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A linear lattice velocity model is developed, and a corresponding lattice Boltzmann flux solver (LBFS)
is constructed based on it. This solver calculates the fluxes of the linearized Euler equations (LEEs), which
are discretized by the finite volume method (FVM), and can simulate acoustic propagation in fluids. First,
the expressions for the distribution function and the lattice velocity of the linear discrete velocity model are
constructed using the moment relations in linear form. Second, based on Chapman-Enskog analysis and moment
relations, the mesoscopic flux expression can be constructed by comparing the linear lattice Boltzmann equation
and LEEs. Finally, the developed scheme is used to calculate the LEE flux term. The developed linear lattice
velocity model-based LBFS has the following advantages: (i) It extends the lattice Boltzmann model-based flux
solver from solving the macroscopic equations of fluid dynamics to solving linear equations; (ii) it also inherits
the advantages of the Boltzmann model-type flux solver. The variables at the interface are calculated from the
local solution of the lattice Boltzmann equation, making it more physical. In addition, least-squares-based finite
differences and Gaussian integration are used for the FVM to discretize the LEE, making it a high-precision
algorithm. Thus, the developed algorithm can accurately capture acoustic propagation in fluids and acoustic
scattering in complex geometries. Several numerical cases for propagating acoustics in fluids are simulated
to validate the accuracy and robustness of the present algorithm, and an accuracy test shows it approaches
fourth-order accuracy.
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I. INTRODUCTION

Many practical engineering problems [1–3] involve acous-
tic waves passing through complex flow structures such as
vortices and shear layers. For example, in an acoustic wind
tunnel experiment, waves from the sound source must pass
through the shear layer formed by the exit jet of the wind
tunnel and the static surrounding air to reach the microphone
array in the far field. Research has shown that refraction,
reflection, and scattering occur when acoustic waves pass
through shear layers, changing the amplitude, frequency, and
phase of the signal received by the microphone and influ-
encing the accuracy of aerodynamic noise measurement and
sound source localization [4]. Therefore, the study of acoustic
wave propagation characteristics in fluids is important.

Numerical simulation is essential for studying acoustic
waves propagating in fluids, and researchers have applied
computational fluid dynamics (CFD) technology to study
aeroacoustics problems. The essence of the acoustic waves is
the disturbance. Therefore, to simulate acoustic propagation
is to simulate the disturbance propagating and evolving in
fluids. At present, there are two main methods to simulate
acoustic propagation in fluids using CFD. The first of these,
direct numerical simulation (DNS) [5], is used to simulate
the full flow field, including the disturbance. However, the
disturbance is generally orders of magnitude smaller than
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the base flow, so it is necessary to use a very fine grid and
a small time step to accurately capture the acoustic waves,
resulting in huge computational demands. The second option
is to use the acoustic propagation equations. The variables
are decomposed into the mean flow and disturbance parts
and substituted into the governing fluid dynamics equations.
The linear acoustic propagation equations [6–8] can then be
derived by ignoring the nonlinear terms. The computational
requirements of this approach are much smaller than for di-
rect numerical simulation. In addition, the viscous effects of
the fluids on the acoustics can generally be ignored, so the
linearized Euler equations (LEEs) are used to simulate the
disturbance propagation.

The generally used method for solving LEEs is the finite
difference method (FDM). However, it is often performed in
structured grids, which makes it suitable for simulation of
simple geometries; otherwise, it needs to use techniques such
as the coordinate transformation, multiblock grid, etc., and
increase the complexity of the algorithm. The finite volume
method [9] (FVM) is a common discrete method for solving
the governing equations of fluid dynamics and can be used
for unstructured grids. Thus, it is suitable for the simulation
of flows in complex geometries. The calculation of fluxes at
the interfaces between cells is a key requirement of the FVM.
The traditional flux scheme often regards the interface as the
Riemann discontinuity when calculating inviscid fluxes and
obtains the fluxes at the interface by solving the Riemann
problem [10,11]. However, the solution to the multidimen-
sional Riemann problem is difficult to obtain [12], so most
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schemes are based on one-dimensional Riemann problems to
calculate the fluxes. As a result, it is necessary to approximate
the components tangent to the interface. In addition, the vis-
cous and inviscid fluxes should be calculated with different
schemes in the traditional method, which increases the algo-
rithmic complexity.

In recent years, lattice and continuous Boltzmann model-
based flux solvers have been gradually developed, such as the
lattice Boltzmann flux solver (LBFS) and simplified distribu-
tion function-based gas kinetic schemes proposed by Shu and
co-workers [13,14], the unified gas kinetic scheme (UGKS)
proposed by Xu and co-workers [15], and the discrete unified
gas kinetic scheme proposed by Guo and co-workers [16].
These types of schemes have been applied widely [17–22].
From a mesoscopic perspective, the Boltzmann equation de-
scribes the flow field using the density distribution function
of a particle. These Boltzmann model-based flux solvers can
be conveniently extended to multiple dimensions so that no
approximations are needed to calculate the variables tangen-
tial to the interface. Furthermore, the inviscid and viscous
fluxes are coupled and calculated simultaneously, resulting in
a more consistent algorithm. Schemes of this type, having ad-
vantages compared to traditional schemes, have been applied
to various flow problems [23–27]. However, they start from
the Boltzmann equation or lattice Boltzmann equation and use
the Maxwell function [28] or simplified distribution function
[29] for the equilibrium distribution function to derive the flux
expressions of the Navier-Stokes or Euler equations, which is
not suitable for LEE simulating acoustic propagation prob-
lems. Although Vergnault et al. [30] have derived the linear
form of the lattice Boltzmann equation and corresponding
linear Maxwell function, it is essentially a lattice Boltzmann
method and does not construct the flux scheme. In addition,
the truncated Maxwell function is used, making it suitable
for incompressible flow without solving the energy equation.
Therefore, there is a need to develop a compressible Boltz-
mann model-based flux solver for LEE.

In terms of the compressible Boltzmann equation, Qu et al.
[31] have inversely derived the equilibrium distribution func-
tion based on moment relations and developed the D1Q4L2
and D2Q13L2 models, and Yang et al. have improved the lat-
tice model and provided the corresponding D1Q4 and D1Q5
models [32,33]. They can be applied to compressible flows,
and the form of the equilibrium distribution function is sim-
pler than the Maxwell function. This model provides a good
reference for deriving a flux solver for the LEE based on
the compressible Boltzmann model. It is foreseeable that the
linear lattice Boltzmann model and corresponding distribution
function in linear form can be derived based on the moment
relations from the linear lattice Boltzmann equation (LLBE),
and the flux scheme for the LEE can be constructed. In the
present work, a linear D1Q4 model is developed, and the
corresponding flux scheme for the LEE is constructed. Specif-
ically, from the LLBE, the moment relations to recover the
LEE are derived based on Chapman-Enskog (CE) analysis,
and these relations are solved by treating the equilibrium
distribution function and lattice velocity as the unknowns.
As a consequence, the linear D1Q4 model can be defined.
When calculating the fluxes at the interfaces between cells,
the LLBE is solved locally. The LLBE is multiscale expanded

with respect to the Knudsen number using CE analysis, and
the flux expression can be constructed based on the moment
relations and the developed linear D1Q4 model.

