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In this work, a two-dimensional droplet confined between two parallel electrodes under the combined effects of
a nonuniform electric field and unipolar charge injection is numerically investigated using the lattice Boltzmann
method (LBM). Under the non-Ohmic regime, the interfacial tension and electric forces at the droplet surface
cooperate with the volumetric Coulomb force, leading to complex deformation and motion of the droplet while at
the same time inducing a bulk electroconvective flow. After we validate the model by comparing with analytical
solutions at the hydrostatic state, we perform a quantitative analysis on the droplet deformation factor D and
bulk flow stability criteria Tc under different parameters, including the electric capillary number Ca, the electric
Rayleigh number T , the permittivity ratio εr , and the mobility ratio Kr . It is found that the bulk flow significantly
modifies the magnitude of D, which in turn decreases Tc of the electroconvective flow. For a droplet repelled by
the anode, εr > 1, an interesting linear relationship can be observed in the D-Ca curves. However, for a droplet
attracted to the anode, εr < 1, the system is potentially unstable. After first evolving into a quasisteady state,
the droplet successively experiences steady flow, periodic flow, second steady flow, and oscillatory flow with
increasing T . Moreover, discontinuities can be observed in the D-T curves due to the transitions of bulk flow.
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I. INTRODUCTION

Electric fields, when applied to weakly conducting dielec-
tric liquids, can give rise to fluid motions, the study of which
forms the field of electrohydrodynamics (EHD) [1,2]. Under
the assumption of Ohmic conduction, Taylor and Melcher [1]
developed the well-known leaky dielectric model (LDM) to
explain the behavior of droplets under a steady electric field.
The original LDM includes the Stokes equations for fluid
motion and an expression for current conservation. Charges
are carried to the interface by conduction. The tangential elec-
tric field acts upon these charges to generate the shear stress
that drags the EHD flow both inside and outside the droplet.
The LDM achieves success in multiphase EHD problems due
to its simplicity and qualitative agreement with experimental
observations [3–5]. Since then, numerous computational and
theoretical studies have been conducted based on LDM to pre-
dict different EHD problems [5–17]. However, as mentioned
in the review of LDM by Saville [2], although the qualitative
aspects of the LDM theory were vindicated, the quantitative
agreement was very disappointing. Several possible reasons
for the discrepancies were suggested by Saville [2], such
as nonlinear surface charge convection, boundary conditions,
electrokinetic effects, and space charge in the bulk. The for-
mer three possible reasons have been well discussed in a series
of subsequent works. But the possible effect of bulk free
charges is seldom mentioned because the basic assumption
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of LDM, i.e., the Ohmic conduction assumption, is no longer
valid.

The study of EHD problems beyond the Ohmic conduc-
tion regime has attracted much less attention. As reported in
experimental measurements of the conductivity of dielectric
liquids [18], the current-voltage I-V characteristics can be
simply separated into the Ohmic region and the non-Ohmic
region (see Fig. 1). In the Ohmic region, electric current is
linearly proportional to the applied voltage. Then, there will
be a saturation voltage Vs at which the linear relationship ends
due to the limitations of the ion creation rate in the liquid
volume. The value of Vs can be approximately determined by
the competition between the charge relaxation time τc(= ε/σ )
and the charge drift time τk(= l2/KV ), where l , ε, σ , and K
are the distance between two electrodes, the permittivity, the
conductivity, and the mobility, respectively. At τk � τc, the
ions can span the gap between two electrodes before recom-
bination, with the equals sign corresponding to the saturation
voltage Vs = σ l2/Kε. For V > Vs, the I-V curve goes to the
non-Ohmic conduction regime, and free charges can exist
both in the bulk and the interface. Other mechanisms such
as charge injection or field-enhanced dissociation need to be
considered. They lead to an increase in the current that is a
nonlinear function of the applied voltage, which results in a
steeper slope in I-V curves as reproduced in Fig. 1.

Charge injection, which originates due to the electrochem-
ical reaction at the liquid/electrode interface, is an important
mechanism of charge transport above Vs. In single-phase
dielectric liquid, charge injection induced electroconvection
(EC) has been well studied. Two-dimensional (2D) electro-
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FIG. 1. The I-V characteristics in the experimental results of
McCluskey et al. [18]. The horizontal dashed line corresponds to the
saturation voltage. The steeper slope above the saturation voltage is
characteristic of an injection process.

convective rolls [19–24] or three-dimensional (3D) cellular
patterns [25–27] can be observed when the governing pa-
rameter T (the electric Rayleigh number) exceeds its linear
stability threshold Tc. Extensive studies have been devoted to
this problem from the standpoints of stability analysis, ex-
perimental study, and numerical study. Among those studies,
linear and nonlinear stability analysis techniques have been
conducted since the 1970s [23,28,29]. Results indicate that
the electroconvective instability depends on various factors,
such as the injection strength, the physical property param-
eters (e.g., ionic mobility and dielectric permittivity), and
the residual conductivity. Previous experimental studies were
focused mainly on the measurement of electroconvective heat
transfer enhancement [18,30]. It is shown that the heat transfer
rate was significantly increased (up to an order of magni-
tude) for all test cases considered in those studies [18]. In
terms of numerical simulation, most results are obtained with
methods based on a direct discretization of the partial dif-
ferential equations, such as the finite-difference method [31],
the finite-element method [32], and the finite-volume method
(FVM) [20,21,33]. Recently, some particle-based methods
were introduced into this field, such as dissipative parti-
cle dynamics (DPD) [34] and the lattice Boltzmann method
(LBM) [24,35,36].

In the present study, we are interested in multiphase EHD
phenomena in the non-Ohmic regime. Unipolar charge in-
jection serves as the source of free space charges. When
compared to the commonly used LDM, the space charges
lead to some complex physical processes, such as the bulk
electrical forces, bulk electroconvective flow, and related in-
stabilities under high electric field. The governing equations,
including Navier-Stokes equations for fluid flow, the Nernst-
Planck equation for charge conservation, and the Poisson
equation, are fully coupled both in the interface and in bulk
liquid. Instead of Ohmic conduction, charges transfer within
the liquid through three distinct mechanisms, i.e., convection,
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FIG. 2. Schematic diagram of the problem: a two-dimensional
droplet confined between a charge-injecting anode and a charge-
blocking cathode.

migration, and diffusion. Simulations are conducted in the
framework of the unified LBM that we developed in [37–39].

