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We introduce methodologies for highly scalable quantum Monte Carlo simulations of electron-phonon mod-
els, and we report benchmark results for the Holstein model on the square lattice. The determinant quantum
Monte Carlo (DQMC) method is a widely used tool for simulating simple electron-phonon models at finite
temperatures, but it incurs a computational cost that scales cubically with system size. Alternatively, near-linear
scaling with system size can be achieved with the hybrid Monte Carlo (HMC) method and an integral represen-
tation of the Fermion determinant. Here, we introduce a collection of methodologies that make such simulations
even faster. To combat “stiffness” arising from the bosonic action, we review how Fourier acceleration can
be combined with time-step splitting. To overcome phonon sampling barriers associated with strongly bound
bipolaron formation, we design global Monte Carlo updates that approximately respect particle-hole symmetry.
To accelerate the iterative linear solver, we introduce a preconditioner that becomes exact in the adiabatic limit of
infinite atomic mass. Finally, we demonstrate how stochastic measurements can be accelerated using fast Fourier
transforms. These methods are all complementary and, combined, may produce multiple orders of magnitude
speedup, depending on model details.
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I. INTRODUCTION

As a nonperturbative and controlled approach, quantum
Monte Carlo (QMC) methods have been instrumental in ad-
vancing our understanding of interacting solid-state systems.
In particular, the broad class of determinant QMC (DQMC)
methods have proven highly effective in helping to char-
acterize various correlated phases that arise as a result of
interactions [1]. Perhaps most notably, DQMC has enabled the
study of electron-electron interactions in the repulsive Hub-
bard model, where Mott insulator physics, magnetic order,
unconventional superconductivity, and various additional cor-
relation effects have been observed [2–10]. The sign problem,
however, has severely limited our ability to simulate systems
without particle-hole or other symmetries, giving rise to an
effective computational cost that scales exponentially with
system size and inverse temperature [11–17].

Electron-phonon models, however, are a family of Hamil-
tonian systems that typically evade the sign problem, while
still playing an important role in describing the effect of
interactions in solid-state systems. Electron-phonon interac-
tions are essential in explaining a host of ordered phases
in material systems, such as charge density wave (CDW)
order in transition metal dichalcogenides and high tem-
perature superconductivity in the bismuthates Bi1−xKxBiO3

[18–26]. Significant effort has gone toward using DQMC to
study Hamiltonian systems with electron-phonon interactions,
in particular the Holstein and Su-Schrieffer-Heeger (SSH)

models [27–38]. Although there is no sign problem in such
systems, low-temperature DQMC simulations of electron-
phonon models can still be very expensive. Explicit evaluation
of the Fermion determinant results in a computational cost
that scales cubically with system size. Moreover, simulations
of both the Holstein and SSH models suffer from signifi-
cantly longer autocorrelation times than comparable DQMC
simulations of the repulsive Hubbard model. While DQMC
simulations of the Holstein model have been successfully ac-
celerated using self-learning Monte Carlo techniques [39,40],
these gains are ultimately limited by continuing to require
the evaluation of the Fermion determinant ratio in the Monte
Carlo accept or reject step.

In recent years substantial effort has gone toward de-
veloping improved methods for simulating electron-phonon
models. Recent work has successfully reduced the com-
putational cost to near linear-scaling in system size. Such
scaling can be achieved by avoiding explicit calculation
of the Fermion determinant, instead using iterative linear
solvers for the sampling and measurement tasks. Applied
to simulations of Holstein and SSH models, both Langevin
[41–44] and hybrid Monte Carlo (HMC) [45] methods have
proven to be highly effective. In this paper, we introduce
several general and complementary techniques that can fur-
ther reduce the overall costs of simulating electron-phonon
models.

Many recent studies of the Holstein and SSH models have
used the Langevin method [41–44]. The traditional Langevin
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approach introduces a discretization error associated with the
finite time step used to integrate the stochastic dynamics.
Such error can, in principle, be eliminated by introducing
an accept or reject step for each proposed Langevin update
[46,47]. An alternative to the Langevin approach is HMC [48].
Originally developed for lattice gauge theory simulations, the
method now finds applications well beyond physics, where
HMC also goes by the name Hamiltonian Monte Carlo [49].
Interestingly, the Langevin method can be viewed as a special
case of HMC, for which the Hamiltonian trajectory length
consists of only a single time step [49]. Longer trajectories
with persistent momentum can be advantageous, however, to
reduce autocorrelation times [50].