Finally, the linear D1Q4 model-based LBFS is formed
and applied to simulate acoustic propagation in fluids. Be-
cause the disturbance is much smaller than the base flow,
a high-precision algorithm is needed to provide sufficient
resolution to capture the disturbance. In recent years, Liu
et al. proposed a high-precision least-squares-based finite-
difference–finite-volume (LSFD-FV) method [25,34,35] for
unstructured grids, which uses high-order Taylor series to
approximate the variable distributions with the flux terms
integrated using high-order Gaussian integration [36]. The un-
known derivatives are calculated from the values of the control
cell and neighboring cells using the mesh-free least-squares
method [37]. Research has shown that the method’s accuracy
and efficiency are better than the k-exact method [38], and that
it is suitable for flow in complex geometries. Therefore, in the
present work, the high-precision FVM is used to discretize the
LEE, the Taylor series are used to approximate the distribution
of variables within and around the control cell, the LSFD
is used to calculate the unknown derivatives, and Gaussian
integration is used to calculate the total fluxes of a cell.

This article is organized as follows. In Sec. II, the relations
between the LLBE and LEE, the derivation and application
of the linear D1Q4, and the computational sequence are dis-
cussed to introduce the principle of the algorithm. In Sec. III,
several numerical cases are simulated to validate the proposed
algorithm. Finally, conclusions are drawn in Sec. IV.

II. METHODOLOGY

A. Discretization of governing equations

The governing equations for simulating acoustic propa-
gation in fluids are the LEE in terms of disturbed density,
velocity, and pressure, and the integrated form in the x-y
coordinate system can be written as∫

V

∂W′

∂t
dV +

∫
S

F′dS =
∫

V
S′dV , (1)

where t is the time, V is the volume of the control cell, and
S represents the surfaces of the control cell. The conservative
variables W′ and inviscid fluxes F′ can be written as

W′ =

⎧⎪⎨
⎪⎩

ρ ′
ρ ′ū + ρ̄u′
ρ ′v̄ + ρ̄v′

ε′

⎫⎪⎬
⎪⎭, (2)

F′ =

⎧⎪⎨
⎪⎩

ρ ′ūn + ρ̄u′
n

ρ ′ūnū + ρ̄u′
nū + ρ̄ūnu′ + p′nx

ρ ′ūnv̄ + ρ̄u′
nv̄ + ρ̄ūnv

′ + p′ny

u′
n(ε̄ + p̄) + ūn(ε′ + p′)

⎫⎪⎬
⎪⎭, (3)

where ρ, u, v, p, and ε are, respectively, the density, velocity
in the x direction, velocity in the y direction, pressure, and the
total energy per unit volume. nx and ny are the x and y compo-
nents of the boundary unit normal vector. The bar represents
the base flow variables, and the prime represents the perturbed
flow variables. The subscript n denotes the direction normal to
the control cell boundary. There are four unknown variables,
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ρ ′, u′, v′, and p′, because p′ can be obtained from

ε′ = p′

γ − 1
+ ρ̄(u′ū + v′v̄) + 1

2
ρ ′(ū2 + v̄2). (4)

Consequently, the four unknown variables can be solved
from the four equations.

The source terms in Eq. (1) have not been defined yet. They
are related to the perturbed sources of the density and pressure
and in the present work are defined as follows:

S′ =

⎧⎪⎪⎨
⎪⎪⎩

ρ ′
s

ρ ′
sū + ρ̄u′

s

ρ ′
sv̄ + ρ̄v′

s
1
2ρ ′

s(ū
2 + v̄2) + p′

s
γ−1 + ρ̄(ūu′

s + v̄v′
s)

⎫⎪⎪⎬
⎪⎪⎭, (5)

where γ is the specific heat ratio. The specific forms of the
perturbed density source ρ ′

s, perturbed velocity sources u′
s

and v′
s, and perturbed pressure source p′

s are defined later.
The relation p′

s = ρ ′
sc

2
0 is also available [1], where the base

flow sound velocity is c0 = √
γ p̄/ρ̄.

A two-point Gauss integration is performed in the surface
integral of Eq. (1) to discretize the governing equations,

∂

∂t

∫
V

W′dV +
Ns∑

n=1

2∑
m=1

(wmF′
mSm)ns =

∫
V

S′dV , (6)

where m represents the mth Gauss point, and ns represents
the nsth surface of a cell where Ns is the total number of cell
surfaces, and w is the Gauss integration weight. The conserva-
tive variables W′ within a control cell can be expressed using
a third-order Taylor series expansion,

W′(x, y) = W′(xi, yi ) + (�x)T ∇W′(xi, yi ) + 1

2
(�x)T H(�x) + 1

6
(�2x)

T
G(�x) + O(�x4,�y4), (7)

where (xi, yi ) is the centroid position of cell i, the distance between two points is �x = (x − xi, y − yi )T , and �2x =
[(x − xi )2, (y − yi )2]

T
. The matrix G and Hessian matrix H are

H =
[

∂2W′
∂x2

∣∣
(xi,yi )

∂2W′
∂x∂y

∣∣
(xi,yi )

∂2W′
∂x∂y

∣∣
(xi,yi )

∂2W′
∂y2

∣∣
(xi,yi )

]
, G =

[
∂3W′
∂x3

∣∣
(xi,yi )

3 ∂3W′
∂x2∂y

∣∣
(xi,yi )

3 ∂3W′
∂x∂y2

∣∣
(xi,yi )

∂3W′
∂y3

∣∣
(xi,yi )

]
. (8)

Therefore, the volume integral
∫

V W′dV can be calculated based on Eq. (7) and written as W′(xi, yi )Vi + DT
i Ci, where vectors

Di and Ci are

Di =
[

∂W′

∂x

∣∣∣∣
(xi,yi )

∂W′

∂y

∣∣∣∣
(xi,yi )

∂2W′

∂x2

∣∣∣∣
(xi,yi )

∂2W′

∂y2

∣∣∣∣
(xi,yi )

∂2W′

∂x∂y

∣∣∣∣
(xi,yi )

×∂3W′

∂x3

∣∣∣∣
(xi,yi )

∂3W′

∂y3

∣∣∣∣
(xi,yi )

∂3W′

∂x2∂y

∣∣∣∣
(xi,yi )

∂3W′

∂x∂y2

∣∣∣∣
(xi,yi )

]T

, (9)

Ci =
[∫

V
(x − xi )dV

∫
V

(y − yi )dV
1

2

∫
V

(x − xi )
2dV

1

2

∫
V

(y − yi )
2dV

∫
V

(x − xi )(y − yi )dV

×1

6

∫
V

(x − xi )
3dV

1

6

∫
V

(y − yi )
3dV

1

2

∫
V

(x − xi )
2(y − yi )dV

1

2

∫
V

(x − xi )(y − yi )
2dV

]T

. (10)

The vector Ci is only related to the grids, while the vector Di contains unknown derivatives, which are to be determined by
the LSFD method; i.e., it is calculated from the neighbor points to minimize its two-norm error. As a result, Di can be expressed
by the conservative variables of cell i and its neighbor cells with the expression