The motivation of this work is threefold: (i) to consider the
effects of charge-injection-induced bulk convective flow on
droplet/bubble dynamics, (ii) to extend the study of electro-
convective instability from the single-phase to the multiphase
EHD system, and (iii) to develop a numerical model in the
framework of LBM to simulate the coupling between droplet
motion and deformation under an electric field. The rest of the
paper is organized as follows. In Sec. II, the physical model,
mathematical equations, and numerical methods are presented
in detail. In Sec. III, results and discussions about the hydro-
static solutions, transient droplet motion, steady-state droplet
deformation, as well as bulk electroconvective flow under
different conditions are provided in detail. In Sec. IV, we
provide our conclusions.

II. PHYSICAL MODEL AND MATHEMATICAL
EQUATIONS

The problem considers a dielectric liquid layer of thickness
l enclosed between two planar metal electrodes. A potential
difference V = �φ = φ0 − φ1 is applied between the two
electrodes. Figure 1 shows typical current-voltage character-
istics where a linear part is the Ohmic regime [18]. After the
saturation voltage Vs, I increases faster than Ohmically, due to
the ion injection mechanism as reported by Felici [40].

As shown in Fig. 2, a liquid droplet is initially suspended in
the center of the dielectric liquid layer. The dynamic viscosity,
dielectric permittivity, and mobility of the carrying liquid are
denoted by μ, ε, and K , respectively, and subscripts “i” and
“e” are used to distinguish the inner and external parts of the
droplet. The electrochemical reaction at the electrode-liquid
interface (one side or both sides) leads to the generation of
free charges that will be injected into the bulk of the liquid.
Free charges may exist both in the bulk liquid and the surface
depending on the property of the drop and the carrying liq-
uid. The injected charges transfer within the liquid through
three distinct mechanisms, i.e., convection, migration, and
diffusion.

065304-2



LATTICE BOLTZMANN MODELING OF TWO-PHASE … PHYSICAL REVIEW E 105, 065304 (2022)

A. Governing equations and nondimensionalization

The dynamic behavior of a drop in dielectric liquids is
governed by the fully coupled electrical and mechanical equa-
tions. The electrical equations include the Poisson equation
for electric potential and the charge conservation equation [2],
written as follows:

∇ · εE = q, (1)
∇ × E = 0,

∂n(k)

∂t
+ u · ∇n(k) = ∇ · [−ω(k)ez(k)n(k)E + ω(k)kBT ∇n(k)]

+ r (k), k = 1, . . . , N, (2)

where n(k), ω(k), and z(k) are the concentration, mobility, and
valence of kth species, and kB, e, and T are the Boltzmann
constant, electron charge, and fluid temperature, respectively.
N is the total number of charge species. Three terms on the
right side of Eq. (2) represent ion migration under an electric
field, migration due to thermal diffusion, and production due
to chemical reactions, respectively.

As concluded in Saville’s review [2], two simplified forms
of Eq. (2) are commonly used in different EHD problems,
namely the binary z-z electrolyte in the leaky dielectric
model [2] and the single ionic specie in the unipolar injection
model. Although only the injection case in Eq. (3) is studied
in this work, equations for the leaky dielectric model are also
provided in Eq. (5) for comparison purposes.

For the unipolar injection case in the non-Ohmic regime,
we have N = 1 and r (k) = 0 by defining the total mobility
K = ωez, the charge density q = ezn, and the charge diffusion
d = ωkBT , and we have the Nernst-Planck equation as

∂q

∂t
+ u · ∇q = ∇ · (−KqE + d∇q). (3)

For binary z-z electrolyte in the Ohmic regime, three kinds
of species N = 3 and r (k) = 0—namely the neutral, the cation,
and the anion with concentrations of n0, n+, and n−—are
diluted in the fluid. Define the charge density q, conductivity
σ , and charge diffusion coefficient d as follows:

q =
∑

k

ez(k)n(k), σ = e2(ω+n+ + ω−n−), d = ωkBT .

(4)
Then, Eq. (2) in the Ohmic regime can be simplified to

∂q

∂t
+ u · ∇q = ∇ · (−σE + d∇q). (5)

In most studies of steady drop deformation by
LDM [41,42], the charge convection term and the charge
diffusion term were neglected. Equation (5) can be further
simplified to ∇ · (σE) = 0.

Assuming both fluids are immiscible and incompressible,
the continuity and momentum balance equations in the dimen-
sional form are expressed as

∇ · u = 0, (6a)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇ p̂ + ∇ · (μ∇u) + γ κnδs + qE

− 1

2
E2∇ε − ρgey. (6b)

The last four terms in Eq. (6b) indicate, from left to right,
the surface tension force, the Coulomb force, the dielectric
force, and gravity, respectively. To reduce the complexity of
the problem, the effect of gravity is neglected in this work
under strong unipolar charge injection. γ is the interfacial
tension, κ is the local curvature of the interface, and δs is the
Dirac delta function. p̂ denotes the generalized pressure, in-
cluding the hydrostatic pressure and the extra electrostrictive
contribution [43],

p̂ = p − 1

2
ρE2

(
∂ε

∂ρ

)
T

. (7)

The diffuse interface method [44], in which the interfacial
region is spread onto a finite number of grid points, has been
adopted in this paper. In this method, a wide variety of inter-
facial phenomena have been successfully applied [44]. In this
manner, the variation of physical properties at the interface is
smooth, and the whole domain can be treated as one region to
avoid complex interface coupling. Using the density of fluid
as an index function, the dielectric properties can be expressed
as [11]

ε(ρ) = ρ − ρi

ρe − ρi
εe + ρ − ρe

ρi − ρe
εi,

K (ρ) = ρ − ρi

ρe − ρi
Ke + ρ − ρe

ρi − ρe
Ki. (8)

B. Analysis of timescales and nondimensionalization

Different physical processes involved in the EHD problem
have different timescales, including the viscous time tμ, the
charge relaxation time tr , the capillary time tc, the electrostatic
time te, the charge migration time tk , and the charge diffusion
time td , defined as

tμ = l2ρ/μ, tr = ε/σ, tc = lμ/γ ,

te = μ/εE2, tk = l2/K�φ, tD = l2/d. (9)

By choosing the characteristic time of the system to be
the charge migration time tk = l2/K�φ, the distance between
two electrodes l is the characteristic length. Then, parameters
are made dimensionless by making the following transforma-
tions:

x∗
i = xi

l
, t∗ = tK�φ

l2
, u∗

i = uil

K�φ
, E∗

i = Eil

�φ
,

p∗ = pl2

ρK2�φ2
, q∗ = ql2

ε�φ
, ρ∗ = ρ

ρe
,

ε∗ = ε

εe
, K∗ = K

Ke
. (10)