As applied to QMC simulations, Langevin and HMC meth-
ods offer the promise of near linear-scaling with system size.
The general framework is as follows: The aim is to sample
a field x according to a probability weight that is propor-
tional to a Fermion determinant det M(x). Seeking to avoid
explicit calculation of this determinant, one instead uses a
stochastic approximation scheme, which requires application
of the Green function matrix M−1(x) to a vector. The matrix
M(x) is highly sparse, and very efficient to apply. Iterative
linear solvers, such as conjugate gradient (CG), are effective
if M(x) is well conditioned for typical samples x. Good con-
ditioning is not always guaranteed; previous studies of the
Hubbard model have found that the condition number can
sometimes grow exponentially (e.g., as a function of inverse
temperature), making iterative solvers impractical [45,51,52].
Fortunately, for models of electron-phonon interactions, the
condition number of M(x) seems to be reasonably well con-
trolled. Although traditional Langevin and HMC formulations
have already been successfully applied to electron-phonon
simulation, there are opportunities for substantial improve-
ment, as we shall demonstrate in this paper.

In what follows, we will interweave our new algorithmic
developments with benchmarks on a prototypical reference
system: The square-lattice Holstein model, which we review
in Sec. II. Our core framework for sampling the phonon field
is HMC, which we review in Sec. III. This application of
HMC is fairly sophisticated, involving both Fourier acceler-
ation and time-step splitting to handle the highly disparate
timescales that appear in the bosonic action.

At low temperatures, the sampling of phonons can still
be hindered by the formation of tightly bound bipolarons.
To combat this, we employ global Monte Carlo updates as
described in Sec. IV. For example, by reflecting the entire
phonon field (x → −x) at a particular site, the configura-
tion can “tunnel through” a possibly large action barrier.
We achieve an improved acceptance rate for these moves by
carefully formulating the effective action to respect known
particle-hole symmetries of the original Hamiltonian, at least
in certain limits. These global updates drastically reduce auto-
correlation times, and mitigate ergodicity concerns associated
with nodal surfaces (vanishing Fermion determinant) [43,45],
while maintaining excellent scalability of the method.

All components of the simulation can be accelerated by
reducing the cost of CG for the linear solves. In Sec. V
we introduce a preconditioner that significantly reduces the
required number of iterations for CG to converge. Specifically,
we define the preconditioner P(x) to have the same structure

as M(x), but without fluctuations in imaginary time. Appli-
cation of P−1(x) to a vector can be performed very efficiently
through the careful use of the fast Fourier transform (FFT) and
Chebyshev polynomial expansion.

It is important that the computational cost to perform
measurements scales like the cost to collect phonon sam-
ples, i.e., near-linearly in system size. By Wick’s theorem, all
electronic measurements can be reduced to products of the
single-particle Green function, and the latter can be sampled
from the matrix elements M−1(x). It is therefore essential to
be able to estimate elements of M−1(x) efficiently. For this
we use stochastic techniques that involve applying M−1(x) to
random vectors. Section VI describes how FFTs can be used
to achieve near-linear scaling in system size, even when aver-
aging correlation functions over all sites and imaginary-times.

II. THE HOLSTEIN MODEL AS A BENCHMARK SYSTEM

A. Model definition

The methods presented in this paper apply generally to
models of electron-phonon interactions, including the SSH
and Holstein models. For concreteness, we select the latter for
our benchmarks. The Holstein Hamiltonian is [53]

Ĥ = Ĥel + Ĥph + Ĥel-ph, (1)

Ĥel = −
∑
i, j,σ

ti j ĉ
†
i,σ ĉ j,σ − μ

∑
i,σ

n̂i,σ , (2)

Ĥph = mphω
2
0

2

∑
i

X̂ 2
i + 1

2mph

∑
i

P̂2
i , (3)

Ĥel-ph = α
∑
i,σ

X̂i

(
n̂i,σ − 1

2

)
, (4)

with the normalization h̄ = 1 applied throughout. The first
term, Ĥel, models the electron kinetic energy via the hopping
strengths ti j = t ji, and controls electron filling through the
chemical potential μ. As usual, ĉ†

i,σ (ĉi,σ ) is the fermionic
creation (annihilation) operator for an electron with spin σ ,
and n̂i,σ = ĉ†

i,σ ĉi,σ is the electron number operator. The sec-
ond term, Ĥph, describes a dispersionless phonon branch with
energy ω0 and mass mph, modeled via the canonical position
and momentum operators X̂i and P̂i respectively. Henceforth,
the atomic mass is normalized to one, mph = 1. The last
term, Ĥel-ph, introduces an electron-phonon coupling with
strength α.