Di = QT
i

⎡
⎢⎣

W′(x1, y1) − W′(xi, yi )
W′(x2, y2) − W′(xi, yi )

· · ·
W′(xN , yN ) − W′(xi, yi )

⎤
⎥⎦. (11)

The derivation details are not provided here; readers can refer to Ref. [25] for additional information. The resulting final form
of the integral

∫
V W′dV is (Vi−

∑N
j=1 Bi j )W′(xi, yi ) + ∑N

j=1 Bi jW′(x j, y j ), where N is the number of the neighbor cells of cell
i, and Bi j is the jth component of the vector Bi, calculated as Bi = QT

i Ci. The matrix Qi can be written as

Qi = Ai
[
(PiAi )

T Mi(PiAi )
]−1

(PiAi )
T Mi, (12)
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where matrixes P, A, and Mi are

Pi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�x1 �y1 �x2
1

/
2 �y2

1

/
2 �x1�y1 �x3

1

/
6 �y3

1

/
6 �x2

1�y1
/

2 �x1�y2
1

/
2

�x2 �y2 �x2
2

/
2 �x2

2

/
2 �x2�y2 �x3

2

/
6 �y3

2

/
6 �x2

2�y2
/

2 �x2�y2
2

/
2

�x3 �y3 �x2
3

/
2 �x2

3

/
2 �x3�y3 �x3

3

/
6 �y3

3

/
6 �x2

3�y3
/

2 �x3�y2
3

/
2

...
...

...
...

...
...

...
...

...

�xN �yN �x2
N

/
2 �x2

N

/
2 �xN�yN �x3

N

/
6 �y3

N

/
6 �x2

N�yN
/

2 �xN�y2
N

/
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

Ai = diag
[
d−1

i d−1
i d−2

i d−2
i d−2

i d−3
i d−3

i d−3
i d−3

i

]
, (14)

Mi = diag[wi1 wi2 · · · wiN ], (15)

and where �x j = x j − xi, �y j = y j − yi for j = 1, . . . , N . di is chosen as 1.1[maxN
j=1(

√
�x2

j + �y2
j )] and wi j =

1/
√

�x2
j + �y2

j . It is worth noting that the vector Bi and matrix Qi are only dependent on the grid and can be computed before

the iterations begin. As a consequence, the governing equations can be expressed as

∂

∂t

[(
Vi −

N∑
j=1

Bi j

)
W′(xi, yi ) +

N∑
j=1

Bi jW′(x j, y j )

]
= −Ri[W′(xi, yi )], (16)

where the residual term is Ri = ∑Ns
n=1

∑2
m=1 (wmF′

mSm)n − S′Vi. The time derivative is also needed to complete the discretiza-
tion. In the present work, all the test cases are unsteady problems; therefore, the dual time stepping method is adopted, and the
pseudotime level is introduced as

∂

∂t∗

[(
Vi −

N∑
j=1

Bi j

)
W′(xi, yi ) +

N∑
j=1

Bi jW′(x j, y j )

]
= −R∗

i [W′(xi, yi )], (17)

where t∗ is the pseudotime and R∗ is defined as

R∗
i [W′(xi, yi )] = −

{
Ri[W′(xi, yi )] + ∂

∂t

[(
Vi −

N∑
j=1

Bi j

)
W′(xi, yi ) +

N∑
j=1

Bi jW′(x j, y j )

]}
. (18)

The time derivative of R∗ is approximated by second-order
finite difference and the three-stage Runge-Kutta scheme
[39,40] is used for pseudotime derivatives. The details are not
repeated here, because readers can refer to Refs. [25,41] for
details.

The governing equations have now been discretized in both
time and space. The next task is to determine the fluxes F′

m in
the residual term, which are discussed in Sec. II D.

B. Recovery of the LEE from the LLBE with CE analysis

In this work, the linear LBFS, which constructs the flux
expression based on the local solution of the LLBE, is used to
calculate the fluxes. Therefore, it is necessary to determine
the relationships between the LLBE and LEE. In the x-y
coordinate system, without external forces, the LLBE based
on the Bhatnagar-Gross-Krook (BGK) [42] collision model
can be written as

f ′
α (x + ξαδt , t + δt ) − f ′

α (x, t )

= − 1

τ
[ f ′

α (x, t ) − g′
α (x, t )]. (19)

The subscript α represents the αth particle. f ′
α is the

density distribution function and g′
α is the equilibrium distri-

bution function of the αth particle. δt is the time step, τ is the
dimensionless relaxation time, and ξα is the lattice velocity
of the αth particle which reduce to the velocity normal to
the interface (a scalar) in one dimension. The equilibrium
distribution function g′

α and lattice velocity ξα are defined in
Sec. II C.

Based on the CE expansion analysis [43], a relationship
can be built between kinetic theory and the macroscopic equa-
tions. According to the conservation of mass, momentum, and
energy, three moment relations can be derived:∑

α

g′
α = ρ ′,

∑
α

g′
αξα = ρ ′ū + ρ̄u′,

∑
α

g′
α (ξαξα + 2e′

p) = 2ε′, (20)

where e′
p = [1−D(γ−1)/2]e′ is the particle potential energy;

D is the dimension, chosen as 1 if the D1Q4 model is used;
and e′ = p′/[ρ ′(γ−1)]. First, the LLBE (19) is expanded in a
first-order Taylor series,

∂ f ′
α

∂t
δt + ξαδt∇ f ′

α = − 1

τ
( f ′

α − g′
α ) + O

(
δ2

t

)
, (21)
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where ∇ = ∂
∂x is the Hamiltonian, which reduces to ∂

∂x in
one dimension. The distribution function, time derivative, and
space derivative are multiscale expanded as

f ′
α = f ′(0)

α + Kn f ′(1)
α + Kn2 f ′(2)

α + · · · ,

∂

∂t
= Kn

∂

∂t1
+ Kn2 ∂

∂t2
,

∂

∂x
= Kn

∂

∂x1
, (22)

where Kn is a small parameter identified with the Knudsen
number (Kn). By substituting Eq. (22) into Eq. (21), the coef-
ficient of each order of Kn results in the following equations

Kn0 : f ′(0)
α = g′

α, (23)

Kn1 :
∂ f ′(0)

α

∂t1
+ ξα∇1 f ′(0)

α = − 1

τδt
f ′(1)

α , (24)

Kn2 :
∂ f ′(0)

α

∂t2
+ ∂ f ′(1)

α

∂t1
+ ξα∇1 f ′(1)

α = − 1

τδt
f ′(2)

α . (25)

By multiplying Eqs. (24) and (25) with the collisional
invariants ϕ = [1 ξα ξαξα/2+e′

p]T and performing inte-
gration in the lattice velocity space, one can obtain

∂

∂t1

⎛
⎝ ρ ′

ρ ′ūn + ρ̄u′
n

ε′

⎞
⎠ + ∂

∂x1

⎛
⎝ ρ ′ūn + ρ̄u′

n

ρ ′ūnūn + ρ̄u′
nūn + ρ̄ūnu′

n + p′∑
α g′

α (ξαξα + 2e′
p)ξα

⎞
⎠

=
⎛
⎝0

0
0

⎞
⎠, (26)