It should be noted that the characteristic length and time in
the present work are different from those in Taylor’s leaky
dielectric model [2], in which the drop radius a and the
electrostatic time te are taken as the characteristic length
and time, respectively. The nondimensional system with five
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nondimensional governing parameters can be given as

T = ε(φ0 − φ1)

μK
, Ca = lε0E2

0

γ
, C = q0H

εE0
,

M = 1

K

(
ε

ρ

)1/2

, α = d

K�φ
. (11)

The electric Rayleigh number T is defined as the ratio
between the Coulomb force and the viscous force; the electric
capillary number Ca stands for ratio of the electric force to
the surface tension force; C represents the injection strength;
M is the nondimensional mobility parameter, which is the
ratio of the so-called hydrodynamic mobility to the actual
ionic mobility; and α is the nondimensional charge-diffusion
number with its typical value in the range between 10−3 and
10−4 [45].

An additional four parameters related to the ratio between
internal and external physical properties, namely the dynamic
viscosity ratio, the fluid density ratio, the permittivity ratio,
and the mobility ratio, are defined as

λ = μi

μe
, ρr = ρi

ρe
, εr = εi

εe
, Kr = Ki

Ke
. (12)

Then, the governing equation given in Eqs. (1), (3), and (6)
can be written in dimensionless form as (for clarity, the star
symbol is omitted)

∇2φ = −q, E = −∇φ, (13a)

∂q

∂t
+ u · ∇q = ∇ · (−qE) + α∇2q, (13b)

∇ · u = 0, (13c)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇ p̂ + M2

T
∇2u + M2

Ca
γ κnδs

+ M2

(
qE − 1

2
E2∇ε

)
. (13d)

Equations in the interface satisfy

‖εE‖ · n = qs, ‖E‖ × n = 0,

(13e)

∂qs

∂t
+ u · ∇sqs − qsn · (n · ∇)u = ‖−qE + α∇qs‖ · n,

(13f)

where ‖( )‖ denotes the jump, “outside-inside,” of ( ) across
the boundary, and n is the local outer normal. ∇s and qs

are the surface gradient and surface charge density, respec-
tively [2]. It should be noted that the interface equations (13e)
and (13f) can be combined into Eq. (13d) in the diffuse inter-
face method.

C. Lattice Boltzmann method for multiphase EHD

As an approach at the mesoscopic level, the LBM studies
the microdynamics of fictitious particles by using simpli-
fied kinetic models [46,47]. The kinetic nature brings many
distinctive features to the LBM, such as the clear pic-
ture of streaming and collision processes of simulated fluid
particles, the simple algorithm structure, the easy implemen-
tation of boundary conditions, and the natural parallelism.

These appealing features make the LBM a powerful numer-
ical tool for simulating multiphase and multifield coupling
fluid systems [46,47]. Many multiphase LBMs based on
the diffuse-interface scheme have been developed in the
past two decades [47–49], including the pseudopotential
LBM [50–53], the color-gradient LBM [41,54], the free-
energy LBM [55], and the phase-field LBM [42,56–58]. In
this work, the pseudopotential LBM is adopted due to its
simplicity and ease of implementation. In addition, to reduce
the spurious velocity at curved interfaces, the MRT collision
operator and the changeable parameter a in the Carnahan-
Starling equation of state are also used to control the thickness
of the diffuse interface [59].

Equations for the pseudopotential LBM have been well
established. Here we just provide some of the main formulas;
for more detailed equations, please refer to Ref. [60]. The
evolution equation of the density distribution function can be
written as

fi(xi + ci�t, t + �t ) − fi(xi, t )

= −�̄i j
(

f j − f eq
j

)|(x,t ) +
(

Ii j − 1

2
�̄i j

)
S j

∣∣∣∣
(x,t )

�t, (14)

where f and f eq are the density distribution function and its
equilibrium distribution, respectively. I is the unit tensor, and
S is the forcing term. �̄ = M−1�M is the collision matrix,
where M is an orthogonal transformation matrix and � is a
diagonal matrix given as [59]

� = diag
(
τ−1

g , τ−1
e , τ−1

ζ , τ−1
j , τ−1

q , τ−1
j , τ−1

q , τ−1
ν , τ−1

ν

)
.

(15)
The commonly used D2Q9 model [61] is applied to

the discretization of velocity space in two dimensions. The
equilibrium distribution function [62] in Eq. (14) may be
expressed as

f eq
j = ρω j

(
1 + c j · ueq

c2
s

+ (c j · ueq )2

2c4
s

− (ueq )2

2c2
s

)
,

j = 1 − 9. (16)

Macroscopic quantities, such as the fluid density, the cal-
culated velocity, the velocity for equilibrium distribution, and
the real fluid velocity, are expressed, respectively, as

ρ =
∑

j

f j u= 1

ρ

∑
j

c j f j ueq = u + τF
ρ

up = u + 1

2ρ
F�t .

(17)
The forcing term in Eq. (14) can be given in the velocity

space. Using the GZS scheme [63], we have

S j = ω j

(
c j − ueq

c2
s

+ c jueq

c4
s

)
· F�t, (18)

where F = Fint + Fele is the total force acting on the system,
including the interparticle force Fint and the external electric
force Fele [64], defined as

Fini(x) = −gψ (x, t )c2
s

∑
j

w jψ (x + c j )c j,

Fele(x) = qE − 1

2
E2∇ε. (19)
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FIG. 3. Validation of the LBM model at a hydrostatic state: (a) electric field Ey and (b) charge density distributions for different
combinations of permittivity ratio and mobility ratio (εrKr ).

The effective number density in Eq. (18) and the Carnahan-
Starling van der Waals equation of state are given, respec-
tively, as

ψ =
√

2
(
p − c2

s ρ
)

c2
s g

,

p = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

1 − bρ/4
− aρ2, (20)

where a = 0.4963R2T 2
c /pc and b = 0.187 27RTc/pc. The cor-

responding critical density ρc is given by ρc ≈ 0.5218/b.
Following Ref. [59], in our simulations we set b = 4, R = 1,
a = 0.5, and Tc ≈ 0.047. The effects of the parameter a will
be shown in the next section.

