
PHYSICAL REVIEW E 105, L012101 (2022)
Letter

Anomalous transport of a classical wave-particle entity in a tilted potential
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A classical wave-particle entity in the form of a millimetric walking droplet can emerge on the free surface of
a vertically vibrating liquid bath. Such wave-particle entities have been shown to exhibit hydrodynamic analogs
of quantum systems. Using an idealized theoretical model of this wave-particle entity in a tilted potential,
we explore its transport behavior. The integro-differential equation of motion governing the dynamics of the
wave-particle entity transforms to a Lorenz-like system of ordinary differential equations that drives the particle’s
velocity. Several anomalous transport regimes such as absolute negative mobility, differential negative mobility,
and lock-in regions corresponding to force-independent mobility are observed. These observations motivate ex-
periments in the hydrodynamic walking-droplet system for the experimental realizations of anomalous transport
phenomena.
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I. INTRODUCTION

When a biased force is applied to a particle having no
net drift, one expects the particle to drift in the direction of
the applied force. However, seemingly paradoxical behaviors
have been observed in nonequilibrium systems that may result
in anomalous response of the particle under applied bias. For
example, absolute negative mobility (ANM) may arise where
the particle responds with a net drift in a direction opposite
to the applied bias. A less pronounced related phenomenon is
differential negative mobility (DNM), where the particle drifts
in the same direction as the applied bias but the drift speed
of the particle decreases with increasing applied bias. ANM
has been observed experimentally and theoretically in both
quantum and classical systems [1]. Examples of quantum sys-
tems that exhibit ANM include quantum-well structures [2]
and semiconductor superlattices [3,4]. In classical systems,
ANM has been mainly observed and investigated in systems
driven by noise such as single [5–12] and interacting [13–17]
Brownian particles, while fewer works have studied ANM in
deterministic systems. Examples of deterministic systems that
exhibit ANM include vibrational motors [18], a particle with
space- [19] and speed-dependent damping [20], a particle in
a time-varying potential [21], a particle in a periodic double-
well potential [22], and a particle in a traveling wave system
[23]. Inspired by the emergence of ANM in deterministic
systems, in this Letter we theoretically and numerically in-
vestigate the anomalous transport behavior of a self-propelled
classical wave-particle entity in a tilted potential.

A liquid bath when vibrated vertically can support mil-
limetric droplets on its free surface that walk horizontally
while bouncing vertically [24–26]. The walking droplet, also
known as a walker, upon each bounce generates a damped
localized standing wave on the fluid surface. It then interacts
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with these self-generated waves on subsequent bounces to
propel itself horizontally. The droplet and its underlying wave
field coexist as a wave-particle entity; the droplet generates
the underlying wave field which in turn guides the motion of
the droplet. At large vibration amplitudes, the waves created
by a walker decay very slowly in time and the walker’s mo-
tion is influenced not only by the wave created on its most
recent bounce, but also by the waves generated in the distant
past, giving rise to memory in this hydrodynamic system. A
single walker or superwalker [26,27] in free space typically
travels in a straight line at a constant speed. However, it
has been observed both experimentally [28,29] and theoret-
ically [30–33] that in the high-memory regime, the steady
walking state becomes unstable and more complex droplet
trajectories with speed oscillations emerge. Moreover, in the
high-memory regime, walkers have been shown to mimic
several hydrodynamic analogs of quantum systems. Some of
these include orbital quantization in rotating frames [34–36]
and confining potentials [37–40], Zeeman splitting in rotating
frames [41,42], wavelike statistical behavior in both confined
geometries [43–47] and open systems [48], tunneling across
submerged barriers [49–51], and a macroscopic analog of
spin systems [52]. Walkers have also been predicted to show
anomalous two-droplet correlations [53,54]. Recently, efforts
have also been made to develop a hydrodynamic quantum
field theory for the walking-droplet system [55,56]. A de-
tailed review of hydrodynamic quantum analogs for walking
droplets can be found in a recent review article by Bush and
Oza [57].

In this Letter, we report anomalous transport behavior
arising in a walking-droplet-inspired theoretical model that
governs the dynamics of a one-dimensional (1D) wave-
particle entity with a sinusoidal wave form in a tilted potential.
We start by converting the integro-differential trajectory equa-
tion that governs the motion of the wave-particle entity into a
system of Lorenz-like ordinary differential equations (ODEs)
and perform a linear stability analysis to determine the
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FIG. 1. Schematic of the one-dimensional self-propelled wave-
particle entity. A particle of dimensionless mass κ is located at xd

and moving horizontally with velocity ẋd . The particle experiences a
propulsion force, −β ∂h/∂x|x=xd , from its self-generated wave field
h(x, t ) (blue filled area), an effective drag force −ẋd , and a constant
external force F . The underlying wave field h(x, t ) is a superposition
of the individual waves continuously generated by the particle along
its trajectory. These individual waves are of spatial form W (x) =
cos(x), and decay exponentially in time.

stability of steady walking states. We then explore the differ-
ent anomalous transport behaviors arising in both steady and
unsteady walking regimes of the parameter space.

