
PHYSICAL REVIEW E 105, 065305 (2022)

Hamiltonian neural networks for solving equations of motion

Marios Mattheakis ,1,* David Sondak,1 Akshunna S. Dogra ,1,2,3 and Pavlos Protopapas1

1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

3EPSRC CDT in Mathematics of Random Systems: Analysis, Modelling and Algorithms, London SW7 2AZ, United Kingdom

(Received 2 February 2022; accepted 10 June 2022; published 30 June 2022)

There has been a wave of interest in applying machine learning to study dynamical systems. We present
a Hamiltonian neural network that solves the differential equations that govern dynamical systems. This is
an equation-driven machine learning method where the optimization process of the network depends solely
on the predicted functions without using any ground truth data. The model learns solutions that satisfy, up to an
arbitrarily small error, Hamilton’s equations and, therefore, conserve the Hamiltonian invariants. The choice of an
appropriate activation function drastically improves the predictability of the network. Moreover, an error analysis
is derived and states that the numerical errors depend on the overall network performance. The Hamiltonian
network is then employed to solve the equations for the nonlinear oscillator and the chaotic Hénon-Heiles
dynamical system. In both systems, a symplectic Euler integrator requires two orders more evaluation points
than the Hamiltonian network to achieve the same order of the numerical error in the predicted phase space
trajectories.

DOI: 10.1103/PhysRevE.105.065305

I. INTRODUCTION

Studying the evolution of dynamical systems has become
a significant trend in scientific research. The information age
has generated an exponential increase in the amount of digital
data being stored, and a nontrivial fraction of these data sets
describe the evolution of dynamical systems. These include
a wide range of systems, from large-scale astrophysics to
nanoscale quantum physics. Recently, machine learning mod-
els, and particularly neural networks (NNs), have been used
to explore such data sets and forecast the future behavior
of complex dynamical systems [1–3], spatiotemporal chaotic
behavior [4,5], classify time series [6,7], improve turbulence
models [8–11], discover differential equations (DEs) [12–15],
and find approximate solutions for those equations [16,17]. In
addition to the data-driven studies, equation-driven and data-
free unsupervised NNs have been used to solve ordinary and
partial DEs relevant to a variety of physical systems [18–22].
Equation-driven networks construct analytical functions that
satisfy a particular differential structure; subsequently, in the
training process of such models, we do not need any ground
truth data. Essentially, the loss function solely depends on the
solutions obtained by the NN while the training process is
fully data-free. This formulation results in an unsupervised
learning method. We emphasize that the proposed method
does not use any data generated by traditional numerical
solvers. Furthermore, the universal approximation theorem
of NNs [23] states that a NN can approximate any smooth
function with arbitrary accuracy. This makes NNs a suitable
approach to solving complicated problems governed by DEs.

*mariosmat@seas.harvard.edu

Physics-inspired and physics-informed NNs have been
widely used for solving DEs, providing some potential advan-
tages over using traditional integrators [24]. The effectiveness
of these machine-learning solvers have been demonstrated by
tackling challenging problems, where traditional numerical
methods become inefficient, like solving high-dimensional
partial differential equations [19,20], systems with moving
boundary [25], and inverse problems [17,26,27]. Solving DEs
with NNs is a rapidly growing field and techniques are
regularly proposed to advance and improve these machine-
learning solvers including Monte Carlo sampling [22], Fourier
neural operators [28], curriculum regularization and sequen-
tial learning [29]. This paper contributes to this effort by
introducing a Hamiltonian structure in the NN framework
that improves the solving capability of nonlinear Hamilto-
nian systems. The computations of a NN can be efficiently
implemented on parallel architectures, leading to significant
speedup [18]. Indeed, recent hardware innovations and, in
particular, the wide adoption of and access to GPUs, can
drastically accelerate the computation process with minimal
parallelization effort. This is a great advantage over traditional
integrators where time-parallel algorithms are challenging to
develop and implement. An overview of advantages and chal-
lenges in parallel in time integration methods are summarized
by Ref. [30], while Ref. [31] shows that modern methods have
been invented to parallelize the time integration and can be
used in deep networks for a layer-parallel training accelerating
the network optimization.

Data-driven Hamiltonian NNs have been proposed to im-
pose physically informed inductive biases in the learning
process. These networks are trained faster and generalize
better than regular fully connected NNs, while they learn
and respect exact conservative quantities such as the energy

2470-0045/2022/105(6)/065305(11) 065305-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6450-1128
https://orcid.org/0000-0002-1326-8976
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.065305&domain=pdf&date_stamp=2022-06-30
https://doi.org/10.1103/PhysRevE.105.065305

MATTHEAKIS, SONDAK, DOGRA, AND PROTOPAPAS PHYSICAL REVIEW E 105, 065305 (2022)

[32–35]. More specifically, Greydanus et al. [32] introduced
Hamiltonian networks with embedded an Hamiltonian for-
malism showing that a NN can be used to learn a Hamiltonian
that describes some given temporal trajectories. The time
derivatives and time dependence are eliminated by using
Hamilton’s equations and automatic differentiation resulting a
time-invariant energy. Once the Hamiltonian has been learned,
predicting the motion of different initial conditions within and
outside the training regime is possible by numerically solv-
ing Hamilton’s equations. Recently, this approach has been
successfully applied to learn Hamiltonians, forecast chaotic
behavior, and predict transition to chaos [34,36]. The frame-
work of the Hamiltonian NNs is quite general and can be
implemented in different machine-learning architectures like
reservoir computing [37] and graph networks as well as nu-
merical integrators, which can be embedded in the network
architecture to provide further improvement in the long-term
forecasting [35,38]. Moreover, generative Hamiltonian net-
works have been proposed to generate trajectories that respect
certain underlying laws like energy and momentum conserva-
tion and, subsequently, the generated data respect fundamental
physical principles [39]. Other extensions of standard Hamil-
tonian networks consider learning the dynamics of systems
in the presence of external driven forces and dissipation.
Adopting more general formulations like a port-Hamiltonian,
NNs are capable of predicting trajectories for damped and
driven time-varying dynamical systems as well as efficiently
uncovering underlying physical quantities hidden in data, like
a stationary Hamiltonian, dissipation parameters, and external
time-dependent forces [40]. These recent studies evidence that
the learning capability of NNs can be drastically improved
by embedding a Hamiltonian formulation in the framework;
nevertheless, the advantages of imposing Hamiltonian’s equa-
tions in NNs to solve DEs have not been studied yet. In this
paper, we introduce and investigate a Hamiltonian NN used to
solve the equations of motion of nonlinear dynamical systems.
This is an equation-driven approach instead of a data-driven
model because the form of the Hamiltonian and the initial
state of a system are assumed to be known, while ground truth
trajectories (data) are not required in the training process. In
other words, standard Hamiltonian networks learn the Hamil-
tonian function from given data, whereas, our proposed model
discovers trajectories that approximately satisfy Hamilton’s
equations. Subsequently, the two approaches are conceptually
different despite the fact that the Hamiltonian formulation is
embedded in both networks.