The electrical equations, including the Poisson equation
for electric potential and the Nernst-Planck equation for
charge density [2], are also modeled by two lattice Boltzmann
equations (LBEs). In our previous work on EHD [65], we
introduced two LBEs for the electric potential and the charge

density. Some of the main formulas are expressed as

g j (x + c j�t, t + �t ) − g j (x, t )

= − 1

τφ

[
g j (x, t ) − geq

j (x, t )
] + �t� jRDa, (21)

h j (x + c j�t, t + �t ) − h j (x, t )

= − 1

τq

[
h j (x, t ) − heq

j (x, t )
]
, (22)

where g and h are the distribution function of the electric
potential and the charge density, and τφ and τq are the cor-
responding relaxation times, respectively. c, R, and Da are
the microscopic velocity, the source term, and the artificial
diffusion coefficient [66], respectively. The D2Q5 velocity
discretization is adopted for electric potential, while D2Q9
is used for charge density due to the convection-dominant
feature of the Nernst-Planck equation. The equilibrium dis-

FIG. 4. Time history of electric Nusselt number Ne at hydrostatic state (a) εr = 0.1, Kr = 5; (b) εr = 2, Kr = 1.
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FIG. 5. (a) The electric field Ey and (b) charge density q distributions at the center line x = L/2 for different combinations of permittivity
ratio and mobility ratio (εrKr ).

tribution functions geq
j and heq

j are given as

geq
j (x, t ) =

{
(ω0 − 1), j = 0,

ω jφ, j = 1 − 4,
(23)

heq
j (x, t ) = qω j

{
1 + c j (KE + up)

c2
s

+ [c j (KE+ up)]2− c2
s (KE + up)2

2c4
s

}
, j = 1− 9.

(24)

The corresponding weight coefficients ω and � can be
found in Ref. [66]. The local permittivity-dependent relax-
ation time τφ , the source term R, and the relaxation time τq

can be computed from

τφ = εt Da

βc2�t
+ 1

2
, R = q/ε, τq = 3d

c2�t
+ 1

2
, (25)

where εt (= ε/εe) is the ratio between the local permittivity ε

and the reference permittivity εe, and the artificial diffusion
coefficient Da(Da > 0) is chosen to be Da = 1/2 to balance
the evolution speed and stability. The coefficient β has been
derived to be 1/2 by the Chapman-Enskog expansion [66]. d is
the charge-diffusion coefficient. Finally, the electric potential
and charge density can be evaluated as

φ = 1

1 − ω0

4∑
j=1

g j, q =
∑

j

h j . (26)

D. Boundary conditions and numerical implementation

As the multiphase LBM based on the diffuse-interface
scheme has been adopted in this work, no special attention
should be paid to the interface. The phase interface is a post-
processed quantity that can be detected through monitoring
the variation of the fluid densities. Therefore, the boundary
condition is only required at the enclosure of the computa-

tional domain. The free boundary condition is used for all
fields at the horizontal direction (left and right boundaries). As
the upper and lower bound are electrodes, a nonslip boundary
condition is used for the flow field and the Dirichlet boundary
condition is adopted for the electric potential, while constant
charge injection (q = q0) is assumed at the emitter, and an
outflow boundary is adopted at the receiver. At the mesoscopic
level, we use the nonequilibrium extrapolation scheme [67]
for the distribution functions of the electric potential. It can be
expressed as [67]

f j (rb, t ) = f eq
j (rb, t ) + [

f j (rf , t ) − f eq
j (rf , t )

]
, (27)

where rb denotes the boundary lattice nodes and rf represents
the nodes neighboring the boundary.

Numerical results are presented by the deformation factor
D = (L−B)/(L + B), where L and B are the lengths of the
deformed drop in the direction parallel (y-axis) and perpen-
dicular (x-axis) to the applied electric field, respectively. Also,
by the maximum velocity magnitude as well as the electric
Nusselt numbers (Ne), which is given as

Ne = I/I0, (28a)

where I is the electric current and I0 is the single-phase hydro-
static electric current without the drop, we have

I = 1

L

∫ L

0

[
q(Ey + uy) + ∂Ey

∂t

]∣∣∣∣
y=0 or y=1

dx, (28b)

I0 = (
qEy|y=0 or y=1

)
hydrostatic state

. (28c)

The complete solution procedure can be briefly described
as follows. First, we obtain the hydrostatic solution, and we
save the numerical results for further simulation. Then, we
conduct the global iteration in a successive way: (i) Initialize
the physical fields with the hydrostatic solution; (ii) perform
the collision and streaming steps of Eq. (14), and calculate the
fluid density ρ and the fluid velocity field u by Eq. (17); (iii)
solve the LBE for the electric potential [Eq. (21)] and calcu-
late φ by Eq. (26); (iv) update the distribution of permittivity
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FIG. 6. Dimensionless force distributions along the vertical center line at the initial droplet motion under two typical combinations of
(εrKr ): (a) surface tension, (b) dielectric force, and (c) Coulomb force.

ε and mobility K using Eq. (8), and calculate the electric field
E using the second-order central differencing scheme for the
gradient; (v) solve the LBE for the charge density [Eq. (22)]
and calculate q by Eq. (26); and (vi) go back step (ii) until the
convergence criterion is satisfied.

III. RESULTS AND DISCUSSION

A. Solution at the hydrostatic state

Before investigating the multiphase EHD flow in the non-
Ohmic regime, it is convenient to examine the electric field
E and charge density q distributions without the flow motion,
known as the hydrostatic solution.

To better understand the effect of inhomogeneous permit-
tivity ε and mobility K on q and E distributions, we first
consider a quasi-one-dimensional case by setting the drop
to be a liquid layer embedded at the center of the medium
(l/3 < ydrop < 2l/3). Theoretically, to maintain the continuity
of the electric current and the electric displacement vector
at the interface (KiEiqi = KeEeqe and εiEi = εeEe), the in-
homogeneous ε and K will induce the discontinuities of q

and E distributions. We need to prove that our LBM can
well reproduce this result. As provided in Appendix, we have
derived the analytical solution for the quasi-one-dimensional
case using the solution to the ordinary differential equations
(ODEs) incorporated with the interface conditions, while nu-
merical results are obtained using the 2D LBM code with free
boundary conditions at x = 0 and x = L.