B. Benchmark parameters

Our methodology applies to models with arbitrary lat-
tice type, hopping matrix, and electron filling fraction, but
we must make some specific choices for our benchmarks.
We select the square lattice Holstein model at half filling
(μ = 0). We include only a nearest neighbor electron hop-
ping with amplitude ti j = 1, which defines the basic unit of
energy. For the square lattice, the noninteracting bandwidth
is then W = 8. The discretization in imaginary time, which
controls Suzuki-Trotter errors, will be �τ = 0.1. Our bench-
marks will vary over the number of lattice sites, N , and the
inverse temperature, β. A useful reference energy scale is the
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dimensionless electron-phonon coupling, λ = α2/(ω2
0 W ). We

will consider two coupling strengths, λ = 0.25 or λ = 0.60,
and two phonon frequencies ω0 = 0.1 and ω0 = 1.

For these Holstein systems, the stable phase at low temper-
atures and half-filling is charge-density-wave (CDW) order;
electrons form a checkerboard pattern, spontaneously break-
ing the Z2 symmetry between sublattices. In the case of ω0 =
1.0 and λ = 0.25, the CDW transition temperature is βcdw ≈ 6
[41,54]. To detect this phase, we measure the (π, π ) charge
structure factor

Scdw =
∑

r

(−1)rx+ryC(r), (5)

where

C(r) = 1

N

∑
r′

〈n̂r′+rn̂r′ 〉, (6)

is the real-space density-density correlations in n̂r = n̂r,↑ +
n̂r,↓. Here we are using integers r = (rx, ry) to index sites
on the square lattice, assuming periodic boundary conditions.
Superconducting order, however, can be detected using the
pair susceptibility

Ps = 1

N

∫ β

0

〈
�̂(τ )�̂†(0)

〉
dτ, (7)

where �̂(τ ) = ∑
r ĉr,↓(τ )ĉr,↑(τ ).

All results reported in this paper use HMC trajectories
composed of Nt = 100 time steps (Sec. III). Except where
noted, we will use Fourier acceleration with mass regular-
ization mreg = ω0 (Sec. III B 1), and time-step splitting with
nt = 10 (Sec. III B 2). We will use a varying number of ther-
malization and simulation HMC trial updates, denoted Ntherm

and Nsim, respectively, with measurements taken after each
simulation update.

C. Path integral representation

To measure thermodynamic properties, one can formulate
a path integral representation of the partition function. A full
derivation is given in Appendix A, with the result

Z = trel-ph e−βĤ

≈
∫

Dx e−(SB−�τ α
∑

i,τ xi,τ )(det M )2. (8)

Here the inverse temperature β has been discretized into Lτ

intervals of imaginary time, with �τ = β/Lτ . The integral
goes over all sites i and imaginary times τ in the real phonon
field xi,τ . The “bosonic action”

SB = �τ

2

N∑
i=1

Lτ −1∑
τ=0

[
ω2

0x2
i,τ +

(
xi,τ+1 − xi,τ

�τ

)2]
(9)

describes dispersionless phonon modes, but can be readily
generalized to include anharmonic terms and phonon dis-
persion [54,55]. The “Fermion determinant” involves the

NLτ × NLτ matrix,

M =

⎛
⎜⎜⎜⎜⎜⎝

I B0

−B1 I

−B2
. . .
. . .

. . .

−BLτ −1 I

⎞
⎟⎟⎟⎟⎟⎠, (10)

composed of N × N blocks. The off-diagonal blocks are

Bτ = e−�τVτ e−�τ K , (11)

where the matrices

(Vτ )i j = δi j (αxi,τ − μ), Ki j = −ti j, (12)

describe the electron-phonon coupling and the electron hop-
ping, respectively. In this real-space basis, e−�τVτ is exactly
diagonal, whereas e−�τ K = I − �τ K + . . . is highly sparse
up to corrections of order �2

τ . Note that one could alterna-
tively formulate [1]

det M = det(I + BLτ −1 . . . B1B0), (13)

but we do not pursue that approach here.
An innovation in this work is to rewrite the partition func-

tion as

Z ≈
∫

Dx e−SB [det (M�)]2, (14)

where �(x) is any matrix that satisfies

det �2 = e�τ α
∑

i,τ xi,τ . (15)

Although Eqs. (8) and (14) are mathematically equivalent, this
reformulation will have important consequences in Secs. II D
and IV. The factor exp(�τα

∑
i,τ xi,τ ) originates from our

choice to include the −α
∑

i X̂i/2 term in Eq. (4), which ef-
fectively selects X̂i = 0 as the reflection point for particle-hole
symmetry.