The current paper presents a data-free Hamiltonian NN
architecture used for solving DE systems. Despite the suc-
cess of physics-inspired NNs in solving DEs, Hamiltonian
NN solvers have not been explored yet. Subsequently, the
proposed Hamiltonian NN is an evolution of previously used
data-free NNs for approximating solutions to DEs that iden-
tically satisfy boundary and initial conditions. We improve
upon other NN DE solvers by speeding up the convergence
of the network to the solution while reaping the benefits of
the underlying physical properties. We propose a NN archi-
tecture inspired by and geared toward Hamiltonian systems
with time-independent Hamiltonians. Once optimized, the
NN satisfies Hamilton’s equations over the entire temporal
domain, directly implying the conservation of every invari-

ant under the respective Hamiltonian flow. As discussed in
Ref. [20], calculating second derivatives using automatic dif-
ferentiation is much more expensive than the calculation of
first derivatives. Here we avoid this bottleneck by solving
systems of first order DEs, Hamilton’s equations, instead of
second-order equations. NN solvers are conceptually different
than traditional numerical solvers. Symplectic integrators are
designed to conserve the energy over long-time ranges. Being
iterative solvers, these traditional methods accumulate errors
in time and also require values of the calculations at previous
time points to construct an approximate solution. Traditional
integrators conserve a Hamiltonian (energy) that is slightly
different than the true Hamiltonian. On the other hand, the
suggested Hamiltonian NN evaluates each time point indepen-
dently and simultaneously satisfies all the DEs of a system.
As a result, the Hamiltonian network conserves the original
Hamiltonian and leads to a significant reduction in any accu-
mulated numerical errors. Another distinct machine-learning
direction is the development of NN integrators [16,19]. These
hybrid models combine traditional integrators with NNs im-
proving the performance in solving DEs. Our NN solver does
not belong to this class of machine learning methods since
it does not require a structured mesh or embed any iteration
algorithm. On the other, the proposed model suggests an al-
ternative way to solve ordinary differential equations (ODEs)
with NNs without embedding conventional integrators. The
proposed Hamiltonian NNs consist of a more numerically
precise and robust method to solve dynamical equations than
standard semi-implicit schemes such as a symplectic Eu-
ler integrator. By sharing the network weights, choosing a
trigonometric activation function, penalizing violations in en-
ergy conservation law, and using an efficient parametric form
of solutions, we show a speedup in the convergence be-
havior during the optimizing process and, subsequently, an
improvement in the predictability of the network. Also, we
show that after training the proposed NN architecture can be
considered a true and globally symplectic unit and thereby a
time-invariant unit.

In the rest of this paper, we describe the Hamiltonian NN
architecture that is used to approximate Hamiltonian trajec-
tories. An error analysis is performed and shows that the
accuracy of the predicted solutions can be predefined be-
fore optimizing the network. Then, the proposed symplectic
NN is applied to solve the equations that describe the mo-
tion of a nonlinear oscillator and a two-dimensional chaotic
system. We point out situations where the Hamiltonian NN
solver outperforms the semi-implicit Euler numerical method,
a first-order sympletic integrator. However, a comparison with
higher order symplectic integrators is not presented in this
paper. The network performance is demonstrated by exploring
different architectures through different parametric solutions
and activation functions. Accurate long-time solutions are
obtained by using a regularization term to encourage the
discovery of solutions that conserve the total energy. The ex-
periments presented in this paper have been performed using
PYTORCH [41] and the codes are published on GitHub [42].
We conclude this study with a summary of the key ideas
introduced in this paper, the advantages of using a Hamil-
tonian NN to solving DEs, and with a discussion of future
plans.

065305-2

HAMILTONIAN NEURAL NETWORKS FOR SOLVING … PHYSICAL REVIEW E 105, 065305 (2022)

II. HAMILTONIAN NEURAL NETWORK

A. Network architecture

A cornerstone idea in classical mechanics is that a sys-
tem’s evolution can be investigated through the study of its
underlying symmetries and constraints. By the 20th century,
Lagrange, Hamilton, and others had shown that the dynam-
ics of a system is tethered to simple scalar functions, the
Lagrangian and Hamiltonian functions, with multiple con-
servation laws and their underlying symmetries prepackaged
with these functions. These scalar functions are then used
to derive the DEs that govern the motion of a system. In
particular, starting from the Lagrangian (the difference be-
tween kinetic and potential energy), invoking Hamilton’s
principle (the motion follows trajectories that minimize the
action integral), and employing techniques from the calculus
of variations, the motion of a system is described by the
Euler-Lagrange (E-L) equations. In the Hamiltonian formula-
tion, on the other hand, we start from the Hamiltonian which
is a transformation of the Lagrangian and is a conservative
quantity, namely, it does not change in time. This formulation
results in Hamilton’s equations, which are equivalent to the
E-L equation and therefore minimize the same action. Hamil-
ton’s equations are a coupled set of first-order DEs, whereas
Lagrangian formalism provides a single set of second-order
DEs. The Hamiltonian formulation possesses inherent advan-
tages over the Lagrangian as a coupled set of first-order DEs
is numerically more stable and more comfortable to solve than
a single set of second-order DEs. Nevertheless, the resulting
DEs are often analytically intractable, so engineers and sci-
entists resort to discretization techniques to obtain solutions.
However, the discretization procedure for solving the DEs
could lead to violations of the underlying conservation laws.
This issue can by cured by using NN solvers that able to
provide analytical solutions that respect the underlying princi-
ples. Indeed, any sort of semi-implicit method, like symplectic
Euler integrator, allows errors to accumulate in time. Chaotic
systems, in particular, are highly sensitive to such concerns
and are, therefore, an ideal ground for testing the performance
of the proposed Hamiltonian NN.

We consider a physical system of many bodies that are
moving in space. The motion of those objects can be described
in a d-dimensional configuration space which is defined by
the specification of the position as a function of the time t
of all objects in a system. More precisely, d is defined as
the product of the number of bodies in a system and the
number of spatial dimensions that those objects are allowed
to move. In the Lagrangian formulation we are working on
the configuration space, whereas the Hamiltonian formalism
is defined in the phase space, which consists of the position
and momentum of the objects. Subsequently, each dimension
in the configuration space associates with two degrees of
freedom in the phase space. In this paper, we are interested
in a Hamiltonian framework, therefore we consider a phase
space of D = 2d dimensions. Many classical systems, from
the simple pendulum to solar systems, can be described by the
separable Hamiltonian form H = T + V , where the potential
energy term V depends solely on the generalized space co-
ordinates q = (q1, . . . , qd), and the kinetic term T depends
solely on the generalized momenta p = (p1, . . . , pd). Since

this Hamiltonian form does not depend directly on time, sys-
tems described by it will conserve energy. Other dynamical
invariants may also be inbuilt, depending upon the specific
choice of the individual phase space variables and their corre-
sponding continuous symmetries [43]. As an example, when
the Hamiltonian does not directly depend on a coordinate
qi, the associated momentum pi is conserved and vice versa.
For such Hamiltonian functions, the dynamics are governed
by following coupled DEs, called Hamilton’s or canonical
equations,

q̇i = ∂H
∂ pi

, ṗi = −∂H
∂qi

, (1)

where dots denote time derivatives. An elegant way of ex-
pressing Hamilton’s equations is the symplectic notation. Let
z = (q1, . . . , qd , p1, . . . , pd)T ∈ IRD and J be the D × D
matrix

J =
(

0 1

−1 0

)
, (2)

where 0 and 1 represent the d × d zero and unity matrix,
respectively. Then, Hamilton’s equations can be written in the
compact vector form

ż = J · ∇zH(z), (3)

where ∇zH(z) = ∂H(z)/∂z. Numerical methods that eval-
uate Eq. (3) are called symplectic methods and have been
widely used to calculate the long-term evolution of chaotic
systems [44]. In this paper, we present an alternative method
based on NNs to solve Eq. (3). As we will discuss below, sym-
plectic integrators conserve a Hamiltonian which is slightly
perturbed from the original, whereas, symplectic NNs con-
serve the original Hamiltonian. This is a great advantage that
the proposed NN has over the symplectic integrators.