Figure 3 presents the electric field component Ey and
charge density q distributions for different combinations of
permittivity and mobility ratios (εrKr ). It is seen that the
numerical results agree well with the analytical solutions, with
the maximum difference less than 1%. Three representative
cases with different combinations of (εrKr ) are tested. As
shown in Fig. 3 for εr = 1 and Kr = 1, the results are the same
as the single–phase hydrostatic problem. Both the electric
field Ey and the charge density q show continuous distribu-
tions in the y direction. For the case εr = 5 and Kr = 2, a
sudden decrease of Ey can be observed at the interface, as
shown in Fig. 3(a), with the ratio inside and outside of the
drop being opposite to the permittivity ratio εr . Meanwhile, q
experiences a sudden jump at the interface, and the ratio of q
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FIG. 7. The move trajectories of a drop under the combined
effect of an electric field and unipolar charge injection: (a) the anode-
repelled drop at T = 200, Ca = 2.5, εr = 5, Kr = 2; and (b) the
anode-attracted drop at T = 200, Ca = 1.5, εr = 0.2, Kr = 0.5. The
arrow illustrates the drop moving direction.

between the drop side and the medium side of the interface
is equal to the value of R(= εr/Kr ) as shown in Fig. 3(b).
In the same manner, for the case εr = 0.5 and Kr = 1, the
discontinuities of Ey and q at the interface can be explained as
being the corresponding permittivity and mobility differences.

Then, we consider the two-dimensional hydrostatic results.
The transient evolution of the electric Nusselt number Ne

calculated at the injection electrode at εr = 0.1, Kr = 5 and
εr = 2, Kr = 1 is presented in Figs. 4(a) and 4(b), respec-
tively. Although the time period of the charge transport is
rather short, i.e., approximately the same order of magnitude
as the charge relaxation time τC = ε/Kq0, our LBM solver
can well reproduce this process due to its inherent transient
evolution nature. As shown in Fig. 4, the value of Ne decreases
monotonically with time because the electric field next to
the emitter gradually decreases as injection occurs, finally
approaching the space-charge limit (SCL). The contours of
charge density at four representative moments are also pre-
sented in Fig. 4. Charges are first generated in the emitter,

and then they move into the dielectric medium under the
electric field (see point A in Fig. 4). Once contact is made
with the drop, free charges perform differently depending on
the property ratios. For R(= εr/Kr ) < 1, ions move faster in
the drop than in the surrounding medium, which induces a
“lower charge region” in the drop, and a charge plume is
formed in the upper center region of the medium, as shown
at point C of Fig. 4(a). On the contrary, for R > 1, ions move
slower in the drop, resulting in a “charge-accumulated region”
inside it, as shown in Fig. 4(b). In addition, the values of Ne

in the steady-state case for the case R = 0.02 and 2 are 0.845
and 1.022, respectively, demonstrating that the existence of
the “lower charge region” or the “charge-accumulated region”
will decrease or increase the electric current, respectively.

The electric field Ey and charge density q distributions at
the center line x = L/2 are presented in Fig. 5 for different
permittivity and mobility ratios. The reason for the discontinu-
ity distributions of Ey and q observed at the droplet interface is
similar to that of the quasi-one-dimensional case (see Fig. 3).
In addition, the value of Ey in the surrounding medium in-
creases with an increase of εr , but an opposite trend can be
found in the droplet, as shown in Fig. 5. Moreover, the value
of q inside the droplet increases with an increase of R.

B. Influence of charge injection on drop dynamics

The behavior of drops under an electric field and unipolar
charge injection is investigated in this section. Basic features
of Ohmic LDM and non-Ohmic charge injection are analyzed
comparatively. In the LDM, free charges only accumulate at
the interface without bulk charges in fluid. under an electric
field E0, electric forces at the interface will deform the drop
and cause circulation patterns inside and outside the suspen-
sion droplet. However, the situation in the charge injection
model is totally different. Free charges injected from the
emitter will redistribute the electric field, in addition to the
dielectric force at the interface, and the Coulomb force in
bulk may induce complex electroconvective flows. Under that

FIG. 8. Streamlines of the electroconvective flow in the medium and a secondary flow inside the drop: (a) the anode-repelled drop case at
T = 450, Ca = 1, εr = 5, Kr = 2; and (b) the anode-attracted drop at T = 450, Ca = 1, εr = 0.2, Kr = 0.5.
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FIG. 9. Charge density distribution and the related charge void region in multiphase electrohydrodynamic flow: (a) the anode-repelled drop
case at T = 200, Ca = 1, εr = 5, Kr = 2; and (b) the anode-attracted drop at T = 200, Ca = 1, εr = 0.2, Kr = 0.5.

condition, the drop no longer suspends in a dielectric medium
but moves in a vertical direction.

Figure 6 plots the dimensionless force (ε�V 2/H3) distri-
butions along the vertical center line at the initial state of
drop motion, corresponding to the third to fifth terms on the
right side of Eq. (6b). It is seen that both surface tension
Fs [Fig. 6(a)] and dielectric force Fd [Fig. 6(b)] exhibit a
large gradient at several lattices close to the interface while
remaining at zero in the bulk, as they are indeed surface forces
but are treated as volumetric forces based on the idea of the
diffusion interface method. However, the Coulomb force acts
on the bulk due to the existence of volumetric free charges, as
shown in Fig. 6(c). In terms of magnitude, Fs is much larger
than the other two forces, but it acts on the normal direction of
the interface and it will be balanced by the same magnitude of
opposite force at the opposite side of the drop [see Fig. 6(a)].
In addition, the Coulomb force has a limited influence on
drop behavior due to its relatively small values in this case.
Therefore, the dielectric force Fd dominates the drop motion
due to the inhomogeneous electric field distribution under
unipolar charge injection. The unbalanced Fd at the interface
results in a movement of the droplet in the fluid medium, with
its direction depending on the permittivity ratio εr . For the
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FIG. 10. Steady droplet shapes under various combinations of Ca
and T : (a) anode-repelled drop at εr = 5, Kr = 2; (b) anode-attracted
droplet at εr = 0.2, Kr = 0.5.

case εr > 1, the total dielectric force has a positive direction
and drives the drop moving upward, which we call an “anode-
repelled drop.” On the contrary, an “anode-attracted drop” can
be observed under the effect of negative dielectric force for the
case εr < 1.