There are many possible choices for �. We select

�(i,τ ),(i′,τ ′ ) = δi,i′δτ+1,τ ′ (2δτ ′,0 − 1)e+ �τ α
2 xi,τ ′ , (16)

with inverse

�−1
(i,τ ),(i′,τ ′ ) = δi,i′δτ,τ ′+1(2δτ,0 − 1)e− �τ α

2 xi,τ , (17)

where the index τ = 0, 1, . . . Lτ − 1 is understood to be peri-
odic in Lτ .

To collect equilibrium statistics, one samples the phonon
field xi,τ , taking the positive-definite integrand in Eq. (14) to
be the probability weight. Sampling xi,τ is typically the domi-
nant cost of a QMC code. A traditional DQMC code involves
periodic evaluation of the matrix determinant of Eq. (13), at a
cost of O(N3) computational operations. In a careful DQMC
implementation, this determinant may be calculated relatively
infrequently, typically once per “full sweep” of Monte Carlo
updates to each of the auxiliary field components, xi,τ [56].
As we will next discuss in Sec. II D, the cost to sample the
phonon field can still be significantly reduced, from cubic to
approximately linear scaling with system size N .

Note that a similar path integral formulation can be de-
rived for the SSH model. There, however, the phonon position
operators X̂i modulate the electron hopping term, such that
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the matrices Kτ gain a dependence on the phonon fields xi,τ

[20,36–38,43,45,57].

D. Sampling the phonon field at approximately
linear scaling cost

Given a nonsingular matrix A of dimension D, its determi-
nant can be formulated as an integral,

|det A| = (2π )−D/2
∫

D� e− 1
2 �T (AT A)−1

�, (18)

where each component of the vector � is understood to be
integrated over the entire real line.

We twice apply Eq. (18) to Eq. (14), introducing an integral
for each of the two Fermion determinants. Taking

A(x) = M(x)�(x), (19)

the partition function becomes

Z ≈ (2π )NLτ

∫
D�↑D�↓Dx e−S(x,�σ ). (20)

In place of the matrix determinants, there is now a “fermionic”
contribution to the action,

S(x,�σ ) = SB(x) + SF(x,�σ ), (21)

with

SF(x,�σ ) = 1

2

∑
σ

�T
σ (AT A)−1�σ

= 1

2

∑
σ

|A−T �σ |2. (22)

Now we must sample the two auxiliary fields �{↑,↓} in addi-
tion to the phonon field x, according to the joint distribution
P(x,�σ ) ∝ exp(−S). With the Gibbs sampling method, one
alternately updates x and �σ according to the conditional
distributions P(x|�σ ) and P(�σ |x), respectively.

Holding x fixed, observe that

P(�σ |x) ∝ e−SF = e− 1
2

∑
σ |Rσ |2 , (23)

where the vector Rσ = A−T �σ is found to be Gaussian dis-
tributed. Therefore, to sample �σ at fixed x, one may first
sample Gaussian Rσ , and then assign

�σ = AT (x)Rσ . (24)

Because �σ is randomly sampled, it is convenient to treat
it as an arbitrary, fixed vector. Alternatively, we can view
�σ (x, Rσ ) as a deterministic function of x provided that the
random sample Rσ is also supplied.

Sampling x at fixed �σ is the primary numerical challenge.
In the Metropolis Monte Carlo approach, one proposes an
update x → x′ and accepts it with probability,

P(x → x′) = min(1, e−�S ), (25)

where

�S = S(x′,�σ ) − S(x,�σ ). (26)

Sophisticated methods for proposing updates include HMC
(Sec. III) and reflection and swap updates (Sec. IV).

Calculating the acceptance probability requires evaluating
the change in action,

�S = �SB + �SF. (27)

The bosonic part can be readily calculated from Eq. (9). The
fermionic part is given by Eq. (22),

�SF = SF(x′,�σ ) − SF(x,�σ ). (28)

The recipe for sampling the auxiliary field �σ = �σ (x, Rσ )
is given by Eq. (24), and involves the initial phonon con-
figuration x. Substituting into Eq. (22) yields SF(x,�σ ) =
1
2

∑
σ |Rσ |2.

It remains nontrivial to calculate

SF(x′,�σ ) = 1

2

∑
σ

�T
σ 
σ , (29)

where


σ = (AT A)−1�σ

= �−1(MT M )−1�−T �σ , (30)

and the matrices M and � are understood to be evaluated at
the new phonon field, x′. The vector b = �−T �σ , for each σ ,
can be readily calculated using Eq. (17).