∂

∂t2

⎛
⎝ ρ ′

ρ ′ūn + ρ̄u′
n

ε′

⎞
⎠ + ∂

∂x1

⎛
⎝

∑
α f ′(1)

α ξα∑
α f ′(1)

α ξαξα∑
α f ′(1)

α ξα (ξαξα/2 + e′
p)

⎞
⎠

=
⎛
⎝0

0
0

⎞
⎠, (27)

where Eq. (23) and the moment relations Eq. (20) have been
used. Adding Eqs. (26) and (27) should result in the LEE,
implying that f ′(1)

α = 0 ( f ′
α = g′

α). In other words, the distri-
bution function only needs to be expanded to the zeroth order
of Kn to recover the Euler equations. After adding Eqs. (26)
and (27), the result is exactly the LEE in one dimension:

∂

∂t

⎛
⎜⎜⎝

ρ ′

ρ ′ūn + ρ̄u′
n

ε′

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρ ′ūn + ρ̄u′
n

ρ ′ūnūn + ρ̄u′
nūn + ρ̄ūnu′

n + p′

ūn
(
ρ̄ūnu′

n + 0.5ρ ′ūnūn + γ

γ−1 p′) + u′
n
(
0.5ρ̄ūnūn + γ

γ−1 p̄
)
⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠. (28)

The coordinate system is established in the direction normal to the interface, and the subscript n represents the interface
normal direction. From Eq. (28), another moment relation can be found:∑

α

g′
α (ξαξα + 2e′

p)ξα = ūn

(
2ρ̄ūnu′

n + ρ ′ūnūn + 2γ

γ − 1
p′
)

+ u′
n

(
ρ̄ūnūn + 2γ

γ − 1
p̄

)
. (29)

Since the discrete velocity model is one dimensional, ap-
proximations for variables in other directions should be made.
Equation (28) can be extended to two dimensions with the
approximations∑

α

g′
αξα ūτ = ρ̄u′

nūτ + ρ ′ūnūτ , (30)

∑
α

g′
αξα ū2

τ = ρ̄u′
nū2

τ + ρ ′ūnū2
τ , (31)

where the subscript τ represents the direction tangential to the
interface. The perturbed tangential velocity u′

τ at the interface
can be approximated by the Roe average.

C. Development of linear discrete velocity model
from moment relations

The discrete velocity model is an important role for the
lattice Boltzmann equation. In the present work, the LLBE
is used. Therefore, a corresponding linear discrete velocity
model is discussed in this section. The developed linear dis-
crete velocity model, called L-D1Q4, is a one-dimensional
model with four lattice velocities and works for linear gov-

erning equations. A schematic of this model is shown in
Fig. 1, where d is the lattice velocity. If the equilibrium
density distribution functions and lattice velocities are con-
sidered unknowns, there are six unknowns in this model (four

FIG. 1. Schematic of the L-D1Q4 model.

065303-5



ZHAN, CHEN, SONG, AND YOU PHYSICAL REVIEW E 105, 065303 (2022)

equilibrium distribution functions g′
1, g′

2, g′
3, g′

4 and two
lattice velocities d1, d2).

For clarity, the moment relations Eqs. (20) and (29) are
reorganized and rewritten as∑

α

g′
α = ρ ′,

∑
α

g′
αξα = ρ ′ūn + ρ̄u′

n,

∑
α

g′
αξαξα = ρ ′ūnūn + 2ρ̄u′

nūn + p′,

∑
α

g′
αξαξαξα = ūn(2ρ̄ūnu′

n + ρ ′ūnūn + 3p′)

+ u′
n

(
ρ̄ūnūn + 2γ

γ − 1
p̄ − 2ρ̄e′ + ρ̄c′2

)
,

(32)

where c′ = √
(γ−1)e′. For the L-D1Q4 lattice velocity

model, α varies as 1−4 and ξα is d1 or d2. Finally, one can
obtain four equations by substituting the model parameter into
Eq. (32).

g′
1 + g′

2 + g′
3 + g′

4 = ρ ′,

g′
1d1 − g′

2d1 + g′
3d2 − g′

4d2 = ρ ′ūn + ρ̄u′
n,

g′
1d2

1 + g′
2d2

1
+ g′

3d2
2

+ g′
4d2

2
= ρ ′ūnūn + 2ρ̄u′

nūn + p′,

g′
1d3

1 − g′
2d3

1
+ g′

3d3
2

− g′
4d3

2
= ūn(2ρ̄ūnu′

n + ρ ′ūnūn + 3p′) + u′
n

(
ρ̄ūnūn + 2γ

γ − 1
p̄ − 2ρ̄e′ + ρ̄c′2

)
. (33)

Among the six unknown variables, the lattice velocity can be determined by local total energy E [44], that is, d2 = √
E ,

d1 = d2/4. Therefore, there are four unknown variables (g′
1, g′

2, g′
3, g′

4), and they can be solved from the closed equation
system given by Eq. (33). The algebraic operations are not repeated here because they can be performed using MATLAB or MAPLE

software. The final expressions for the distribution functions are

g′
1 = [

u′
n
(
2ε̄ + 2 p̄ + 2ρ̄ū2

n − 2ρ̄e′ + ρ̄c′2 − ρ̄d2
2

) + ūn
(
3p′ + ρ ′ū2

n + ρ ′d1ūn − ρ ′d2
2 + 2ρ̄d1u′

n
) + p′d1 − ρ ′d1d2

2

]/
[
2d1

(
d2

1 − d2
2

)]
,

g′
2 = −[

u′
n
(
2ε̄ + 2 p̄ + 2ρ̄ū2

n + ρ̄c′2 − 2ρ̄e′ − ρ̄d2
2

) + ūn
(
3p′ + ρ ′ū2

n − ρ ′d1ūn − ρ ′d2
2 − 2ρ̄d1u′

n
) − p′d1 + ρ ′d1d2

2

]/
[
2d1

(
d2

1 − d2
2

)]
,

g′
3 = −[

u′
n
(
2ε̄ + 2 p̄ + 2ρ̄ū2

n − 2ρ̄e′ + ρ̄c′2 − ρ̄d2
1

) + ūn
(
3p′ − ρ ′d2

1 + ρ ′ū2
n + ρ ′d2ūn + 2ρ̄d2u′

n
) + p′d2 − ρ ′d2

1 d2
]/

[
2d2

(
d2

1 − d2
2

)]
,

g′
4 = [

u′
n
(
2ε̄ + 2 p̄ + 2ρ̄ū2

n − 2ρ̄e′ + ρ̄c′2 − ρ̄d2
1

) + ūn
(
3p′ + ρ ′ū2

n − ρ ′d2
1 − ρ ′d2ūn − 2ρ̄d2u′

n
) − p′d2 + ρ ′d2

1 d2
]/

[
2d2

(
d2

1 − d2
2

)]
, (34)

where ε̄ = p̄/(γ−1) + 0.5ρ̄ū2
n is the total energy per unit vol-

ume of the base flow. Every parameter of the L-D1Q4 model
has now been defined. Another approach to constructing the
discrete velocity model is based on a known distribution
function, such as the Maxwellian function, while the con-
struction method of this section is an “inverse design,” which
strictly satisfies the moment relations. A similar D1Q4 model
used for macroscopic governing equations can be found in
Refs. [32,33].