Figure 7 shows the trajectories of both the anode-repelled
drop and the anode-attracted drop under the parameters of
T = 200, Ca = 2.5, εr = 5, Kr = 2 and T = 200, Ca = 1.5,
εr = 0.2, Kr = 0.5, respectively. Interface curves are plotted
at four representative moments marked by numbers 1–4 in
Fig. 7. At the initial moment, the drop rapidly deforms to a
prolate shape under the combined effects of electric forces and
surface tension, but this prolate drop is potentially unstable
due to the unbalanced dielectric force, as shown by the direc-
tion of the arrows in Fig. 7. In the accelerated moving stage,
the drop becomes more deformed and loses its longitudinal
symmetry due to the balance between inertia and surface
tension. When the drop impacts the electrode, it is compressed
to an oblate shape and then gradually becomes less deformed
as the drop velocity reverses, under the assumption of the
nonhydrophilic and nonlipophilic properties of the electrode
and completely elastic collision. Finally, the drop may remain

0.0 0.2 0.4 0.6 0.8

0.9

1.2

1.5

1.8

2.1

2.4

E

C

A

E

B

N
e =

I/I
0

t*

A B C D E

Vmax = 1.75 2.30 1.46 2.46 3.38

FIG. 11. Time history of Ne for the anode-repelled drop at T =
200 and Ca = 2.5. The subfigure presents the interface position and
velocity vector at five representative moments.
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FIG. 12. The variation of drop deformation factor D with different Ca and T : (a) D-Ca curves at T = 100 and 200; (b) D-T curves at
Ca = 1 and 2. Other parameters considered are εr = 5, Kr = 2, M = 10, and α = 10–4.

stable or start to oscillate, depending on the governing
parameters.

Convective flow is one of the key features in a multiphase
EHD system. In the well-known LDM, Taylor [1] reported a
viscous convective flow to balance the tangential stresses pro-
vided by the action of the electric field on the interface charge;
this was manifested as two pairs of symmetrical vortexes.
In the study of multiphase EHD in the non-Ohmic regime,
convective flow can also be observed, but it is induced by
a totally different mechanism. That is, for a relatively large
governing parameter T , the Coulomb force exerted by the
electric field on bulk free charges can overcome the viscous
damping and induce a convective flow at the medium. As
shown in Fig. 8, when the bulk convective flow meets the im-
penetrability interface, the normal component of the velocity
is reduced to zero by the reactive force from the compressed
oblate drop, while the tangential velocity at the interface will
induce a shear stress and motivate a secondary flow inside the
drop. It should be noted that the flow inside the drop is much

weaker than the bulk flow in the injection model, contrary to
the situation in the LDM where the strength of the viscous
flow is similar inside and outside the drop.

Figure 9 presents the charge density distributions for two
representative cases T = 200, Ca = 1, εr = 5, Kr = 2 and
T = 200, Ca = 1, εr = 0.2, Kr = 0.5. It is seen that the pres-
ence of a dielectric drop has significant effects on the bulk
charge density distributions. For the anode-repelled drop in
Fig. 9(a), a charge-void region can be observed on the edge
of the domain, which is induced by the competition between
the drift mechanism and the convection mechanism for charge
transport [68]. This is also one of the representative features in
single-phase electroconvective flow. In addition, the value of
the charge density in the drop is obviously larger than the sur-
rounding medium due to parameter R > 1, accompanied by a
pair of symmetric highly charged trails that may be induced
by a drag force on the drop interface. As shown in Fig. 9(b),
for the anode-attracted drop, there are two low-charge regions.

FIG. 13. The variation of the charge void region with different Ca and T : (a) different Ca at T = 200, (b) different T at Ca = 1. Here, the
line of q = 0.05 is chosen to separate the charge void region.
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One is caused by the electroconvective flow in the bulk, and
the other is due to the high ion drift velocity inside the drop.

The final state shapes of the anode-repelled droplet and the
anode-attracted droplet for various combinations of Ca and T
are presented in Figs. 10(a) and 10(b), respectively. It is seen
that drop deformation increases with both Ca and T , but their
mechanisms are different. The effect of Ca on drop shape in
this model is the same as that in LDM [2], that is, a larger
Ca corresponds to a larger electric force or a smaller surface
tension, which makes the drop easier to deform. However, the
influence of T on drop shape can be explained by the fact
that the stronger electroconvective flow under a larger T will
induce a greater impulsive force, causing the drop to become
more deformed. When the impulsive force dominates drop
deformation, the drop tends to deform into an asymmetric
oblate shape, also called a bowl-shaped structure.

C. Behavior of the anode-repelled droplet

In this section, we conduct a quantitative study of the
transient development of the anode-repelled drop as well as
its steady-state deformation. Numerical results are presented
for a wide range of governing parameters T (0–500) and Ca
(0–5), while the parameters of the physical properties are fixed
at εr = 5, Kr = 2, M = 10, and α = 10–4.

Figure 11 plots the time history of Ne for T = 200 and
Ca = 2.5. The nonmonotonic variation of Ne can be separated
into several stages by five characteristic points (A, B, C, E ,
and F in Fig. 11). The corresponding interface position and
velocity vectors are also provided. There are two mechanisms
accounting for the change of Ne, namely the variation of E
induced by drop motion, and the change of the bulk flow
velocity u. The unsmooth evolution of Ne can be explained
by the competition between these two mechanisms. In other
words, Ne increases in the initial stage due to the perturbations
in the flow field induced by the drop motion under the unbal-
anced dielectric force. From time A to B, the drop moves away
from the emitter, leading to a decrease in the electric field,
and therefore the decrease of Ne. When the drop impacts the
electrode and bounces back (point B to C in Fig. 11), the drop
velocity decreases first and then the drop reverses its direction,
leading to decreasing fluid velocity and Ne. After time C, the
situation gets simpler as the drop no longer changes position.
Electroconvective flow becomes more developed in this pe-
riod, and both the maximum velocity Vmax and Ne increase as
time goes on. In addition, stronger electroconvection in the
bulk will impose a larger impulsive force on the interface,
and it will cause the drop to deform more to an oblate shape.
Finally, the drop will steadily attach to the upper electrode
under the combined effect of electric force and impulsive
force from the electroconvective flow.

The linear relation between D and Ca at small values
of Ca is a key characteristic of drop deformation under an
electric field. For the classic LDM, a linear expression D =
F (εr, σr )Ca has been obtained by Feng [6] based on the
first-order small-deformation model. Simulations based on
different numerical methods have also reproduced this lin-
ear relationship [41,42]. In this section, we seek out similar
relationships between D and Ca and T in the non-Ohmic
regime. Figure 12(a) presents the D-Ca curves at T = 100

and 200, and linear trends can be observed in both cases. For
T = 100, the electroconvective flow has not been motivated
(the linear stability criterion of single-phase electroconvection
is Tc = 164.1 [23,28]). The mechanism of drop deformation is
similar to that of LDM [2], that is, under the combined effect
of surface forces, the drop deforms into a prolate shape due
to the dominant dielectric force. However, for T = 200, the
situation is totally different as bulk convective flow has been
fully developed and starts to dominate the drop deformation.
As a consequence, an impulsive force is imposed on the bot-
tom of the drop and compresses it into a bowl shape, as shown
in Fig. 11. Although a linear relationship between D and
Ca can be observed for both prolate-shaped and bowl-shaped
drops, their slopes are different due to the different dominant
mechanisms of drop deformation. The calculated slopes of
D-Ca curves at T = 100 and 200 are 0.006 21 and −0.0281,
respectively, which means the presence of bulk electroconvec-
tive flow changes not only the magnitude of drop deformation,
but also its direction.