To solve iteratively for the vector

v = (MT M )−1b, (31)

one can use the conjugate gradient (CG) method [58]. After
n iterations, CG optimally approximates vn ≈ v from within
the nth Krylov space, i.e., the vector space spanned by basis
vectors (MT M )

j
b for j = 0, 1, . . . n. Given the solution v, the

action SF in Eq. (29) can be evaluated by noting that �T
σ 
σ =

bT v.
CG requires repeated multiplication by MT M. Applying M

and MT to a vector is very efficient due to the block sparsity
structure in Eq. (10). The off-diagonal blocks Bτ inside M
involve the exponential of the tight-binding hopping matrix K .
To apply efficiently e−�τ K to a vector, one may approximately
factorize this exponential as a chain of sparse operators using
the minimal split checkerboard method [59], which remains
valid up to errors of order O(�2

τ ) [60]. This allows us to apply
Bτ to a vector of like dimension at a cost that scales linearly
with system size N .

The rate of CG convergence is determined by the condi-
tion number of MT M, i.e., the ratio of largest to smallest
eigenvalues (as a function of the fluctuating phonon field).
In previous QMC studies on the Hubbard model, the anal-
ogous condition number was found to increase rapidly with
inverse temperature and system size at moderate coupling
[52]. Fortunately, for electron-phonon models at moderate
parameter values (λ � 1 and ω0 � t) the condition number
is observed to increase only very slowly with β and N [45].
We observe that larger phonon frequency (ω0 � t ) coincides
with larger condition number and slower CG convergence.
This will be reflected by the benchmarks in this paper, for
which CG typically converges in hundreds of iterations or
fewer. Furthermore, the required number of CG iterations
can be significantly reduced by using a carefully designed
preconditioning matrix, as we will describe in Sec. V.
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III. HMC SAMPLING OF THE PHONON FIELD

A. Review of HMC

Hybrid Monte Carlo (HMC) was originally developed in
the lattice gauge theory community [48] and has since proven
broadly useful for statistical sampling of continuous variables
[49]. In particular, it is a powerful method for sampling the
phonon field x in electron-phonon models [45,61].

In HMC a fictitious momentum pi,τ is introduced that is
dynamically conjugate to xi,τ . Specifically, a Hamiltonian,

H (x, p) = S(x) + pTM−1 p

2
, (32)

is defined that can be interpreted as the sum of “potential”
and “kinetic” energies. The dynamical mass M can be any
positive-definite matrix, independent of x and p. Recall that
the action S(x) is implicitly dependent on the auxiliary field
�σ ; we omit this dependence because �σ is treated as fixed
for purposes of sampling x.

The corresponding Hamiltonian equations of motion are

ṗ = −∂H

∂x
= − ∂S

∂x
, (33)

ẋ = ∂H

∂ p
=M−1 p. (34)

The dynamics is time-reversible, energy conserving, and sym-
plectic (phase space volume conserving). These properties
make it well suited for proposing updates to the phonon field.
We use a variant of HMC consisting of the following three
steps:

Step (1) of HMC samples p from the equilibrium Boltz-
mann distribution, proportional to exp(−pTM−1 p/2). This
is achieved by sampling components Ri,τ from a standard
Gaussian distribution, and then setting

p =
√
MR. (35)

Step (2) of HMC integrates the Hamiltonian dynamics for
Nt integration time steps. We use the leapfrog method,

pt+1/2 = pt − �t

2

∂S

∂xt
, (36)

xt+1 = xt + �tM−1 pt+1/2, (37)

pt+1 = pt+1/2 − �t

2

∂S

∂xt+1
, (38)

where �t denotes the integration step size. Note that when
performing leapfrog integration steps sequentially, only a sin-
gle evaluation of ∂S/∂x must be performed per time step. This
is because the final half-step momentum update pt+1/2 →
pt+1 can be merged with the initial one from the next time
step, pt ′ → pt ′+1/2, where t ′ = t + 1. The leapfrog integra-
tion scheme is exactly time-reversible and symplectic. One
integration step is accurate to O(�t3) and, in the absence
of numerical instability, total energy is conserved to order
O(�t2) for arbitrarily long trajectories [62–64]. Any sym-
plectic integration scheme could be used in place of leapfrog;
the second-order Omelyan integrator is an especially promis-
ing alternative [65,66].

For this paper we will fix Nt = 100. Future work would
likely benefit from randomizing the length of each HMC tra-
jectory; doing so has been observed to reduce decorrelation
times and would mitigate certain ergodicity concerns [67].
For certain types of sampling problems, e.g., sampling in the
vicinity of a critical point, one should also consider the use of
much longer HMC trajectories [50].