An alternative approach to numerically solving DEs is
offered by feed-forward NNs [18,20,24]. One key advantage
of such NNs over traditional numerical methods is that they
seek to learn actual functions that satisfy the DEs, rather
than creating an approximation to the real solution. Moreover,
the NN solutions are in a closed, differentiable, and analytic
form [18], and the calculations can be efficiently implemented
on parallel architectures leading to significant speedups [18].
The advantage in using our proposed NN architecture is that
it provides solutions that satisfy Hamilton’s equations si-
multaneously. Thus, the dynamical invariants of a particular
Hamiltonian are being respected to the required precision,
compared to the accumulation of errors that is inevitable in
iterative solvers. To compare, we present the semi-implicit
Euler method, which is the simplest, yet most widely used,
symplectic integrator for solving Hamilton’s equation. The
symplectic Euler method conserves energy up to a fluctuating
error because it conserves a slightly different Hamiltonian
than the original. For the separable Hamiltonian form H =
T (pi) + V (qi), the symplectic Euler scheme for solving the
system (1) reads

q(n+1)
i = q(n)

i + �t
∂T

(
p(n)

i

)
∂ p(n)

i

, (4)

p(n+1)
i = p(n)

i − �t
∂V

(
q(n+1)

i

)
∂q(n+1)

i

. (5)

065305-3

MATTHEAKIS, SONDAK, DOGRA, AND PROTOPAPAS PHYSICAL REVIEW E 105, 065305 (2022)

Here, �t is the time step between two sequential time points,
(n) denotes the time point that is evaluated, q(n)

i = qi(n�t),
and p(n)

i = pi(n�t). Due to the iterating nature of symplectic
Euler method, we read in Eqs. (4) and (5) that the solutions at
two sequential time points are needed to evaluate Hamilton’s
equations at any point, leading to numerical errors in the
calculation of energy, that is, proportional to �t . Similarly,
higher-order iterative symplectic integrators accumulate nu-
merical error, however, this paper presents a comparison only
between the solutions obtained by the proposed NN solver and
the first-order symplectic Euler integrator.

The objective of this study is to solve Hamilton’s equa-
tion (3) in a certain time interval by using NNs. Let us
consider the general form of parametric solutions,

ẑ(t) = z(0) + f (t)N(t), (6)

where ẑ is the solution vector discovered by the NN, z(0) is the
initial state vector, and N(t) ∈ IRD is a vector of D outputs of
a feed-forward fully connected NN. The parametric function
f (t) enforces the initial conditions in the parametric solutions,
i.e., ẑ(0) = z(0) when f (0) = 0. The network takes as a single
input the time point tn, where n denotes the nth sequential
point; without losing the generality, we consider the initial
time t0 = 0. We train the NN by minimizing, with respect
to the learning parameters of the network, the mean-squared
error (MSE) defined by Hamilton’s equation (3) as

L = 1

K

K∑
n=1

(˙̂z
(n) − J · ∇ẑ(n)H(ẑ(n)))2+λLreg, (7)

where ẑ(n) = ẑ(tn) and K is the total number of the input
time points used for the network optimization. The term Lreg

can be any regularization term where λ is the regularization
parameter. We have found that for long-time predictions it is
efficient to use a regularization term that penalizes violations
of the energy conservation law. Given the initial state and
corresponding energy, E0, of a system, a convenient regular-
ization term is

Lreg = 1

K

K∑
n=1

[(H(ẑ(n)) − E0)2]. (8)

For long-time prediction, the use of the regularization loss
(8) stabilizes the predicted trajectory at the correct energy
level and can result in faster network convergence. In the
present paper, results are presented for λ = 0 unless otherwise
specified.

The time derivatives are obtained by using automatic dif-
ferentiation that computationally costs one back-propagation
through the entire network [41]. We first generate equally
spaced time points tn in the training time interval [0, T].
Then, we randomly perturb these points in each epoch as:
tn → tn + ε where ε is a random term obtained by a normal
distribution [20]. This trick improves the network predictabil-
ity as it is effectively trained over a continuous time interval.
In addition, perturbing the training points in every epoch
employs the stochastic gradient descent (SGD) method, and
thus it assists the optimizer to escape from local minima in
the loss function. Perturbing the points in every epoch means
that we perturb the loss function and, subsequently, the local

FIG. 1. Hamiltonian architecture with parametrization ẑ(t) used
in the loss function L; H is the Hamiltonian and f (t) imposes the
initial conditions to ẑ(t); K is the number of the training points and
(n) indicates each time point.

minima are dynamically moving. In the context of SGD, each
epoch is considered as a minibatch while all the epochs consist
the whole batch for the training set. Minimizing the loss
function in Eq. (7) yields solutions that identically respect
the symplectic structure of Eq. (3) and, accordingly, every
dynamical invariant of the Hamiltonian flow is respected too.
We point out that the NN solutions are of high accuracy when
the NN is evaluated in the training interval [0, T] but the error
rapidly increases outside of the training interval. The proposed
Hamiltonian NN architecture is graphically demonstrated in
Fig. 1. It is worth noting that the proposed network of Fig. 1
has a different architecture than one used in standard Hamilto-
nian NNs [32]. Our network takes tn as input and returns ẑ(n),
whereas the input in the standard Hamiltonian networks is z(n)

and the output is ẑ(n+1).
A crucial role in the performance of the NN is played

by f (t). A standard choice to enforce initial conditions is
f (t) = t , which satisfies f (0) = 0 [18]. However, this is an
unbounded function that adds further difficulty when t be-
comes large. Specifically, for the NN outputs after enough
epochs, Eq. (6) states that N = (ẑ − z(0))/t . As t increases,
the N tends to zero, which negatively affects the network
predictability in large timescales. To remedy this inefficiency,
we propose the parametric function

f (t) = 1 − e−t , (9)

which is a smooth, bounded function, with f (0) = 0. Later,
we show that the specific choice of parametric function
drastically improves the predictability of the NN solver. Inter-
estingly enough, the fact that f (t) rapidly tends to 1 implies
that the proposed architecture consists of a symplectic NN.
In particular, for λ = 0 and at the limit L → 0, Eq. (7) yields
˙̂z = J · ∇ẑH(ẑ), and as t → ∞, we have ẑ = z(0) + N. Con-
sidering the aforementioned two limits and performing the
linear transformation N → N − z(0), we obtain

Ṅ = J · ∇NH(N), (10)

which indicates that the proposed architecture comprises a
symplectic NN that states that the function H(N) is time
invariant.