The relationship between D and T is more complex. As
shown in Fig. 12(b), the value of D decreases monotonously
along with increasing T because a strong impulsive force
under a high T tends to compress the drop into an oblate
shape. A sudden decrease of D can be observed at the linear
stability criterion Tc where the bulk electroconvective flow
has been motivated. Due to the subcritical bifurcation of
electroconvective flow, when T exceeds Tc, the bulk velocity
jumps from zero to a finite amplitude value, leading to the
sharp decrease of D. On the other hand, when compared to
the single-phase electroconvection model between two plate
electrodes, the presence of a drop in the multiphase model has
some effects on Tc. Quantificationally, the values of Tc in the
cases Ca = 1 and 2 are approximately estimated to be 162.5
and 157.5, respectively, which is lower than the value of the
single phase (164.1) [23,28].

In Fig. 13 we have displayed the curve q = 0.05, which
materializes the boundary between the charged and non-
charged regions at different Ca and T . The value of q in the
charge-void region is not strictly zero but is fairly small, of
order 10–5–10–4. This is due to the charge diffusion considered
in this work. As shown in Fig. 13(a), the size of the void region
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FIG. 14. Time history of Ne for the anode-attracted drop at T =
200 and Ca = 2.5. Other parameters considered are εr = 0.2, Kr =
0.5, M = 10, and α = 10–4.
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FIG. 15. Velocity vector and charge density distribution of two possible states of the anode-attracted drop: (a) quasisteady centrally
downward flow corresponding to point E in Fig. 14, (b) centrally upward flow corresponding to point F in Fig. 14.

increases slightly as Ca increases. This can be explained by
the fact that a larger Ca corresponds to a more oblate deformed
drop and stronger bulk flow. In addition, the charge-void re-
gion increases significantly with increasing T , as the values of
T are directly related to the flow strength.

D. Behavior of the anode-attracted droplet

In this section, we study the transient motion and steady
deformation of the anode-attracted drop. As discussed in
Sec. IV B, drop settling is mainly induced by the downward
net force imposed by the electric field on the interface. In
numerical simulation, we focus on the effects of T and Ca,
with physical property parameters being fixed at εr = 0.2,
Kr = 0.5, M = 10, and α = 10–4.

Figure 14 presents the transient development of electric
Nusselt number Ne for T = 200 and Ca = 2.5. Drop inter-
face and velocity vector are also provided in Fig. 14. The
mechanism for the variation of Ne is the same as that in the

anode-repelled drop case, that is, a competition between drop
motion and bulk convective flow. In the period when the drop
moves downward to the emitter (A-B in Fig. 14), the velocity
magnitude increases in the −y direction and the effective
electric potential decreases, leading to a decrease of Ne. When
the drop impacts the emitter, the drop velocity decreases to
zero. At the same time, bulk convective flow starts to develop,
resulting in an increase of Nu (B-C in Fig. 14). During stage
C-E , the system evolves into a quasisteady state, in which the
drop is compressed to an oblate shape by a center-downward
electroconvective flow. However, the quasisteady state at time
point E is potentially unstable, and the system will transfer
to a more stable state marked by E in Fig. 14 after a long
evolution time. To explain the mechanism of flow transition,
in Fig. 15 we have plotted both the flow field and the charge
density distribution at time points E and F . A centrally down-
ward flow can be observed in Fig. 15(a), i.e., fluid descends
in the center of the domain, hits the drop surface, and then
ascends at the peripheral region. A corresponding charge void
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FIG. 16. Time history of Vmax under different governing parameters Ca and T : (a) evolution of electroconvective flow with the increasing of
Ca at T = 200, and (b) flow transitions as T increases at Ca = 4. Other parameters considered are εr = 0.2, Kr = 0.5, M = 10, and α = 10–4.

region is formed above the drop due to the equilibrium of iner-
tia force and Coulomb repulsive force. However, this unstable
equilibrium will be broken when the convective flow strength
exceeds the limitations of Coulomb repulsion. Therefore, the
system will finally transfer to a centrally upward flow with a
charge void region at the edge of the domain, as presented in
Fig. 15(b).

Flow transition and the related instability with increasing
governing parameters Ca and T are briefly discussed in this
part. In Fig. 16(a), the evolution of maximum velocity Vmax

is presented for different Ca at T = 200. For relatively small
values of Ca (= 0.5 and 1.0), a stable centrally downward
flow [see Fig. 15(a)] can be observed. With increasing Ca,
strong convective flow breaks the original equilibrium, result-
ing in a transition of the system into another steady centrally
upward pattern [see Fig. 15(b)]. Upon further increasing the
parameter Ca to 5, a slight swing of the drop occurs in the
horizontal direction, leading to a periodic change of Vmax

as shown in Fig. 16(a). By fixing Ca = 4 and changing T ,
we can obtain another route of the transition of flow. In
the previous numerical study of Wang et al. [69] for single-
phase electroconvective flow induced by unipolar injection,