Step (3) of HMC is to accept (or reject) the dynamically
evolved configuration x′ according to the Metropolis proba-
bility, Eq. (25). HMC exactly satisfies detailed balance, and
the proof depends crucially on the leapfrog integrator being
time-reversible and symplectic [48,49]. An acceptance rate
of order one can be maintained by taking the time step to
scale only very weakly with system size (�t ∼ N−1/4) [68].
Higher-order symplectic integrators are also possible, and
come even closer to allowing constant �t , independent of sys-
tem size [62]. Extensive discussion about selecting a good �t
value is presented in Ref. [49], including evidence that a 65%
acceptance rate may be close to optimal in many situations.
In practice, however, we typically choose a more conservative
�t such that the acceptance rate is much closer to one. This
minimizes the danger of hitting numerical instabilities, which
can lead to significant slow-downs, and can be difficult to
anticipate over a wide space of physical parameters.

Numerical integration requires evaluation of the fictitious
force −∂S/∂x at each time step. Specifically, one must calcu-
late

∂S

∂xi,τ
= ∂SB

∂xi,τ
+ ∂SF

∂xi,τ
. (39)

The bosonic part is

∂SB

∂xi,τ
= �τ

(
ω2

0xi,τ − xi,τ+1 − 2xi,τ + xi,τ−1

�2
τ

)
. (40)

For the fermionic part, we must calculate

∂SF

∂xi,τ
= 1

2

∑
σ

�T
σ

∂ (AT A)−1

∂x
�σ , (41)

where �σ is fixed throughout the dynamical trajectory. Using
the general matrix identity dC−1 = −C−1(dC)C−1, we find

∂SF

∂xi,τ
= −

∑
σ


T
σ AT ∂A

∂xi,τ

σ , (42)

where 
σ = (AT A)−1�σ evolves as a function of x over the
dynamical trajectory, with �σ held fixed. As with the cal-
culation of �SF in Eq. (27), the numerically expensive task
is to calculate 
σ = (AT A)−1�σ , for which we use the CG
algorithm.

Given 
σ , we must also apply the highly sparse matrix

∂Ax

∂xi,τ
= ∂M

∂xi,τ
� + M

∂�

∂xi,τ
, (43)

for each index (i, τ ) of the phonon field. Differentiating � in
Eq. (16) is straightforward. The derivative of M in Eq. (10)
with respect to xi,τ involves only a single nonzero N × N
block matrix. In the Holstein model, we use

∂Bτ ′

∂xi,τ
= δτ,τ ′

(
∂

∂xi,τ
e−�τVτ

)
e−�τ K , (44)
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where Vτ is diagonal, so that its exponential is easy to con-
struct and differentiate.

The situation is a bit more complicated for the SSH model,
where the xi,τ -dependence appears inside the hopping matrix
Kτ , which is not diagonal. In this case, we may exploit the
checkerboard factorization [59] of e−�τ Kτ , and use the product
rule to differentiate each of the sparse matrix factors one-by-
one. If implemented carefully, then the cost to evaluate all
N Lτ forces −∂S/∂xi,τ remains of the same order as the cost to
evaluate the scalar S. That this is generically possible follows
from the concepts of reverse-mode automatic differentiation
[69].

B. Resolving disparate timescales in the bosonic action

One of the challenges encountered when simulating
electron-phonon models is that the bosonic action gives rise to
a large disparity of timescales in the Hamiltonian dynamics.
Here we will present two established approaches for unifying
these dynamical timescales.

The bosonic part of the Hamiltonian dynamics decouples
in the Fourier basis. To see this, we will employ the discrete
Fourier transform in imaginary time,

f̂ω = 1√
Lτ

Lτ −1∑
τ=0

e− 2π i
Lτ

ωτ fτ , (45)

where the integer index ω is effectively periodic mod Lτ . The
Fourier transform may be represented by an Lτ × Lτ unitary
matrix,

Fω,τ = 1√
Lτ

e− 2π i
Lτ

ωτ , (46)

such that f̂ = F f .
Consider the bosonic force defined in Eq. (40),

fi,τ = −∂SB/∂xi,τ . (47)

Its Fourier transform is

f̂i,ω = −Q̃ω,ωx̂i,ω, (48)

where x̂ = Fx and

Q̃ω,ω = �τ

[
ω2

0 + 4

�2
τ

sin2

(
2πω

Lτ

)]
. (49)

We may interpret Q̃ω,ω as the elements of a diagonal matrix Q̃
in the Fourier basis. In the original basis,

∂SB/∂x = Qx, (50)

where Q = F−1Q̃F .
The diagonal matrix element Q̃ω,ω gives the force acting on

the Fourier mode x̂ω. The extreme cases are ω = ±Lτ /2 and
ω = 0, for which Q̃ω,ω/�τ takes the values ω2

0 + 4/�2
τ and

ω2
0 respectively. The ratio of force magnitudes for the fastest

and slowest dynamical modes is then

1 + 4

ω2
0�

2
τ

� 1, (51)

which diverges in the continuum limit, �τ → 0. Typically �τ

is of order 0.1, and the physically relevant phonon frequencies
are order ω0 ∼ 0.1.