A substantial advance that our method suggests is the
energy regularization of Eq. (8). Because of the absence of
iteration learning, the NN solver does not build the solutions
using predictions from previous steps. As a result, it tends
to forget the initial state of the system and thus, in long-

065305-4

HAMILTONIAN NEURAL NETWORKS FOR SOLVING … PHYSICAL REVIEW E 105, 065305 (2022)

time solutions, energy leaking might be observed resulting
in error accumulation. This issue becomes crucial in long-
time solutions reducing the ability of solving nonlinear and
especially chaotic systems of ODEs. The regularization loss
of Eq. (8) stabilizes the predicted trajectories at the correct
energy yielding a robust solver. Another important innovation
of this paper is the choice of the activation function. It has
been shown that NN with trigonometric activation functions
can learn periodic behavior from data outperforming networks
that use common activations like Relu and Sigmoid [45]. We
adopt this approach and choose the trigonometric sin(·) as the
activation function. Empirical results presented later through
numerical experiments indicate that sin(·) activation outper-
forms sigmoid in solving ODEs for Hamiltonian systems.

B. Error analysis

We seek to provide a rough bound on the error in the
solution based on the maximum value of the loss function.
To begin, note that Eq. (7) can be written as

L = 1

K

K∑
n=1

(
�2

n + λ�2
reg,n

)
, (11)

where

�n = ˙̂z
(n) − J · ∇ẑ(n)H(ẑ(n)), (12)

�reg,n = H(ẑ(n)) − E0, (13)

and �n, �reg,n ∈ RK are vectors containing the respective loss
components at some arbitrary time point tn. Since L is the loss
function for the NN, averaged over time, �2

n can be considered
the instantaneous loss at the nth time point when λ = 0. Let
δz = z − ẑ be the error between the true solution and the NN
solution. Expanding the Hamiltonian H(z) = H(ẑ + δz) in a
Taylor series about ẑ and keeping up to quadratic terms yields

H(z) ≈ H(ẑ) + (∇zH(z))ẑδz + 1
2 (DzH(z))ẑδz2, (14)

where Dz is the Hessian matrix. Taking the gradient of
Eq. (14) with respect to z and rearranging terms gives

(∇zH(z))ẑ ≈ ∇zH(z) − (DzH(z))ẑδz. (15)

We note that for Hamiltonians with quadratic dependence on
z, the quadratic expansion (14) is exact because higher order
terms vanish. In addition, the second order in δz is the smallest
order still large enough to not be canceled when we move to
substitute Eq. (15) into Eq. (12). Nevertheless, the derivation
can be extended to include higher order terms in a straight-
forward manner. In what follows, we drop the superscript
(n) for clarity of presentation. Substituting the Taylor series
expansion (15) into (12) and invoking (3) results in

� ≈ J · [(DzH(z))ẑδz] − δ̇z. (16)

Inspecting the vector DE (16), we observe that its components
comprise a closed differential system for the error δzi in each
predicted trajectory ẑi. Solving this differential system with
initial condition δz(0) = 0, as dictated by the parametrization
(6), we can compute how the errors propagate in time. How-
ever, this requires knowledge of the loss components of �(t)
and thus, such an analysis can be performed only after we have
trained the network.

On the other hand, we can derive a bound on the size of
δz without having exact knowledge of �(t) by constructing
a worst case scenario. We want to establish a relationship
between � and δz, such that it determines when to stop the
network training to get solutions with better than a certain
accuracy. Let �2

max = max
t

(�2+λ�2
reg) represent the largest in-

stantaneous loss that the NN will have after being trained. In
the following analysis, we denote the 2− norm by ‖ · ‖. We
have

�2
max � ‖�‖2 + λ‖�reg‖2 � ‖�‖2

= ‖δ̇z − J · (DzH(z))ẑδz‖2

� |‖δ̇z‖ − ‖(J · DzH(z))ẑδz‖|2
= ‖δ̇z‖2 − 2‖δ̇z‖‖(J · DzH(z))ẑδz‖

+‖(J · DzH(z))ẑδz‖2

� ‖δ̇z‖2 − 2‖δ̇z‖‖(J · DzH(z))ẑδz‖ + (σmin‖δz‖)2,

(17)

where σmin is the minimum singular value of (DzH(z))ẑ. The
last line in the above expression (17) can be obtained by
considering the quantity ‖Ax‖ and using the singular value de-
composition on A to show that ‖Ax‖ � σmin‖x‖. Rearranging
terms leads to

σ 2
min‖δz‖2 � �2

max − ‖δ̇z‖2 + 2‖δ̇z‖‖(J · DzH(z))ẑδz‖
� �2

max − ‖δ̇z‖2 + 2‖δ̇z‖‖(J · DzH(z))ẑ‖‖δz‖
⇒ σ 2

min‖δz‖2 − 2‖δ̇z‖‖(J · DzH(z))ẑ‖
×‖δz‖ � �2

max − ‖δ̇z‖2. (18)

Solving the quadratic inequality (18) for ‖δz‖ yields

‖δz‖ � ‖δ̇z‖‖(J · DzH(z))ẑ‖
σ 2

min

+ 1

σ 2
min

[
σ 2

min�
2
max − ‖δ̇z‖2

× (
σ 2

min − ‖(J · DzH(z))ẑ‖2
)]1/2

. (19)

Now consider a single component of the error, δzi. The largest
value δzi can take occurs when δzi �= 0 and δz j = 0 for j �= i.
That is, for a fixed error, all of the error is concentrated
in a single component. In this case, ‖δz‖2 = δz2

i . If δz2
i is

maximized at a value tmax, then ˙(δz2
i) = 0 at tmax. Therefore,

δzi ˙δzi = 0 ⇒ ˙δzi = 0. Using this in (19) provides

‖δzi‖ � �max

σmin
. (20)

We point out that at the boundary t = 0, the error and its
derivatives are exactly zero since the initial conditions are
identically satisfied through the parametrization of Eq. (6).
Furthermore, the assumption that all the error is concentrated
at a single component zi implies that δz j and ˙δz j are zero
functions for j �= i. This strong assumption simplifies Eq. (19)
yielding the upper error bound of Eq. (20).

If a NN is trained such that the loss function has a
maximum value of �max, then the maximum error that any
component of the solution can take is bounded by (20). In
other words, we can choose in advance an accuracy for the
solutions and use the relationship (20) to calculate the �max,

065305-5

MATTHEAKIS, SONDAK, DOGRA, AND PROTOPAPAS PHYSICAL REVIEW E 105, 065305 (2022)

which, therefore, will determine when we have to stop train-
ing the network ensuring the desirable accuracy. The σmin

can be calculated due to the training process since, in the
most general case, it is a function of the solutions. Moreover,
the expressions (16) and (20) state that |δz| depends on the
general network performance and not only on the number of
time points used in the training process, which is the case
of numerical integrators. That happens because the number
of training points is not the only parameter that determines
the value of the loss function. For example, fixing the number
of the training points while increasing the number of hidden
layers or neurons yields better performance that corresponds
to a smaller �max. In summary, once the Hamiltonian NN is
optimized, Eq. (16) can be used to calculate the error propa-
gation. On the other hand, we can decide the accuracy of the
solutions before the optimization by using Eq. (20) to define
the �max that determines when to stop training the network.