D. Implementation of the L-D1Q4-based LBFS

From Secs. II B and II C, the L-D1Q4-based LBFS can
be derived to construct the fluxes (F′

m)ns in Eq. (6) explicitly.
Again, (F′

m)ns is the mth Gaussian point of the nsth surface of
a cell. Based on the discussion in Sec. II C, the fluxes F′

n in
one dimension can be written as

F′
n =

⎡
⎣F ′

n1

F ′
n2

F ′
n3

⎤
⎦ =

⎡
⎣

∑
α g′

αξα∑
α g′

αξαξα∑
α g′

αξα (ξαξα/2 + e′
p)

⎤
⎦. (35)

By combining Eqs. (30) and (31), the fluxes (F′
m)ns can be

expressed as

F′ =

⎡
⎢⎢⎢⎢⎣

F ′
n1

F ′
n2nx + (ρ̄ūnu′

τ + F ′
n1ūτ )ny

F ′
n2(−ny) + (ρ̄ūnu′

τ + F ′
n1ūτ )nx

F ′
n3 + 0.5F ′

n1ū2
τ + ρ̄ūnūτ u′

τ

⎤
⎥⎥⎥⎥⎦. (36)

The subscripts m and ns have been omitted to make the
formula concise. All the base flow variables in Eq. (36) are
known, so the remaining problem is determining the distribu-
tion function g′

α and lattice velocity ξα at the Gauss points of
the interface.

If a Gauss point coordinate is denoted as xm. The distri-
bution function at the position xm can be calculated from the
conservative variables at that position. If the lattice velocity ξα

is greater than zero, the conservative variables are interpolated
from the left cell, and if it is less than zero, the conservative
variables are interpolated from the right cell. The distribution
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function g′
α (xm, t ) can be calculated as

g′
α (xm, t ) =

{
g′

α (W′
L ) if ξα > 0

g′
α (W′

R) if ξα < 0 , (37)

where g′
α (W′

L/R) means that the distribution function is
calculated from the conservative variables W′

L/R based on
Eq. (34), and the conservative variables W′

L/R are interpolated
as

W′
L = W′(xL, yL ) + (�xL )T ∇W′(xL, yL )

+ 1

2
(�xL )T HL(�xL ) + 1

6
(�2xL )

T
GL(�xL )

+ O(�x4,�y4),

W′
R = W′(xR, yR) + (�xR)T ∇W′(xR, yR)

+ 1

2
(�xR)T HR(�xR) + 1

6
(�2xR)

T
GR(�xR)

+ O(�x4,�y4), (38)

where xL/R = (xL/R, yL/R) is the coordinate of the left and
right control cell of the interface and �xL/R = xm − xL/R (δt
approaches zero) is the distance between the Gauss point m
and the control cell. Once the distribution function g′

α (xm, t )
has been calculated, the distribution function g′

α (xm, t ) can be
obtained according to Eq. . Therefore, the final expression for
g′

α (xm, t ) is

g′
α (xm, t ) =

{
g′

α (W′
L ) for α = 1, 3

g′
α (W′

R) for α = 2, 4 . (39)

Now that the distribution function g′
α (xm, t ) has been ob-

tained, it can be substituted into Eqs. (35) and (36) to calculate
the interface fluxes (F′

m)ns. The final expression for the fluxes
at the Gauss point is

F′
II ==

⎡
⎢⎢⎢⎣

F ′
II1

F ′
II2

F ′
II3

F ′
II4

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

∑
α=1,3 g′

α (W′
L )ξα + ∑

α=2,4 g′
α (W′

R)ξα[∑
α=1,3 g′

α (W′
L )ξα + ∑

α=2,4 g′
α (W′

R)ξα

]
nx + (ρ̄ūnu′

τ + F ′
II1ūτ )ny[∑

α=1,3 g′
α (W′

L )ξα + ∑
α=2,4 g′

α (W′
R)ξα

]
(−ny) + (ρ̄ūnu′

τ + F ′
II1ūτ )nx∑

α=1,3 g′
α (W′

L )ξα[ξαξα/2 + e′
p(W′

L )] + ∑
α=2,4 g′

α (W′
R)ξα[ξαξα/2 + e′

p(W′
R)] + 0.5F ′

II1ū2
τ + ρ̄ūnūτ u′

τ

⎤
⎥⎥⎥⎥⎦.

(40)

All of the algorithm steps have now been addressed and can be performed. The following provides a further discussion of the
flux calculation.

If the distribution function g′
α (xm, t ) is substituted into Eq. (20), the conservative variables at the Gauss point W′

m for one
dimension can be calculated:

W′
m =

⎡
⎢⎣

∑
α=1,3 g′

α (W′
L ) + ∑

α=2,4 g′
α (W′

R)∑
α=1,3 g′

α (W′
L )ξα + ∑

α=2,4 g′
α (W′

R)ξα∑
α=1,3 g′

α (W′
L )[0.5ξαξα + e′

p(W′
L )] + ∑

α=2,4 g′
α (W′

R)[0.5ξαξα + e′
p(W′

R)]

⎤
⎥⎦ =

⎡
⎣ ρ ′

ρ̄u′
n + ρ ′ūn

ε′

⎤
⎦

m

. (41)

Consequently, the primitive variables at the Gauss point
(ρ ′

m, u′
m, v′

m, p′
m) can be obtained and substituted directly

into Eq. (3) to calculate the flux:

F′
I =

⎡
⎢⎣

ρ ′ūn + ρ̄u′
n

ρ ′ūnū + ρ̄u′
nū + ρ̄ūnu′ + p′nx

ρ ′ūnv̄ + ρ̄u′
nv̄ + ρ̄ūnv

′ + p′ny

u′
n(ε̄ + p̄) + ūn(ε′ + p′)

⎤
⎥⎦

m

. (42)

If one needs to recover the Navier-Stokes equations from
the LBM, there is a nonequilibrium part of the distribution
function:

f ′
α = g′

α + f ′neq
α . (43)

According to Ref. [23], the nonequilibrium part can be
written as

f ′neq
α = −τ0[g′

α (xm, t ) − g′
α (xm − ξαδt , t − δt )]. (44)

In this situation, the fluxes F′
II can be regarded as the

contribution from g′
α (xm − ξαδt , t − δt ) by interpolating the

conservative variables to the corresponding position using
Eq. (38) and F′

I is the contribution from g′
α (xm, t ). Therefore,

the expression for the fluxes is F′
I + τ0(F′

II − F′
I ). How-

ever, because the governing equations are inviscid, the flux
contributed from the nonequilibrium part should be zero. If
one calculates the flux this way, the extra part τ0(F′

II − F′
I )

plays a role similar to numerical viscosity and increases the
algorithm’s stability. Because τ0(F′

II − F′
I ) no longer has an

actual physical meaning, the value τ0 is not critical. There-
fore, τ0 can be used as an adjustment function to control the

FIG. 2. Schematic of a Gauss point at the boundary.
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FIG. 3. Simulation results for a Gaussian pulse in a static flow with grid size �x = 0.5 at t = 60: (a) density contours; (b) instantaneous
perturbed pressure along the centerline y = 0.

numerical viscosity. In this work, it is defined as

τ0 = tanh

(
C

|p′
L − p′

R|
pL + pR

)
, (45)

where the subscripts L or R represent the value calculated
from W′

L or W′
R, and C is a parameter with the value 1−100.