Numerical integration of the Hamiltonian dynamics will
be limited to small time steps to resolve the dynamics of
the fast modes, ω ∼ ±Lτ /2. Unfortunately, this means that a
very large number of time steps Nt ∝ O(4/ω2

0�
2
τ ) is required

to reach the dynamical timescale in which the slow modes,
ω ∼ 0, can meaningfully evolve.

1. Dynamical mass matrix

Here we describe the method of Fourier acceleration, by
which a careful selection of the dynamical mass matrix M can
counteract the widely varying bosonic force scales appearing
in Eq. (49) [41,70].

The Hamiltonian dynamics of Eqs. (33) and (34) may
be written ẍ = −M−1∂S/∂x. The characteristic scaling for
fermionic forces is

∂SF/∂x ∼ �τ . (52)

This is expected because �τ enters into SF only through the
scaled phonon field, yi,τ ≡ �τ xi,τ . The chain rule ∂SF/∂x =
(∂SF/∂y)(∂y/∂x) then suggests linear scaling in �τ .

Per Eq. (49), the bosonic forces also typically scale like
�τ when ω is small. However, for the large Fourier modes
ω ∼ ±Lτ /2, we find instead

∂SB/∂x ∼ �−1
τ , (53)

which will typically dominate other contributions to the total
force. One may therefore consider the idealized limit of a
purely bosonic action, S(x) = SB(x), which is approximately
valid for the large ω modes. Using Eq. (50), the dynamics for
purely bosonic forces is

ẍ = −M−1Qx (S = SB), (54)

If we were to select M = Q/ω2
0, then the dynamics would

become ¨̂x = −ω2
0 x̂, which describes a system of noninteract-

ing harmonic oscillators, all sharing the same period, 2π/ω0.
This would be the ideal choice of M if the assumption S = SB

were perfect.
The true action S is not purely bosonic, and it can be

advantageous to introduce a regularization mreg that weakens
the effect of M when acting on small ω. We define diagonal
matrix elements [41],

M̃ω,ω = �τ

[
m2

reg + ω2
0 + 4

�2
τ

sin2
(

2πω
Lτ

)
m2

reg + ω2
0

]
, (55)

as the Fourier representation of the dynamical mass matrix,

M = F−1M̃F . (56)

For small frequencies ω (or infinite regularization mreg) the
mass matrix is approximately constant, M ≈ �τ consistent
with the scaling of fermionic forces, Eq. (52). For large fre-
quencies, ω ∼ Lτ /2, however, a finite regularization mreg is
irrelevant, and we find M ≈ Q/ω2

0. Comparing with Eq. (54),
the high-frequency modes are found to behave like harmonic
oscillators with an ω-independent force-scale that is again
consistent with Eq. (52).

The effectiveness of Fourier acceleration depends on the
degree to which a clean separation of scales can be found.
Typically �τ will be sufficiently small such that there is a
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FIG. 1. Equilibration process for ω0 = 1.0, λ = 0.25, β = 8, and
N = 256. Panel (a) displays the time history for the density 〈n〉. Panel
(b) displays the time history for the structure factor Scdw. Compares
results for two simulations started from the same initial configuration
that use different dynamical mass matrices M. The time steps �t
are chosen so that the highest frequency mode in both simulations
evolves on the same effective timescale.

range of Fourier modes for which SB is the dominant con-
tribution to the action S.

Our convention for the dynamical mass matrix M deviates
somewhat from previous work [41]. The present convention
aims to decouple the integration time step �t from the dis-
cretization in imaginary time �τ , such that the two parameters
may be varied independently. In other words, one “unit of inte-
gration time” should produce an approximately fixed amount
of decorrelation in the phonon field, independent of �τ .

Figure 1 compares the equilibration process for two sim-
ulations of a Holstein model in the CDW phase, one using
mreg = ω0 and �t = 1 × 10−2 shown in blue, the other using
mreg = ∞ and �t = 7.05 × 10−4, shown in red. These �t
have been selected such that the highest frequency dynami-
cal mode ω = Lτ /2 evolves on the same timescales in both
simulations.