III. EXPERIMENTS

A. Nonlinear oscillator

As a concrete example, we consider the one dimensional
nonlinear (anharmonic) oscillator with Hamiltonian

H = p2

2
+ x2

2
+ x4

4
, (21)

where the natural frequency and the mass of the oscillator are
considered to be unity. The Hamiltonian (21) corresponds to
the total energy E of the system, and the associated equa-
tions of motion read [Eqs. (1)]

ẋ = p, ṗ = −(x + x3). (22)

In what follows, we use the symplectic NN architecture to
solve the above nonlinear Hamiltonian system and compare
the NN solutions with those obtained by symplectic Euler
integrator. It results that the symplectic Euler method requires
two orders more evaluation time points than the NN to reach
the same numerical error. We also explore the efficiency of the
network for different activation and parametric functions.

The phase space of the oscillator consists of two de-
grees of freedom with z = (x, p)T . Accordingly, we utilize
a feed-forward NN with two outputs N = (N1, N2)T used to
parametrize the approximate solutions ẑ = (x̂, p̂)T according
to Eq. (6). The loss function is defined by Eqs. (22) and
according to Eq. (7) as

L = 1

K

K∑
n=1

[(˙̂x(n) − p̂(n))2 + (˙̂p(n) + x̂(n) + (x̂(n))3)2]. (23)

We initialize a grid with K = 200 time points equally spaced
in the time interval t = [0, 4π]. At the beginning of each
epoch, we perturb all the time points by using a random
term obtained by a normal distribution with zero mean and
a standard deviation of 0.06π . The initial state is chosen
to be (x0, p0) = (1.3, 1.0), corresponding to the total ini-
tial energy E0 = 2.06; in this energy, the motion deviates
from the behavior of the simple harmonic oscillator. The NN
consists of two hidden layers with 50 neurons per hidden
layer, and is being trained for 5 × 104 epochs by using Adam
optimizer [46] with a learning rate of 8 × 10−3. We perform

FIG. 2. Hamiltonian NN solves the equations of the nonlinear
oscillator system. Color lines represent the loss function in log-scale
during the training for different combinations of activation and para-
metric functions f shown in legend.

four independent numerical experiments that correspond to
different NN designs, namely, for the combinations of sigmoid
σ (·) and trigonometric sin(·) activation functions, and for the
parametric functions f (t) = t and f (t) = 1 − e−t . Figure 2
demonstrates in logarithmic scale the loss function (23) during
the training; each color represents one of the the four distin-
guished cases of architectures according to the legend. We
highlight that the loss function of our proposed design (blue
line) converges faster than the other models.

The performance of the Hamiltonian NN after its training is
represented in Fig. 3 by the blue curve. In addition, we use the
DEs solver ODEINT of the SCIPY python package [47] to solve
system (22) and consider the obtained numerical solutions
as the ground truth. We note that the solvers provided by
scipy have exemplary error control and adaptivity leading to
excellent solution trajectories. For comparison purposes, we
also utilize the symplectic Euler method described in Eqs. (4)
and (5) to solve the DEs (22), and compare the solutions with
those obtained by our proposed symplectic NN. We point
out that the ground truth data and the solutions obtained by
symplectic Euler method are exclusively used to assess the
performance of the NN predictions and never used for the
NN optimization. Essentially, the Hamiltonian NN does not
use any data generated by traditional numerical solvers. In
Fig. 3, we present results obtained by the solver (green lines),
by the NN (blue line), and by the symplectic Euler integra-
tor (black and red). After the network optimization, we get
�max = 3.3 · 10−3. The smallest singular value of the Hessian
of Hamiltonian (21) is σmin = 1. Subsequently, Eq. (20) yields
for both δx and δp the upper bound error 3.3 × 10−3. Inter-
estingly enough, the symplectic Euler method needs 100 × K
time points to approach this maximum error. In the case of
Euler’s method, we present in Fig. 3 two numerical solutions:
one with the same time points K used in the NN training
(black) and a second with 100 times more points (red). The
left graph in Fig. 3 demonstrates the phase space for the
numerical errors where we observe that the errors in the NN’s
solutions are in the same order with the error obtained by
the symplectic Euler when 100 times more time points are
used. In the right panel of Fig. 3, we present δx(t) and δp(t)
and the the total energy as a function of time calculated by
using the numerical solutions in the Hamiltonian (21). An
important result of this exploration is that, in contrast to the
Euler integrator, the NN’s solutions conserve the total energy

065305-6

HAMILTONIAN NEURAL NETWORKS FOR SOLVING … PHYSICAL REVIEW E 105, 065305 (2022)

FIG. 3. Comparing the ground truth (green) with the approximated solutions obtained by NN (blue) and by symplectic Euler integrator.
The NN is trained over K = 200 time points while the integrator is evaluated at K (black) and 100 × K (red) points. Left: The phase space of
the numerical error. Right: The error evolution in position and momenta, and the total energy in time.

locally. This is a consequence of the fact that the solutions
obtained by the symplectic NN conserve the correct Hamil-
tonian rather than a perturbed one, which is the case with
the symplectic integrators. Therefore, in the context of the
energy conservation task, the Hamiltonian NN outperforms
the symplectic Euler integrator.

We validate the predictability of the Hamiltonian NN for
long-term prediction by solving DEs in a longer time period.
In particular, the system of Eqs. (22) is solved for the ex-
tended time interval [0, 20π] using the same initial conditions
from the previous simulations, namely (x0, p0) = (1.3, 1.0).
Although the previously used architecture provides solutions
of high accuracy, we found that by using 80 neurons per
hidden layer yields faster convergence in the NN optimization.
Moreover, since the time interval is expanded, the number
of training points is increased accordingly to K = 500 time
points. For the long-time prediction in this case, we use the
regularization loss (7) with λ = 1, which penalizes violations
in the energy conservation. The NN predictions are compared

to solutions obtained by the symplectic Euler method using
5 × 104 points. This represents 100 times more points than
those used for the network optimization. The results of the
long-time solutions are presented in Fig. 4. The loss func-
tion during the training is shown by the left upper image in
Fig. 4. The lower panel represents the ground truth energy
(green solid line), the energy obtained by the Hamiltonian
NN (dashed blue), and the energy that the symplectic Euler
method (red dashed-dotted) computes. We observe that the
NN conserves the energy slightly better than the numerical
integrator. The right panel of Fig. 4 is the phase-space error,
similar to Fig. 3, where we observe that the error obtained
by the symplectic Euler (red dashed-dotted) constantly in-
creases in time much faster than the error that we obtain
from the NN solutions. Interestingly enough, we observe that
although the energy is conserved comparably well by the two
approaches, the Hamiltonian NN outperforms the symplectic
Euler method in terms of the accuracy of the predicted so-
lutions. That happens because a NN solver simultaneously

FIG. 4. Long-term prediction. The upper left image demonstrates the loss function during the training of a Hamiltonian network. The lower
left graph shows the ground truth energy along with the predictions obtained by NN and by symplectic Euler method. The right panel presents
the phase space of the numerical error for the predicted solutions.