the system continually experiences the hydrostatic state (T <

164), steady flow (164 < T < 213), periodic flow (213 <

T < 281), second steady flow (281 < T < 419), oscillatory
flow, and finally becomes chaotic with the increase of T . Ob-
viously, the situation is more complex in the presence of the
anode-attracted drop. As illustrated in Fig. 16(b), the transient
development of the flow can be simply separated into two
stages, marked by I and II in Fig. 16(b), respectively. The
system first develops a centrally downward flow in stage I due
to the downward motion of the drop, and then it evolves into
different flow styles depending on T at stage II. At a relatively
small T = 160, the system will keep the centrally downward
pattern at stage II, but this steady state is potentially unstable
at larger T (= 170), where the drop periodically swings in the
horizontal direction, leading to a periodic flow as shown in
Fig. 16(b). With a further increase of T (= 200), a transition
from a centrally downward flow to a steady upward flow can
be obtained. At T = 300, centrally upward flow is no longer
stable and the system evolves into an oscillation state. In
conclusion, when T varies from 160 to 300, this multiphase
EHD case successively experiences steady flow, periodic flow,
second steady flow, and oscillatory flow.
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FIG. 17. The variation of D with different Ca and T for the anode-attracted drop: (a) D-Ca curves at T = 100 and 200; (b) D-T curves at
Ca = 2 and 4. Other parameters considered are εr = 0.2, Kr = 0.5, M = 10, and α = 10–4.
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The variations of deformation factor D under different
Ca and T are presented in Fig. 17. It can be observed that
the D-Ca curve has an approximately linear relationship. For
T = 100, the bulk convective flow has not been well devel-
oped, and drop deformation is dominated by the unbalanced
dielectric force on the interface, therefore the value of D
decreases with an increase of Ca, as shown in Fig. 17(a). But
for T = 200, the value of D experiences a sharp increase, at
which point the drop shape changes from oblate to prolate
due to the flow transition from centrally downward flow to
upward flow. As illustrated in Fig. 17(b), the D-T curves
at Ca = 2 and 4 share a similar trend, that is, the value
of D first decreases linearly, then jumps to a positive value
due to the flow transition, and then increases linearly as T
increases.

IV. CONCLUSIONS

In the present work, the study of multiphase EHD is
extended to the non-Ohmic conduction regime. A fundamen-
tal case of drop deformation under the simultaneous action
of unipolar charge injection and electric field is investi-
gated. Direct numerical simulation based on fully coupled
equations is performed based on our recently developed
unified lattice Boltzmann model. Numerical results are pre-
sented for both the transient drop motion and steady-state
deformation, and several key conclusions can be drawn as
follows:

(i) At the hydrostatic state without flow motion, an analyt-
ical solution is derived for a quasi-one-dimensional case, and
the numerical results agree well with the analytical solutions,
with a maximum difference less than 1%. A discontinuity
can be observed in the Ey and q distributions due to the
different physical properties inside and outside of the drop.
Specifically, the ratios of Ey at different sides of the interface
are inversely proportional to the permittivity ratio εr , while
the ratio of q is equal to the value of R(= εr/Kr ). For R < 1,
ions move faster in the drop than in the surrounding medium,
which induces a “lower charge region” and a relatively small
electric Nusselt number Ne. For R > 1, however, ions move
slower in the drop, resulting in a “charge-accumulated region”
inside the drop and a larger Ne than in the single-phase results.

(ii) Unlike the steady suspension droplet in the well-known
leaky dielectric model (LDM), unsteady drop motion will be
motivated due to the unbalanced electric force in the injection
model. For the cases considered in this paper, the net dielectric
force at the interface dominates the flow, and the drop motion
depends on the permittivity ratio εr . In detail, at εr > 1 the
drop moves in an upward direction to the receiver electrode,
referred to as the “anode-repelled drop.” On the contrary, the
“anode-attracted drop” can be observed under the effect of
negative dielectric force for the case εr < 1. In addition, a
bulk electroconvective flow will be induced by the volumetric
free charge under the electric field, and a secondary flow can
also be observed inside the drop due to the viscous shear
force at the interface induced by the tangential motion of yjr
surrounding medium.

(iii) For the anode-repelled case, the drop experiences an
accelerated upward motion, collision with the electrode, and
then a bounce-back, finally deforming into a “bowl-shaped

structure” (an asymmetric oblate shape). An interesting fea-
ture found in the present study is that the deformation factor D
maintains a linear relationship with Ca in the presence of bulk
flow. Quantificationally, the calculated slopes of D-Ca curves
at T = 100 and 200 are 0.006 21 and −0.0281, respectively,
which means that the presence of bulk electroconvective flow
changes not only the magnitude of drop deformation, but also
its direction. However, the D-T relationship is more com-
plex due to the subcritical bifurcation of electroconvection.
A sudden decrease of D can be observed at the linear stability
criterion Tc where the bulk electroconvective flow has been
motivated. On the other hand, the presence of a drop makes
the bulk flow easier to motivate than the single-phase problem,
reflected in the decreasing values of Tc to 157.5, which is
lower than the value of the single phase (164.1).

(iv) For the anode-attracted drop, the system first evolves
into a quasisteady state where the drop is compressed into
an oblate shape by a center-downward electroconvective flow,
and then it develops into different flow styles depending on T .
With T varying from 160 to 300, this multiphase EHD case
successively experiences steady flow, periodic flow, second
steady flow, and oscillatory flow. In addition, variations of the
deformation factor D under different Ca and T have a basic
linear relationship, but discontinuities can be observed in D-
Ca and D-T curves due to the flow transition from centrally
downward flow to upward flow.
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APPENDIX: DERIVATION OF ANALYTICAL SOLUTIONS

We have the electric part equation for the charge injection
model, including the Gauss law for the electric field (E) in
Eq. (A1) and the charge and Nernst-Planck equation for the
conservation of charge density in Eq. (A2),

∇ · εE = q, (A1)

∂q

∂t
+ u · ∇q = ∇ · (−KqE + D∇q). (A2)

For the hydrostatic solution at steady state and neglecting
charge diffusion, we need to solve the following simplified
equations:

∇ · εE = q, ∇ · (KqE)=0. (A3)

Equations (A3) are ordinary differential equations. Their
general solution in the one-dimensional case can be obtained
as

E = a(z + b)1/2, q = aε

2(z + b)1/2 ,

φ = −2

3
a(z + b)3/2 + c, (A4)

where a, b, and c are constants to be determined. In addition,
the values of a, b, and c are different in different layers,
labeled by the subscripts 1–3 in layers 1–3, respectively.
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Combined with the conditions at the boundaries and interfaces, we have the following: at z = 0, q = C, φ = 1; at z = 1/3,
Krq2Ez2 = q1Ez1, εrEz2 = Ez1; at z = 2/3, Krq2Ez2 = q3Ez3, εrEz2 = Ez3, where εr and Kr are the permittivity and mobility
ratios between dielectric 2 and dielectric 1.

We have the following coupled algebraic equations:

a1 = 2Cb1/2
1 , a2 = 1√

εrKr
a1, a3 = a1, b2 = Kr

εr

(
b1 + 1

3

)
− 1

3
, b3 = b1+ εr

3Kr
− 1

3
,

2

3
a1

[(
1

3
+ b1

)2

− b3/2
1

]
+ 2

3
a2

[(
2

3
+ b2

)2

−
(

1

3
+ b2

)2]
+ 2

3
a3

[
(1 + b3)2 −

(
2

3
+ b3

)2]
− 1 = 0.
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