II. THEORETICAL MODEL

As shown schematically in Fig. 1, consider a particle lo-
cated at position xd moving horizontally with velocity ẋd

guided by its self-generated wave field h(x, t ). The dimension-
less equation of motion governing the horizontal dynamics of
the particle is given by [58]

κ ẍd + ẋd = −β
∂h

∂x

∣∣∣
x=xd

+ F. (1)

The left hand side of Eq. (1) comprises an inertial term κ ẍd

and an effective drag term ẋd , where the overdot denotes
differentiation with respect to time t . The first term on the
right hand side captures the forcing on the droplet by the
underlying wave field h(x, t ). This force is proportional to
the gradient of the underlying wave field. The second term
is an external constant force F arising from a tilted potential
V (x) = −Fx. The shape of the wave field h(x, t ) is calculated
through integration of the individual wave forms W (x) that are
continuously generated by the particle along its trajectory and
decay exponentially in time, giving

h(x, t ) =
∫ t

−∞
W (x − xd (s)) e−(t−s) ds. (2)

Combining Eqs. (1) and (2), one obtains the integro-
differential equation

κ ẍd + ẋd = β

∫ t

−∞
f (xd (t ) − xd (s)) e−(t−s) ds + F, (3)

where f (x) = −W ′(x) is the negative gradient of the wave
form and the prime denotes differentiation with respect to the
argument x. The two parameters, κ > 0 and β > 0, follow

directly from Oza et al. [58] and may be usefully interpreted
as the ratio of inertia to drag and the ratio of wave forcing to
drag, respectively. This integro-differential trajectory equation
was derived by Oza et al. [58] to describe the horizontal
dynamics of a walking droplet by employing a Bessel function
of the first kind and zeroth order, W (x) = J0(x), as the wave
form for the individual waves generated by the droplet on
each bounce. The model was recently investigated by Valani
et al. [33] and Durey [32] by employing a simpler sinusoidal
wave form W (x) = cos(x) and it was shown by Valani et al.
[33] and Valani [59] that the integro-differential equation of
motion can be transformed to the following set of ODEs (see
Supplemental Material [60] for a derivation):

Ẋ = σ (Y − X + F ),

Ẏ = −XZ + rX − Y,

Ż = XY − bZ. (4)

These ODEs are the Lorenz equations with an added con-
stant term F in the first equation [61,62]. Here, X = ẋd is
the droplet’s velocity, Y = β

∫ t
−∞ sin(xd (t ) − xd (s)) e−(t−s) ds

is the wave-memory force, and Z = β − β
∫ t
−∞ cos(xd (t ) −

xd (s)) e−(t−s) ds is also related to the wave-memory forcing.
Thus, the underdamped dynamics of an inertial particle of
dimensionless mass κ driven by a wave-memory force with
coupling β can alternatively be interpreted as the overdamped
dynamics of a massless particle whose velocity ẋd = X is
driven by the Lorenz system with parameters σ = 1/κ , r = β,
and b = 1. For the simulation results presented in this Letter,
the system of ODEs in Eq. (4) is solved in MATLAB using the
in-built ODE solver ODE45.

III. STEADY SOLUTIONS AND LINEAR STABILITY
ANALYSIS

To obtain steady walking solutions of the wave-particle
entity, we start by finding fixed points of the Lorenz-like sys-
tem presented in Eq. (4). This gives the equilibrium solutions
X0 = u, Y0 = u − F and Z0 = u(u − F ), where the constant
velocity u satisfies the cubic equation [60]

u3 − Fu2 − (β − 1)u − F = 0. (5)

For F > 0 (F < 0) and 0 < β < 1, there is one real positive
(negative) solution to Eq. (5), while for β > 1 one can con-
clude the existence of one real positive (negative) solution and
either two or zero real negative (positive) solutions by invok-
ing Descartes’ rule of signs. To determine the stability of these
steady walking solutions, one can perform a linear stability
analysis by applying a small perturbation to the steady solu-
tions [63]. This results in the following characteristic equation
for the growth rate λ of small perturbations [60]:

κλ3 + (2κ + 1)λ2 + [κ (1 + u2) + 2 − β + u(u − F )]λ

+ 1 + 3u2 − β − 2uF = 0.