065305-7

MATTHEAKIS, SONDAK, DOGRA, AND PROTOPAPAS PHYSICAL REVIEW E 105, 065305 (2022)

FIG. 5. NN solves the equations of motion for the HH system.
Loss function in log scale during the training for a different combi-
nations of activation and parametric functions f shown by the legend.

satisfies all the equations of DE system and conserves the
original Hamiltonian, whereas, integrators conserve a per-
turbed Hamiltonian accumulating errors in time.

B. Chaotic system

We demonstrate further the efficiency of the proposed
symplectic NN by solving the equations for a chaotic two-
dimensional dynamical system. In particular, we solve the
canonical equations for the Hénon-Heiles (HH) system [48]
that describes the nonlinear motion of a star around a galactic
center with the motion restricted to a plane. The HH sys-
tem has four degrees of freedom in the phase space where
z = (q, p)T = (x, y, px, py)T . The Hamiltonian and the total
energy of this system is

H = 1

2

(
p2

x + p2
y

) + 1

2
(x2 + y2) +

(
x2y − y3

3

)
. (24)

The Hamilton’s equations results in the nonlinear DE system:

ẋ = px, ẏ = py, (25)

ṗx = −(x + 2xy), ṗy = −(y + x2 − y2). (26)

For the HH system, we are seeking approximate solutions
ẑ ∈ IR4. Accordingly, we employ a fully connected feed-
forward NN with four outputs N ∈ IR4 used to parametrize
ẑ according to the general formula (6). The initial condi-
tions for the numerical experiment are (x0, y0, px,0, py,0) =
(0.3,−0.3, 0.3, 0.15), corresponding to the energy E0 =
0.13. The maximal Lyapunov exponent for this set of initial
conditions is ν = 0.069, and since ν is positive, the motion
is chaotic [49]. The network consists of two hidden layers
with 50 neurons per hidden layer. An equally spaced grid
of K = 100 is initialized in the time interval t = [0, 6π] that
corresponds to 1.3 Lyapunov times. These points are used as
the training set and are perturbed in the beginning of every
epoch by using a random term obtained by a normal distribu-
tion with zero mean and with a standard deviation 0.18π . The
loss function is defined by Eqs. (25) and (26), and according
to Eq. (7), as

L = 1

K

K∑
n=0

[(
˙̂x(n) − p̂(n)

x

)2 + (
˙̂y(n) − p̂(n)

y

)2

+ (
˙̂p(n)

x + x̂(n) + 2x̂(n)ŷ(n)
)2

+ (
˙̂p(n)

y + ŷ(n) + (x̂(n))2 − (ŷ(n))2)2]
. (27)

We examine four different network architectures similar to
the nonlinear oscillator system, namely for different activa-
tion and parametric functions. The networks are trained for
3 × 104 epochs by using Adam optimizer with learning rate
8 × 10−3. After training for long enough to ensure conver-
gence in the loss function, we find this number of epochs is
sufficient to optimize the network. In Fig. 5, we show the loss
function (27) in the training where each color corresponds to
a different architectures according to the legend in the fig-
ure. Again, the choice of sin(·) activation and f (t) = 1 − e−t

yields the best network performance. In Fig. 6, we compare
the approximated trajectories and the energy obtained by the
symplectic NN (blue lines), and by a symplectic Euler integra-
tor which is evaluated in K and in 10 × K time points (shown

FIG. 6. Left: The orbit for the HH system in the x−y plane obtained by a NN (blue) that is trained in K = 100 time points and by symplectic
Euler integrator evaluated in K (green) and 10 × K (orange) points. Red curves are considered as the ground truth and obtained by a numerical
solver. Right: Energy of the HH system with time. The Hamiltonian NN conserves energy locally while the symplectic Euler method does not
maintain constant energy levels even at the highest resolution.

065305-8

HAMILTONIAN NEURAL NETWORKS FOR SOLVING … PHYSICAL REVIEW E 105, 065305 (2022)

FIG. 7. Prediction on 2.6 Lyapunov times for the HH system. The left upper graph indicates the training loss of a Hamiltonian network.
The left lower plot is the total energy obtained by Hamiltonian NN and by symplectic Euler evaluated in 10× more than the training points.
The right panels represent the predicted position states x(t), y(t) along with the associate numerical errors δx(t) and δy(t).

by black and red lines, respectively). Solutions obtained by a
solver are considered as the ground truth (green curves). The
left panel in Fig. 6 shows the orbit in the x − y plane where the
Hamiltonian NN solution is indistinguishable from the ground
truth. The right panel represents the total energy in time where
the NN solutions conserve the energy better than the solutions
obtained by the symplectic Euler method. The symplectic
Euler must use an order of magnitude higher resolution than
NN to capture the correct orbit portrait, however, the energy
is still not conserved locally.

We extend the integration time for the HH system to
[0, 12π], which corresponds to 2.6 Lyapunov times. For the
long-time prediction, we employ the regularization term Lreg

of Eq. (7) with λ = 0.5 The network architecture consists of
two hidden layers with 80 neurons per layer. The network
optimization uses 500 time points. For the training of this
model, we found that using sequential learning [29] is more
efficient. First, we train the model for a short integration time
range of [0, 6π] and save the network parameters; the network
is trained for 2 × 104 epochs with a learning rate of 8 × 10−3.
Then, we load the previously saved parameters and train the
model in a larger domain of [0, 12π] for 5 × 104 epochs
and with learning rate of 5 × 10−3. This transfer learning
application enhances the learning and, therefore, the network
converges faster to the solutions than starting the training from
random initialized parameters. The results are demonstrated
by Fig. 7 where the left upper graph indicates the loss function
during the training of the Hamiltonian network. For compari-
son, we present the NN results in blue along with the solutions
obtained by a symplectic Euler evaluated with 10× more
points than the training points. The lower plot in left panel
shows the energy where we observe that both the NN (blue)
and the symplectic Euler (red) conserve the correct (green)
energy with an error of about the same order. The right panel
of Fig. 7 represents the predictions of the position state x(t)
and y(t) along with the associated numerical error denoted

by δx and δy, respectively. As we observed in the nonlinear
oscillator system, the solutions obtained by the NN presents a
lower numerical error than the symplectic integrator, although
both methods conserve the energy comparably well.

IV. CONCLUSION

In recent years, machine learning has made inroads in
traditional science and engineering fields. NNs have attracted
scientists’ interest due to their outstanding capabilities in
regression, classification, and prediction tasks. Since these
methods are relatively new to physics, there are many physical
concepts that have not been embedded yet in the structure
of NNs. In this paper, we proposed a physics-inspired un-
supervised NN for solving DEs that describe the temporal
motion of dynamical systems. The Hamiltonian formulation is
embedded in the NN through the loss function and, therefore,
the predicted solutions conserve energy. The loss function is
solely constructed by the network predictions and does not
use any ground truth data. The proposed method does not use
any data generated by traditional numerical solvers. Hence,
the proposed Hamiltonian network provides a data-free unsu-
pervised learning method. Although the Hamiltonian network
presented in the current paper is an unsupervised model, the
generalizations to the proposed network could incorporate
data in a semisupervised fashion. Nevertheless, in this paper
we focused on the exploration of the baseline unsupervised
model and leave the semisupervised case for future work.