Finally, the expression for the fluxes F′ is

F′ = (1 − τ0)F′
I + τ0F′

II. (46)

It is noted that if the adjustment function τ0 is zero, the
flux expression is reduced to Eq. (40) or (42), considering that
Eqs. (40) and (42) are equivalent when τ0 is zero.

E. Boundary conditions

1. Impermeable condition

The solid walls for the small-disturbance problems are im-
permeable boundaries. The governing equations are the LEEs,
so defining the perturbed variables (perturbed density, veloc-
ity, pressure) at the boundaries is necessary. Impermeability
requires that the velocity normal to the boundary is zero, i.e.,
ūn = u′

n = 0. According to Eq. (3), the fluxes at the boundary
can be calculated as

F′
w =

⎧⎪⎨
⎪⎩

0
p′

wnx

p′
wny

0

⎫⎪⎬
⎪⎭, (47)

where the subscript w represents the value on the solid wall.
The perturbed pressure at the solid wall can be interpolated
from the values of the neighbor cells using Eq. (7). As shown
in Fig. 2, the perturbed pressure value at the solid wall can be
interpolated from cell i.

2. Far-field condition

Similar to the impermeable boundaries, the variables at the
far-field boundaries must also be defined. The difference is
that these can either be interpolated from the inner cells or
directly specified as inflow variables. The method used de-
pends on whether a particular boundary is an inflow or outflow
boundary and whether the inflow is subsonic or supersonic.
Equation (7) can be used if the variables are interpolated.

The problems simulated in this work include both subsonic
and supersonic flows. The perturbed density and pressure

FIG. 4. L1 error and L2 error of the perturbed density for a Gaus-
sian pulse in a static flow.
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FIG. 5. Simulation results for a Gaussian pulse in a uniform flow at Ma = 0.5 at t = 60: (a) perturbed pressure contour; (b) instantaneous
perturbed pressure along the centerline y = 0.

values are specified directly for inflow boundaries and interpo-
lated from the inner cells for outflow boundaries for subsonic
flows. For the perturbed velocity, it is just the opposite. For
supersonic flows, all variables (perturbed density, pressure,
velocity) are specified directly as inflow variables for the
inflow boundary and interpolated from the inner cells for the
outflow boundary.

In addition, a sponge grid layer is used outside the far-field
boundary to prevent disturbances from being reflected from
the boundaries.

F. Computational sequence

The computational sequence of the algorithm in the present
work is as follows:

(1) Use the Gaussian integral to discretize the governing
equation in space as in Eq. (6).

(2) Use the Taylor series to expand the conservative vari-
ables within a cell and calculate the coefficient Bi j in Eq. (16),
which only depends on the grid information.

(3) Initialize the flow field (assign initial values for the
conservative variables to each cell).

(4) Interpolate the conservative variables W′
L/R to the left

and right of the interfaces using Eq. (38).
(5) Calculate the distribution functions g′

α (xm, t ) and lat-
tice velocities ξα at the interfaces with Eqs. (39) and (34).

(6) Interpolate the base flow variables and perturbed vari-
ables tangential to the interface using the Roe average.

(7) Use Eq. (40) to calculate the fluxes F′
II and Eq. (41) to

calculate the conservative variables at the interfaces W′
m.

(8) Solve for the primitive variables (ρ ′
m, u′

m, v′
m, p′

m) at
the interfaces from W′

m and calculate the fluxes F′
I.

(9) Calculate the total fluxes with Eq. (46) and the relevant
sources for specific problems. After that, the residual terms of
Eq. (16) are obtained.

(10) Approach the conservative variables at the current
time level and obtain them for the next time step.

Repeat steps (4)–(10) until convergence is reached.

III. NUMERICAL EXAMPLES

In this section, several examples are simulated to validate
the algorithm, including (i) a Gaussian pulse in a uniform
flow; (ii) a Gaussian pulse scattered by a cylinder; (iii) the
acoustic and vortical Gaussian pulse propagation problem;
(iv) a pulsating source in a uniform flow; (v) a pulsating source
and a solid wall; (vi) acoustic waves passing through a shear
layer; (vii) acoustic waves scattered by multiple cylinders.

Case (i) is used to perform an accuracy test of the algo-
rithm. Case (ii) tests the algorithm’s simulation of a single
pulse interacting with a curved wall. The algorithm is tested
for multiple waves (acoustic and vortical waves) propagating
in a uniform flow by case (iii). Case (iv), with a periodic
acoustic source, tests the algorithm in simulating waves gen-
erated by a pulsating source propagating in a uniform flow.
Case (v) includes a pulsating source and a solid wall and tests
the algorithm in simulating waves interacting with a wall in a
uniform flow. Case (vi) simulates a pulsating source in a shear
layer to test the algorithm’s robustness. Finally, case (vii)
tests the algorithm’s simulation of a high-frequency pulsating
source interacting with a solid wall.

The variables in these numerical cases are nondimension-
alized as follows:

ρ∗ = ρ

ρ∞
, u∗ = u

c∞
, p∗ = p

ρ∞c2∞
, (48)

FIG. 6. Schematic showing the positions of the source (S), mon-
itoring points (A, B, and C), and cylinder (located at the origin).
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FIG. 7. Instantaneous perturbed density contours for a Gaussian source scattered by a cylinder at different times: (a) t = 2; (b) t = 4;
(c) t = 6; (d) t = 8.

where the * superscript represents a dimensionless quantity,
and the ∞ subscript represents the inflow variables. The sound
speed is calculated as c∞ = √

γ p∞/ρ∞, where γ is the spe-
cific heat ratio. The * superscript is omitted in the following.

A. Propagation of a Gaussian pulse

This example simulates a pulse in a static flow field. The
source terms of Eq. (1) are set to zero, while an initial distur-
bance is added with the following form:

ρ ′ = p′ = 0.01 exp

[
− ln(2)

(x2 + y2)

9

]
,

u′ = v′ = 0. (49)

The dimensionless base flow is specified as ρ̄ = 1, p̄ =
1/γ , ū = v̄ = 0. The computational domain is [−100, 100] ×
[−100, 100] with �x = 1, �x = 0.5, and �x = 0.25 grid
sizes considered.

The instantaneous perturbed pressure at t = 60 for each
grid size is compared with the analytical solution. For exam-
ple, when the grid scale is �x = 0.5, the pressure contours

and the instantaneous perturbed pressure distribution along
the centerline y = 0 are shown in Fig. 3.