The linear stability diagram in the (κ, β ) parameter space for
a fixed F = 0.5 is shown in Fig. 2(a). At small β values, there
is one stable steady walking solution corresponding to the
wave-particle entity traveling in the direction of the applied
force F . Above a critical value of β (dashed red line) which
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FIG. 2. (a) Linear stability diagram of the wave-particle entity in the (κ, β ) parameter space at F = 0.5 showing the stable solutions.
Curves show parameter values when eigenvalues λ of the dynamical system cross the Re(λ) = 0 line, indicating a change in stability. Below
the red dashed line, only a single stable steady walking solution in the direction of F exists. The region above the red dashed line and below the
yellow dot-dashed curve consists of a pair of stable steady walking solutions: one in the direction of F and the other opposite to F . Above the
yellow dot-dashed curve and below the blue solid curve again a single stable steady walking solution in the direction of F is recovered. Above
the solid blue curve unsteady walking emerges. Chaotic dynamics in the unsteady regime of the (κ, β ) parameter space for a typical parameter
value of κ = 0.3 and β = 50 are shown in panels (b)–(d). (b) Space-time trajectory. (c) Corresponding velocity time series. (d) Underlying
strange attractor that drives the chaotic dynamics. The black curve in panel (e) shows the 1D return map of consecutive maxima [denoted by
black circles in panel (c)] of absolute velocity |X |, while the gray curve shows the same for the classic Lorenz system with F = 0.

is independent of κ , a stable-unstable pair of steady walking
solutions emerges corresponding to the wave-particle entity
walking steadily in the direction opposite to the applied force
F . This results in a total of three steady walking solutions:
a higher speed stable and a lower speed unstable solution in
the direction opposite to F , and a stable solution in the same
direction as F . Thus, in this region of multistability, we ob-
serve ANM with the wave-particle entity walking steadily in

ANM

DNM

Lock-in

FIG. 3. Anomalous transport behavior. The average velocity 〈X̄ 〉
of the particle against the applied constant force F is shown for
four sets of parameter values: (κ, β ) = (0.20, 30) (yellow curve),
(0.17,67) (purple curve), (0.25,100) (blue curve), and (0.30,140)
(green curve). The dashed horizontal line indicates 〈X̄ 〉 = 0. The
shaded region shows the standard deviation of X̄ over the 1000
simulated trajectories.

a direction opposite to the applied bias. At higher β (above the
yellow dot-dashed curve), the stable steady walking solution
in the direction opposite to F becomes unstable, followed by
the instability of the steady walking solution in the direction
of F (above the solid blue curve).

In the unsteady regime of the (κ, β ) parameter space at
large β, we observe either chaotic dynamics or periodic oscil-
lations in the particle’s velocity X . Typical chaotic dynamics
of the wave-particle entity driven by the underlying strange
attractor in the unsteady regime are depicted in Figs. 2(b)–
2(d). As shown in Fig. 2(b), the particle seems to exhibit
irregular diffusivelike behavior with a net drift in the direction
of the force F . We note that in the absence of the force F ,
the particle has been demonstrated to exhibit diffusivelike
behavior with no net drift [30–33]. The flip-flop process in
the time series of the particle’s velocity X in Fig. 2(c), the
double wing structure of the underlying strange attractor in the
(X,Y, Z ) phase space in Fig. 2(d), and the cusplike structure
in the 1D return map of the maxima in |X | in Fig. 2(e) show
similarities with the classic Lorenz system [61]. We note that a
double-cusp structure (black) is observed in the 1D return map
here, as opposed to a single cusp structure (gray) observed
for the classic Lorenz system. This single-cusp to double-cusp
transition is due to the asymmetry introduced by the constant
bias force F which breaks the degeneracy of the left and right
walking states.