A smooth and bounded parametric form of solutions was
introduced in this paper that makes the proposed architecture
a symplectic network and, subsequently, a time-invariant unit.
By appropriately choosing the activation function, a better
domain knowledge is provided that drastically improves the
network performance. Moreover, the proposed Hamiltonian
architecture allows the network outputs to share their weights.
Sharing the learning parameters helps the NN to discover

065305-9

MATTHEAKIS, SONDAK, DOGRA, AND PROTOPAPAS PHYSICAL REVIEW E 105, 065305 (2022)

underlying codependencies and subsequently improves the
network predictability in learning solutions that satisfy non-
linear systems of DEs. The Hamiltonian structure of the
proposed NN allows the use of a regularization term that pe-
nalizes violation in the energy conservation law. This penalty
drastically improves the network performance especially for
long-time solutions. The experiments presented in this paper
indicate that to get accurate solutions for larger integration
times, more hidden neurons and time points are required,
increasing the network complexity and the computational
cost. This cost can be potentially reduced by parallelizing the
calculations since each time point is treated independently,
however, such an implementation is not presented in this
paper. In the limit of very long integration times, we expect
to need very large network complexity and batches of time
points, thus, a parallel implementation will be crucial. An
error analysis was developed in this paper which can be used
to analyze how the errors in the predicted solutions propagate
in time. In addition, this error analysis provides a threshold
in the loss function, where we can early-stop training the
network when a certain accuracy occurs, namely, a lower error
in the predicted solutions is ensured.

There are several advantages in using NN solvers instead
of traditional symplectic numerical integrators for solving
DEs. The solutions obtained by a NN are continuous, smooth,
and in analytical form. Due to many outputs with shareable
weights, the Hamiltonian NN discovers solutions that satisfy
the Hamilton equations simultaneously and consistently. Sub-
sequently, the NN solver conserves the correct Hamiltonian
in contrary to symplectic integrators that conserve a slightly
perturbed Hamiltonian. We outlined that the solutions ob-
tained by the NN conserve the energy locally along with all
the time points and outperforms the symplectic Euler inte-
grator that predicts an energy with a fluctuating error term.
In addition to the first-order Euler method, there are higher
order symplectic integrators that accumulate less error than a
semi-implicit Euler but with a larger computational cost. Such
a comparison between the proposed NN solver and higher

order integrators is not presented in this paper. In problems
where energy conservation is crucial, the Hamiltonian NN
will show better performance than symplectic integrators.
Moreover, NN solvers can potentially possess advantages over
state-of-the-art integrators such as the ODEINT from the SCIPY

Python package. As pointed out by Ref. [18], the calculations
for a NN can be efficiently implemented on parallel architec-
tures, leading to significant speedup. This is possible because
NN solvers evaluate the time points independently. In the
years since that original work of Ref. [18] appeared, hardware
innovations such as GPUs have made the parallelization of
NNs even more accessible. On the contrary, time-parallel al-
gorithms for traditional numerical integrators are challenging
to develop and implement since the computation at a time
point requires solutions at prior time points. Additionally,
as the number of DEs in a system increases the problem of
the curse of dimensionality is observed, making the numer-
ical integrators inefficient due to the rapidly increase of the
computational cost. On the other hand, it has been shown
by Refs. [19,20] that the problem of the curse of dimen-
sionality does not occur in NN DE solvers. Subsequently,
in high-dimensional problems such as many-body problems,
we expect the Hamiltonian NNs to outperform regular sym-
plectic integrators. Considering that Hamiltonian formulation
provides a solid framework for theoretical extension in many
areas of physics such as perturbation approaches and theory
of chaos, as well as statistical and quantum mechanics, the
proposed Hamiltonian NN provides fertile ground on which
modern research problems can potentially be handled.

ACKNOWLEDGMENTS

The authors would like to thank Prof. E. Lagaris, Prof.
G. P. Tsironis, and Prof. E. Kaxiras for fruitful discussions.
A.S.D. acknowledges support by the President’s Scholarship
at Imperial College London and by the EPSRC Centre for
Doctoral Training in Mathematics of Random Systems: Anal-
ysis, Modelling and Simulation (EP/S023925/1).

[1] B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning for uni-
versal linear embeddings of nonlinear dynamics, Nat. Commun.
9, 4950 (2018).

[2] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P.
Koumoutsakos, Data-driven forecasting of high-dimensional
chaotic systems with long short-term memory networks, Proc.
R. Soc. A: Math. Phys. Eng. Sci. 474, 20170844 (2018).

[3] G. Neofotistos, M. Mattheakis, G. D. Barmparis, J. Hizanidis,
G. P. Tsironis, and E. Kaxiras, Machine learning with observers
predicts complex spatiotemporal behavior, Front. Phys. 7, 24
(2019).

[4] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E.
Ott, Reservoir observers: Model-free inference of unmeasured
variables in chaotic systems, Chaos 27, 041102 (2017).

[5] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free
Prediction of Large Spatiotemporally Chaotic Systems From
Data: A Reservoir Computing Approach, Phys. Rev. Lett. 120,
024102 (2018).

[6] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, Recent

advances in physical reservoir computing: A review, Neural
Networks 115, 100 (2019).

[7] F. Karim, S. Majumdar, H. Darabi, and S. Harford, Multivariate
LSTM-FCNs for time series classification, Neural Networks
116, 237 (2019).

[8] J. Ling, R. Jones, and J. Templeton, Machine learning strategies
for systems with invariance properties, J. Comput. Phys. 318, 22
(2016).

[9] J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged
turbulence modelling using deep neural networks with embed-
ded invariance, J. Fluid Mech. 807, 155 (2016).

[10] R. Fang, D. Sondak, P. Protopapas, and S. Succi, Neural net-
work models for the anisotropic Reynolds stress tensor in
turbulent channel flow, J. Turbul. 21, 525 (2020).

[11] K. Duraisamy, G. Iaccarino, and H. Xiao, Turbulence mod-
eling in the age of data, Annu. Rev. Fluid Mech. 51, 357
(2019).

[12] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Inferring so-
lutions of differential equations using noisy multi-fidelity data,
J. Comput. Phys. 335, 736 (2017).

065305-10

https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.3389/fphy.2019.00024
https://doi.org/10.1063/1.4979665
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/10.1016/j.jcp.2016.05.003
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1080/14685248.2019.1706742
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1016/j.jcp.2017.01.060

HAMILTONIAN NEURAL NETWORKS FOR SOLVING … PHYSICAL REVIEW E 105, 065305 (2022)

[13] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Machine learn-
ing of linear differential equations using Gaussian processes,
J. Comput. Phys. 348, 683 (2017).

[14] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Data-
driven discovery of partial differential equations, Sci. Adv. 3
(2017).

[15] J. N. Kutz, S. H. Rudy, A. Alla, and S. L. Brunton, Data-driven
discovery of governing physical laws and their parametric de-
pendencies in engineering, physics and biology, 2017 IEEE 7th
International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP) (IEEE, Curacao, 2017),
pp. 1–5.

[16] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learn-
ing data-driven discretizations for partial differential equations,
Proc. Natl. Acad. Sci. USA 116, 15344 (2019).