The L1 error and L2 error for each grid size are calculated
and compared to perform an accuracy analysis, where the
L1 error and L2 error are calculated as

L1 error = 1

NC

∑
|ρ ′ − ρ ′

e|,

L2 error =
√

1

NC

∑
(ρ ′ − ρ ′

e)2,

(50)

where NC is the number of the control cells, and subscript e
represents the exact value. The variation of the logarithm of
the L1 error (solid red line) and L2 error (dashed blue line)
with the logarithm of grid sizes are compared with a line
having slope k = 4 (solid black line) in Fig. 4. The algorithm
approaches fourth-order accuracy because Gaussian integra-
tion and the fourth-order Taylor series expansion in Eq. (7)
are used.

A base flow with a Mach number of 0.5 is also simulated.
The initial condition and computational domain are the same
as before. The four domain boundaries are specified with far-
field conditions.
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FIG. 8. Time histories of the perturbed density for a Gaussian source scattered by a cylinder at monitoring point (a) A; (b) B; (c) C.

In this situation, the pulse is transported with the base flow.
In Fig. 5(a), the pressure contours at t = 60 show that the
wave not only propagates due to the pressure gradient but also
travels in the flow direction by convection. The instantaneous
perturbed pressure along the centerline y = 0 at t = 60 is
compared with the exact solution in Fig. 5(b), showing good
consistency. This case indicates that the present method can
also simulate waves propagating in a moving medium.

B. Gaussian pulse scattered by a cylinder

This case is a benchmark problem from the Second Com-
putational Aeroacoustics Workshop [45] of a Gaussian pulse
propagating and interacting with a solid curved boundary. As
shown in Fig. 6, a cylinder with diameter D = 1 is located
at the origin, an acoustic source is at the position (4, 0),
and three monitoring points A, B, C are located at (0, 5),
[5 cos(3π/4), 5 sin(3π/4)], (−5, 0), respectively. The grid
size is 0.05, and a Gaussian pulse describes the source at the
initial time:

ρ ′ = p′ = exp

[
− ln 2

(x − 4)2 + y2

0.04

]
. (51)

As shown in Fig. 7, the instantaneous density contours are
displayed at dimensionless times t = 2, t = 4, t = 6, and t =

8, from which it can be seen that the pulse propagates and
interacts with the cylinder. The perturbed density at the three
monitoring points at times from t = 6 to t = 10 are compared
quantitatively with the exact solution in Fig. 8. The results
agree well with the exact solution, showing that the algorithm
has been validated for waves interacting with curved walls.

C. Long distance advection

In this case, an entropy wave propagates under a mean flow
with Mach number 0.8; the entropy wave at the initial states

FIG. 9. The result of the long distance advection at t = 400
(x̄ = x/Ma).
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FIG. 10. Perturbed velocity contours u′ for acoustic and vortical pulses in a uniform flow at times (a) t = 30; (b) t = 70.

is described as

ρ ′ = 0.5 exp

(
− ln 2

x2 + y2

4

)
. (52)

The base flow is a uniform flow with ρ̄ = 1, p̄ = 1/γ .
Considering that the entropy wave will propagate in the base
flow direction rather than all directions, the computational do-
main is a long and narrow rectangle [−50, 450] × [−50, 50]
to save computational consumption. The grid scale is 1, 0.5,
or 0.25 and the time step is 0.01. Figure 9 shows the result at
t = 400 and the exact solution. A similar test is also presented
in Ref. [46] which uses a compact eighth-order scheme and
presents more accurate solutions.

D. Propagation of acoustic and vortical pulses in a uniform flow

In this case, a pressure pulse initiated at the origin and a
vortical pulse initiated at position (67, 0) are convected by
a base flow with a Mach number of 0.5. The computational

domain is a square [−200, 200] × [−200, 200] with the grid
size �x = �y = 0.5, and far-field boundary conditions are
used. The pulses are described by

ρ ′ = p′ = ε1e−α1(x2+y2 ),

u′ = ε2ye−α2[(x−67)2+y2],

v′ = −ε2(x − 67)e−α2[(x−67)2+y2],

(53)

with parameters ε1 = 0.01, ε2 = 0.0004, α1 = ln 2/9, α2 =
ln 2/25.

The perturbed velocity contours u′ at times t = 30 and t =
70 are shown in Fig. 10. The acoustic pulse and the vortical
pulse propagate downstream due to the base flow at Ma = 0.5,
and the acoustic pulse eventually catches up with the vor-
tical pulse. The instantaneous perturbed velocities along the
centerline y = 0 at times t = 30 and t = 70 are calculated
and compared with the analytical solution in Figs. 11 and
12. The results agree well with the analytical solution, which

FIG. 11. Perturbed velocity along the centerline y = 0 for acoustic and vortical pulses in a uniform flow at time t = 30: (a) perturbed
velocity u′; (b) perturbed velocity v′.
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FIG. 12. Perturbed velocity along the centerline y = 0 for acoustic and vortical pulses in a uniform flow at time t = 60: (a) perturbed
velocity u′; (b) perturbed velocity v′.

validates the algorithm for simulating waves propagating and
interacting with each other.

E. Propagation of a pulsating source in a uniform flow

The source terms in Eq. (5) must be defined to simulate
periodic acoustic sources. In these cases, there are pulsating
sources at the origin in a base flow with Mach numbers of
0.5 and 1.5. For a subsonic base flow (Ma = 0.5), the source
terms are defined as

ρ ′
s = 0.5 exp

(
− ln 2

x2 + y2

2

)
sin(ωt ),

p′
s = ρ ′

sc
2
∞,

u′
s = v′

s = 0,

(54)

where the angular frequency ω equals π/15. The computa-
tional domain is a [−100, 100] × [−100, 100] square with
grid size �x = �y = 1, and all boundaries are specified with
far-field conditions.

The perturbed pressure contours at t = 240 are shown in
Fig. 13. The waves are generated at the origin and propagate
outward with a Doppler effect due to the base flow at Mach
number 0.5. The instantaneous perturbed pressure distribution
along the centerline y = 0 at that time is compared with the
exact solution in Fig. 14, showing good consistency.

For a supersonic base flow, the periodic source is specified
at position (−50, 0), and is defined as

ρ ′
s = 0.5 exp

[
− ln 2

(x + 50)2 + y2

2

]
sin(ωt ),

p′
s = ρ ′

sc
2
∞,

u′
s = v′

s = 0,

(55)

where the angular frequency is π/15. A larger square domain
[−400, 400] × [−400, 400] with the same grid size and a
longer computational time is used to obtain a more compre-
hensive flow field range. The perturbed pressure contours at
t = 304 are shown in Fig. 15. The waves form a Mach cone
because of the supersonic effect (the disturbance does not
propagate upstream in a supersonic flow).

The instantaneous perturbed pressure distribution along the
centerline y = 0 at t = 304 is compared quantitatively with

the exact solution in Fig. 16. The simulation and exact results
are both displayed using lines for clarity. It can be seen that
the computational and exact results agree well except for
the sound source point (–50,0), where a singularity exists.
Reference [47] also shows this phenomenon.

These simulations validate the use of source terms in the
algorithm and its ability to simulate a pulsating source in a
subsonic or supersonic base flow.

