
curve.

in U alone. We can exploit this observation by considering
a perturbation that is equivalent to varying the energy and
mobility in concert as U, (x) = U(x) — AV (x) and w;(x) =
w(x)[1 — AV (x)]. In this case, the response is

o Q80
Rig) = /OV( )[w(z) SInM(Z)}dZ

A direct application of (6) then allows us to interpret the result
as a simple FDT-like expression,

3,(Q)

where significantly the response is given by the nonequilib-
rium covariance between the observable and the conjugate
coordinate, Cov(Q, V) = (QV) — (Q)(V). This result demon-
strates that for a class of perturbations—where U and p are
varied in unison—the FDT holds in its equilibrium form,
arbitrarily far from equilibrium. That an equilibriumlike FDT
held for certain time-dependent perturbations of diffusion pro-
cesses was previously observed by Graham [35]. Recently, we
have extended this observation to arbitrary Markov processes
[36]. The value in rederiving this static response formula
here is that it highlights its role as an important component
of a more general framework for analyzing nonequilibrium
response.

Energy perturbations. Changes in the energy function U
represent a customary perturbation applied to probe a sys-
tem’s steady state. While it can be challenging to interpret
expressions for the response in this case, we can combine
the predictions in (6) and (7) to find simple thermodynamic
constraints.

To apply our results, we have to focus on a perturbation
where we shift the energy uniformly on a fixed interval x €
[a, b] (Fig. 1): specifically, U, (x) = U(x) — Alj4 5 (x), where
14(z) is the indicator function taking the value 1 when z is
in the set A and 0 otherwise. Our question is then how ther-
modynamlcs constrains the nonequilibrium response RZ U=

_fg

13)

= Cov(Q, V), (14)

0)/8U(z)dz of a (non-negative) observable

Q to perturbations in U with fixed thermodynamic driving F.
Before addressing this question, however, let us first remind
ourselves what a naive application of the FDT would have
predicted, namely that the response would be given by the
covariance between the observable Q(x) and the conjugate
coordinate Ij, ;) (x) as RQ v = Cov(Q, ).

Now, let us proceed with perturbations of a nonequilibrium
steady state (F # 0). Observe that U perturbations can be
built from the sum

b
Ry - [0,

ou sU(2)
b
-/ [5<Q> L Q) }_ MO, s
« L8U@)  Slnu(z) 81n u(z)

The first term is our coupled wu-U perturbation (13) that sat-
isfies an equilibriumlike FDT (14) and is therefore equal to
the covariance between the observable QO and the conjugate
coordinate Ij, ), Cov(Q, I;4.51), which is exactly the same as
our naive prediction for the equilibrium response RQq The
remaining contribution can be constrained by the thermody-

namic force using (7) with the choices Q;(x) = Q(x) and
Ox(x) =1,
* §In(Q)
neq _ peq —
Re ~ Rgul ‘<Q> a SIHM(Z)dZ’
< (Q) tanh(|F1/4). (16)

The farther the system is from equilibrium, as measured by
the force F, the larger the possible nonequilibrium response.
Alternatively, since Rquﬂ is the naive prediction from the FDT,
we can interpret (16) as a quantitative bound on the violation
of the FDT in terms of the nonequilibrium driving.

To illustrate this prediction, we analyzed the response of
the steady-state density 7 (x) itself, corresponding to the ob-
servable Q(z;x) = 6(z — x). Denoting this response with a
slight abuse of notation as RX u - the operative form of (16) is

R — R | < 7(x) tanh(|F|/4). (17)

We choose perturbations of the energy landscape of the form
Ux)=Uy®(x — L/2) where ©®(x — L/2) is the Heaviside
step function and U, € {1, 2, 3} is a constant (Fig. 1). We fur-
ther fix the mobility p(x) = 1 and set the circumference of the
circle to L = 1. We numerically evaluated the response R} to
energy perturbations on the interval [x, b] as a function of F =
f for 100 combinations of x and b each sampled uniformly
on the unit interval [0,1]. We have chosen the observation
position x to be on the edge of the perturbation region in order
to enhance the sampling of highly responsive scenarios. The
results presented in Fig. 2 verify that for all sampled parameter
combinations the normalized deviation R} — Ry, |/7(x)
remains below the predicted bound tanh(|F| / 4). ’
Discussion. We have observed that any perturbation of
a one-dimensional diffusion can be broken up into a linear
combination of three types, which we term energy-mobility
perturbations, mobility perturbations, and force perturbations.
For each class, we have derived either an equality or inequality
characterizing the response in terms of the strength of the
nonequilibrium driving. One could have arrived at these pre-
dictions by discretizing the diffusion process and then using
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FIG. 2. Illustration of energy-perturbation thermodynamic
bound: Normalized deviation of nonequilibrium response
IRy — RYy|/m(x) at position x for energy perturbations on
the interval [a, b] from an energy landscape U (x) = Uy®(x — L/2)
given by the Heaviside step function multiplied by Uy = 1 (dark
blue), 2 (light blue), 3 (blue). Each color contains 100 randomly
sampled pairs (x = a) on the unit square. All curves fall below the
predicted bound tanh(|F|/4) (red line). Other parameters: L = 1
and u(x) = 1.

the bounds for discrete Markov dynamics reported previously
in [24]. For completeness, we carry out this program explicitly
in [32], but note here that it requires a careful analysis of the

limiting procedure. In light of this, our self-contained analysis
based on the Fokker-Planck equation offers a more direct
approach.

At the moment the analysis is limited in a handful of
important ways. Our current methodology only works for
one-dimensional systems, since it is based on examining the
analytic solution for the steady-state distribution, which is not
known for higher-dimensional systems. Moreover, discretiz-
ing higher-dimensional diffusions and then using the bounds
reported in [24] will not help either. We have checked that
those inequalities are not sufficiently strong to provide useful
limitations [32]. Even still, our results are suggestive that
there is some thermodynamic structure in the nonequilibrium
response of higher-dimensional diffusions, but it still remains
to be investigated.

We have also limited our discussion to the response of
state observables Q(x) that are functions only of the system’s
position. The response of current observables, such as the
velocity of the system, is an important extension of the current
approach. Earlier studies on the FEinstein relation connect-
ing the velocity response (mobility) and diffusion coefficient
for diffusive nonequilibrium steady states have also revealed
FDT-like inequalities [37-39]. Together these predictions sug-
gest that there are also quantitative bounds on the response of
generic current observables in terms of the thermodynamic
force.
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