[17] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations, J. Comput. Phys. 378, 686
(2019).

[18] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural
networks for solving ordinary and partial differential equations,
IEEE Trans. Neural Netw. 9, 987 (1998).

[19] J. Han, A. Jentzen, and E. Weinan, Solving high-dimensional
partial differential equations using deep learning, Proc. Natl.
Acad. Sci. USA 115, 8505 (2018).

[20] J. A. Sirignano and K. Spiliopoulos, Dgm: A deep learning
algorithm for solving partial differential equations, J. Comput.
Phys. 375, 1339 (2018).

[21] M. Magill, F. Qureshi, and H. W. de Haan, Neural networks
trained to solve differential equations learn general representa-
tions, in Advances in Neural Information Processing Systems
(NeurIPS 2018), Vol. 31 (Curran Associates, Inc., 2018).

[22] H. Li, Q. Zhai, and J. Z. Y. Chen, Neural-network-based multi-
state solver for a static Schrödinger equation, Phys. Rev. A 103,
032405 (2021).

[23] K. Hornik, Approximation capabilities of multilayer feedfor-
ward networks, Neural Networks 4, 251 (1991).

[24] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S.
Wang, and L. Yang, Physics-informed machine learning, Nat.
Rev. Phys. 3, 422 (2021).

[25] S. Wang and P. Perdikaris, Deep learning of free boundary and
Stefan problems, J. Comput. Phys. 428, 109914 (2021).

[26] E. Kharazmi, M. Cai, X. Zheng, Z. Zhang, G. Lin, and
G. E. Karniadakis, Identifiability and predictability of integer-
and fractional-order epidemiological models using physics-
informed neural networks, Nat. Comput. Sci. 1, 744 (2021).

[27] M. Angeli, G. Neofotistos, M. Mattheakis, and E. Kaxiras,
Modeling the effect of the vaccination campaign on the COVID-
19 pandemic, Chaos, Solitons Fractals 154, 111621 (2022).

[28] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K.
Bhattacharya, A. Stuart, and A. Anandkumar, Fourier neu-
ral operator for parametric partial differential equations, in
Proceedings of the International Conference on Learning Rep-
resentations (ICLR) (2021), https://openreview.net/forum?id=
c8P9NQVtmnO.

[29] A. S. Krishnapriyan, A. Gholami, S. Zhe, R. M. Kirby, and
M. W. Mahoney, Characterizing possible failure modes in
physics-informed neural networks, in Proceedings of the Con-
ference NeurIPS (Curran Associates, Inc., 2021).

[30] M. J. Gander, 50 years of time parallel time integration, in
Multiple Shooting and Time Domain Decomposition Methods,
edited by T. Carraro, M. Geiger, S. Körkel, and R. Rannacher,
Contributions in Mathematical and Computational Sciences,
Vol. 9 (Springer, Cham, 2015), pp. 69–114.

[31] S. Gunther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R.
Gauger, Layer-parallel training of deep residual neural net-
works, SIAM J. Math. Data Sci. 2, 1 (2020).

[32] S. Greydanus, M. Dzamba, and J. Yosinski, Hamiltonian neural
networks, in Advances in Neural Information Processing Sys-
tems, Vol. 32 (Curran Associates, Inc., 2019), pp. 15379–15389.

[33] T. Bertalan, F. Dietrich, I. Mezic, and I. G. Kevrekidis, On
learning Hamiltonian systems from data, Chaos 29, 121107
(2019).

[34] A. Choudhary, J. F. Lindner, E. G. Holliday, S. T. Miller, S.
Sinha, and William L. Ditto, Physics-enhanced neural networks
learn order and chaos, Phys. Rev. E 101, 062207 (2020).

[35] S. A. Desai, M. Mattheakis, and S. J. Roberts, Variational
integrator graph networks for learning energy-conserving dy-
namical systems, Phys. Rev. E 104, 035310 (2021).

[36] C.-D. Han, B. Glaz, M. Haile, and Y.-C. Lai, Adaptable Hamil-
tonian neural networks, Phys. Rev. Res. 3, 023156 (2021).

[37] H. Zhang, H. Fan, L. Wang, and X. Wang, Learning Hamil-
tonian dynamics with reservoir computing, Phys. Rev. E 104,
024205 (2021).

[38] A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, and P.
Battaglia, Hamiltonian graph networks with ODE integrators,
arXiv:1909.12790.

[39] P. Toth, D. J. Rezende, A. Jaegle, S. Racanière, A. Botev, and
I. Higgins, Hamiltonian generative networks, in Proceedings
of the International Conference on Learning Representations
(ICLR) (2020), https://openreview.net/forum?id=HJenn6VFvB.

[40] S. A. Desai, M. Mattheakis, D. Sondak, P. Protopapas, and S. J.
Roberts, Port-Hamiltonian neural networks for learning explicit
time-dependent dynamical systems, Phys. Rev. E 104, 034312
(2021).

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. Devito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, Automatic
differentiation in PyTorch, in Proceedings of the Conference
NeurIPS (Curran Associates, Inc., 2017).

[42] https://github.com/mariosmat/hamiltonianNNetODEs.
[43] E. Noether, Invariant variation problems, Trans. Theor. Stat.

Phys. 1, 186 (1971).
[44] B. J. Leimkuhler and Robert D Skeel, Symplectic numerical in-

tegrators in constrained Hamiltonian systems, J. Comput. Phys.
112, 117 (1994).

[45] L. Ziyin, T. Hartwig, and M. Ueda, Neural networks fail to learn
periodic functions and how to fix it, in Advances in Neural
Information Processing Systems (NeurIPS), Vol. 33 (Curran
Associates, Inc., 2020), pp. 1583–1594.

[46] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, in 3rd International Conference for Learning Rep-
resentations, San Diego (2015).

[47] T. E. Oliphant, Python for scientific computing, Computing in
Science & Engineering, 9, 10 (2007).

[48] M. Hénon and C. Heiles, The applicability of the third inte-
gral of motion: Some numerical experiments, Astron. J. 69, 73
(1964).

[49] I. I. Shevchenko and A. V. Mel’Nikov, Lyapunov exponents in
the Hénon-Heiles problem, JETP Lett. 77, 642 (2003).

065305-11

https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1109/72.712178
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1103/PhysRevA.103.032405
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.jcp.2020.109914
https://doi.org/10.1038/s43588-021-00158-0
https://doi.org/10.1016/j.chaos.2021.111621
https://openreview.net/forum?id=c8P9NQVtmnO
https://doi.org/10.1137/19M1247620
https://doi.org/10.1063/1.5128231
https://doi.org/10.1103/PhysRevE.101.062207
https://doi.org/10.1103/PhysRevE.104.035310
https://doi.org/10.1103/PhysRevResearch.3.023156
https://doi.org/10.1103/PhysRevE.104.024205
http://arxiv.org/abs/arXiv:1909.12790
https://openreview.net/forum?id=HJenn6VFvB
https://doi.org/10.1103/PhysRevE.104.034312
https://github.com/mariosmat/hamiltonianNNetODEs
https://doi.org/10.1080/00411457108231446
https://doi.org/10.1006/jcph.1994.1085
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1086/109234
https://doi.org/10.1134/1.1604412