F. Interaction of a pulsating source with a solid wall

The waves generated from a pulsating source interacting
with a solid wall in a uniform flow at Mach number 0.5
are considered in this case. The source terms are the same
as those described in Sec. II E. The computational domain
is a [−100, 200] × [−100, 130] rectangle, and the grid size
is �x = �y = 1. Other than the bottom boundary, which is

FIG. 13. Perturbed pressure contours for a pulsating source in a
subsonic uniform flow (Ma = 0.5) at time t = 240.
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FIG. 14. Instantaneous perturbed pressure distribution along the
centerline y = 0 for a pulsating source in a subsonic uniform flow
(Ma = 0.5) at time t = 240.

specified as impermeable, all boundaries are specified with
far-field conditions.

The instantaneous perturbed pressure contours at t = 90
are displayed in Fig. 17. The wave structures are captured
clearly, convecting downstream in the uniform flow and
reflecting from the solid wall. The perturbed pressure dis-
tribution along the line x = 0 at t = 90 is compared with
the exact solution in Fig. 18. The simulation results are in
good agreement with the exact solution except for the sound
source position because the analytical solution (semi-infinite
two-dimensional Green’s function) is singular at the origin

FIG. 15. Perturbed pressure contours for a pulsating source in a
supersonic uniform flow (Ma = 1.5) at time t = 304.

FIG. 16. Instantaneous perturbed pressure distribution along the
centerline y = 0 for a pulsating source in a supersonic uniform flow
(Ma = 1.5) at time t = 304.

[1]. This case validates the algorithm for simulating waves
interacting with a wall in a uniform flow.

G. Acoustic waves passing through a shear layer

This problem is the test case of Bogey et al. [48], which de-
scribes periodic acoustic waves passing through a shear layer.
The background velocity field is fitted from the time-average
results of a large eddy simulation:

ū = ū1 + ū2

2
+ ū2 − ū1

2
tanh [2y/δw(x)],

v̄ = 0,

ρ̄ = 1,

p̄ = 1/γ ,

(56)

where ū1 = 0.118, ū2 = 0.470, and δw(x) is the vorticity
thickness taken as

δw(x) = 3

2
+ 1

2
tanh [(x − 70)/10]. (57)

FIG. 17. Perturbed pressure contours at t = 90 for a pulsating
source interacting with a solid wall.
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FIG. 18. Perturbed pressure distribution along the line x = 0 for
a pulsating source interacting with a solid wall at t = 90.

The source terms are defined as

p′
s = ε exp

[
− ln 2

(x − 70)2 + y2

(3�)2

]
sin(ωt ),

ρ ′
s = p′

s/c2
∞,

u′
s = v′

s = 0,

(58)

where the amplitude is ε = 10−4, the half width of the Gaus-
sian profile is 3�, � = 0.24, and the angular frequency is ω =
2πc∞/λ. The wavelength λ is chosen as 51.5, and the sound
source position is (70, 0). The computational domain is a
[0, 300] × [−200, 200] rectangle with a coarser outer sponge
layer grid to absorb the waves passing through the boundaries.

FIG. 19. Instantaneous pressure contours for acoustic waves
passing through a shear layer at t = 342.

FIG. 20. Transverse perturbed pressure profiles for acoustic
waves passing through a shear layer at t = 342(solid line, squares,
x = 0; dashed line, triangles x = 300). Results shown as symbols
(squares and triangles) are from Bogey et al. [48].

A uniform 301 × 401 grid is used in the rectangular domain,
and the dimensionless time step is �t = 0.1.

The instantaneous perturbed pressure contours at t = 342
are shown in Fig. 19. Some instability waves are generated in
the shear layer and convected downstream. This phenomenon
can be explained by classical Kelvin-Helmholtz theory, which
states that inviscid and nonthickness shear flow is always
unstable [3]. In addition, the results of Bogey et al. [48] also
demonstrate this phenomenon. The instantaneous perturbed
pressure distributions along the lines x = 0 (red solid line
and squares) and x = 300 (blue dashed line and triangles) are
extracted and compared with the Bogey et al. [48] results
in Fig. 20. The calculated and the reference results show
good agreement, demonstrating the robustness of the present
method in simulating waves propagating in a shear flow.

H. Acoustic waves scattered by multiple cylinders

As shown in Fig. 21, two cylinders are positioned at
(−4, 0) and (4, 0) with diameters D1 = 1.0 and D2 = 0.5. An
acoustic source, located at the origin, is defined as follows,

ρ ′
s = exp

[
− ln 2

x2 + y2

0.04

]
sin(ωt ),

p′
s = ρ ′

s,

u′
s = v′

s = 0, (59)

FIG. 21. Schematic of the model for acoustic wave scattering by
multiple cylinders.
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FIG. 22. Snapshot of the perturbed pressure contours for acoustic
wave scattering by multiple cylinders.

where the angular frequency ω = 8π . The computational do-
main is divided into a computational region and a sponge
grid layer. A finer grid with a 0.01 grid size is chosen for
the computational domain, and a grid growing exponentially
coarser is used in the sponge layer to prevent wave reflection
from the boundaries. The time step is chosen as 0.001.

A snapshot of the perturbed pressure contours is shown
in Fig. 22. The high-frequency periodic waves are captured
clearly. The root mean square of the perturbed pressure a
distance 0.02 away from the cylinder surfaces is plotted and
compared to the analytical solution in Fig. 23, which shows
that the computed results agree well with the exact solution.
This case validates the algorithm to simulate a high-frequency
pulsating source that propagates and interacts with multiple
cylinders.

IV. CONCLUSIONS

A linear discrete velocity model (L-D1Q4) is developed
and implemented in a LBFS to calculate the fluxes of the LEE.
First, the expressions for the equilibrium distribution function
and the lattice velocity of the linear discrete velocity model
are derived from the moment relations. Second, by comparing
the LLBE and the LEE, the flux expression in terms of the
mesoscopic variables can be derived based on CE analysis
and the moment relations. Finally, the L-D1Q4-based LBFS
is used to calculate the LEE fluxes.

In addition, the high-precision LSFD FV method is used
to discretize the governing equations to make the algorithm
fourth-order accurate, and the present method is used to simu-
late acoustic propagation in fluids. The algorithm inherits the
advantage of the LBFS in that the flux is constructed from
the local solution of the Boltzmann equation, and it can be

FIG. 23. Root mean square of the perturbed pressure of the scat-
tered waves a distance 0.02 away from the cylinder surfaces (L: left
cylinder; R: right cylinder).

conveniently extended to a multidimensional scheme. Fur-
thermore, the algorithm provides an approach for the lattice
Boltzmann model-based flux solver to calculate fluxes for
linear equations.

Various cases, including a single pulse propagating and
interacting with a vorticity pulse and solid wall in a uni-
form flow, and a pulsating source propagating in subsonic,
supersonic, and shear flow, and interacting with multiple solid
walls, are simulated to validate the accuracy and robustness
of the present method. The calculated results demonstrate
very good consistency with the reference results, and the
convergence analysis shows that it can achieve fourth-order
accuracy.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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