IV. ANOMALOUS TRANSPORT IN THE UNSTEADY
REGIME

To investigate the particle’s mobility in the unsteady
regime, simulations were performed at fixed parameter values
with M = 1000 different random initial conditions. The initial
values of the dynamical variables X,Y , and Z were drawn ran-
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FIG. 4. Space-time trajectory of the particle during anomalous transport. Trajectory of the particle for ANM shown at (a) (κ, β, F ) =
(0.30, 140, 0.2), (b) (0.25,100,0.1), and (c) (0.17,67,0.22). The enlarged trajectories in panels (a) and (b) also show contours of the underlying
wave field h(x, t ). The arrows in panel (c) show bursts of periodic motion in the opposite direction to the applied force.

domly from a uniform probability distribution between −100
and 100. A time-averaged particle velocity for a given initial
condition was first calculated as X̄ j = ∑N

i=1 Xj (ti )/N , which
was then ensemble averaged over all the initial conditions
to give 〈X̄ 〉 = ∑M

j=1 X̄ j/M. This average velocity 〈X̄ 〉 as a
function of the applied force F is shown in Fig. 3 for four
different sets of (κ, β ) values showing the various transport
behaviors observed in the unsteady regime. For the parameter
set (κ, β ) = (0.20, 30) (yellow curve), we find that 〈X̄ 〉 in-
creases almost linearly in the direction of the applied force
as the magnitude of the applied force increases. This indi-
cates normal mobility behavior that one finds in equilibrium
systems. For the parameter sets (κ, β ) = (0.17, 67) (pur-
ple curve), (0.25,100) (blue curve), and (κ, β ) = (0.30, 140)
(green curve), we clearly see regions of ANM where 〈X̄ 〉 < 0.
We have observed two qualitatively different types of ANM
in the unsteady regime: (i) the particle is undergoing periodic
back-and-forth oscillations with a net drift in the direction
opposite to F [see Figs. 4(a) and 4(b)] and (ii) the particle’s
velocity is chaotic, resulting in an irregular diffusivelike tra-
jectory with a net drift in the direction opposite to F [see
Fig. 4(c)]. In the periodic ANM regime at parameter values
(κ, β, F ) = (0.30, 140, 0.2), the particle oscillates back and
forth between two consecutive peaks of the underlying wave
field along with a net drift in the direction opposite to F ,
while, at parameter values (κ, β, F ) = (0.25, 100, 0.1), the
particle is able to cross one peak during back-and-forth oscil-
lations and hence oscillates with twice the wavelength along
with a slower net drift opposite to F . In the chaotic ANM
at parameter values (κ, β, F ) = (0.17, 67, 0.22), although the
space-time trajectory exhibits irregular diffusivelike dynam-

ics, we observe intermittent bursts of periodic drifts in the
direction opposite to F which results in an average motion
opposite to the applied force. In addition to ANM, we also
see in Fig. 3 regions of DNM which correspond to a negative
slope in the curve when 〈X̄ 〉 > 0, indicating that an increase
in F leads to decrease in 〈X̄ 〉. We also encounter another
anomalous transport behavior that we term lock-in regions.
Here the average velocity stays almost constant for a range
of F values, indicating force-independent mobility. In these
lock-in regions, the particle is typically undergoing periodic
back-and-forth oscillations with a net drift either in the direc-
tion of F or opposite to F .

V. CONCLUSIONS

In this Letter, we have shown anomalous transport behav-
iors of a wave-memory driven particle under the presence
of a constant external force. In the steady walking regime,
ANM is observed in the multistable region where a stable
steady walking solution is realized in the direction opposite
to the applied force. In the unsteady walking regime, typi-
cally, the wave-particle entity undergoes either back-and-forth
oscillations or irregular diffusivelike motion, with a net drift
in the direction of the applied bias, but remarkably, regions
of anomalous transport behaviors were observed where the
wave-particle entity exhibits ANM, DNM, and lock-in re-
gions. We note that in our Letter the typical value of the
applied external force F is an order of magnitude smaller
than the typical values of the wave-propulsion force, and
hence the force F can be regarded as a perturbation to the
self-propelled wave-particle system. In statistical mechanics,
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the linear response of an equilibrium system disturbed by a
small external perturbation can be computed in terms of cor-
relation functions of the system at equilibrium. Thus, it may
be interesting to explore this regime further in the context of
linear response theory for chaotic systems [64–66]. The obser-
vations of anomalous transport reported in this Letter motivate
experimental investigations with walking and superwalking
droplets [26,27,67] in a tilted potential where these behaviors
may be realized in experiments. It seems conceivable that
the ANM behavior observed in the steady walking regime
would be realizable in experiments as it occupies a large
region of the (κ, β ) parameter space. However, probing of
the unsteady walking regime and the corresponding negative

mobility behavior in experiments might be challenging since
it occurs in the high-memory regime (corresponding to small
κ and large β [33,53,58]) which is sensitive to small changes
in the amplitude of bath vibrations [28]. Lastly, the present
Letter also motivates both theoretical and experimental inves-
tigations of other counterintuitive nonequilibrium phenomena,
such as ratcheting effects and stochastic resonance, that may
arise in the walking-droplet system.
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