Figure 1(a) shows the time history of sampled densities 〈n〉
for each simulation. While the measured densities in the sim-
ulation using mreg = ω0 almost immediately begin fluctuating
about 〈n〉 = 1, in simulations using mreg = ∞ the density only
gradually approaches half-filling. The discrepancy between
the two simulations is even more obvious when we look at the
time series for Scdw shown in Fig. 1(b). While the simulation
using mreg = ω0 rapidly equilibrates to CDW order in roughly
∼150 updates, the mreg = ∞ simulation shows no perceptible
indication of thermalization toward CDW order.

2. Time-step splitting

A complementary strategy to handle the disparate
timescales associated with the bosonic action is time-step
splitting [49,65]. Typically, ∂SB/∂x is much less expensive
to evaluate than ∂SF/∂x. One may modify the leapfrog in-
tegration method of Eqs. (36)–(38) to use multiple, smaller
integration time steps �t ′ = �t/nt using the bosonic force

Algorithm 1. Time-step Splitting HMC Update

Record initial state: xi

Directly sample auxiliary field: �σ := AT (xi )Rσ

Directly sample momentum: pi := √
MR

Calculate initial energy: Hi := H (xi, pi )
for t ∈ 1 . . . Nt do

p := p − �t
2

∂SF
∂x

for t ′ ∈ 1 . . . nt do
p := p − �t ′

2
∂SB
∂x

x := x + �t ′M−1 p
p := p − �t ′

2
∂SB
∂x

end for
p := p − �t

2
∂SF
∂x

end for
Calculate final energy: Hf := H (x f , pf )
Acceptance probability: P := min(1, e−(Hf −Hi ) )
Sample r uniform in (0,1)
if r < P then

Accept final phonon field configuration x f

else
Revert to initial phonon field configuration xi

endif

alone. After taking nt of these sub time steps, a full time
step �t is performed using the fermionic force alone. The
final leapfrog integrator is shown in Algorithm I, and can be
derived by a symmetric operator splitting procedure. Like the
original leapfrog algorithm, it is exactly time-reversible and
symplectic.

Figure 2 demonstrates the practical benefit of time-step
splitting by showing how the HMC acceptance probability
varies with the number nt of sub time steps. To isolate the
impact of time-step splitting, we disabled Fourier acceleration
by effectively setting mreg = ∞. The measured acceptance
rate is zero until nt � 4, at which point it rapidly saturates
to a value of ∼95% once nt � 5. This result illustrates a sharp
stability limit: When nt < 4, the corresponding value of �t ′ is
too large to resolve the fastest Fourier modes, x̂ω=L/2, which
causes a dynamical instability and uncontrolled error. When nt

FIG. 2. HMC acceptance rate versus nt for ω0 = 1, λ = 0.25,
β = 4, and L = 16. Note the sharp transition at nt � 4 sub time
steps. For this test we disabled Fourier acceleration, effectively tak-
ing mreg = ∞ such that M = �τ .
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increases beyond a certain point, the corresponding values of
�t ′ are sufficiently small to stabilize the SB driven dynamics.

C. Summary of an HMC update

Algorithm I shows the pseudocode for one HMC trial up-
date.

We remark that although methods of Fourier acceleration
and time-step splitting aim to solve a similar problem, they
employ different mechanisms. The dynamical mass matrix M
of Eq. (56) was derived by analyzing a noninteracting system,
and effectively slows down the dynamics of high-frequency
Fourier modes. It is effective for handling Fourier modes for
which the force contribution from SB dominates. In contrast,
time-step splitting works by focusing more computational
effort on integrating the bosonic forces, and allows the high
frequency modes to evolve on their natural, faster timescale. If
the cost to calculate ∂SB/∂x were truly negligible (relative to
∂SF/∂x), then we could take nt sufficiently large to completely
resolve the highest frequency dynamical modes arising from
SB, and Fourier acceleration could be disabled (mreg → ∞).
Empirically, we find a combination of the two methods to
be most effective. As such, for the rest of our benchmarks
we perform HMC updates with �t = ω−1

0 /100, Nt = 100,
nt = 10, and mreg = ω0.

IV. REFLECTION AND SWAP UPDATES

Simulations of Holstein models can suffer from diverging
decorrelation times (effective ergodicity breaking) as a result
of the effective phonon mediated electron-electron attraction.
The strength of this attractive interaction between electrons
is approximately parameterized by Ueff = −α2/ω2

0 = −λW
[34], where W is the noninteracting bandwidth. Large dimen-
sionless coupling λ gives rise to “heavy” bipolaron physics
[33,71]. In this case, it is energetically favorable for the system
to have either 0 or 2 electrons on a site, corresponding to the
phonon position X̂ being displaced in the positive or negative
directions, respectively [cf. Eq. (4)]. The energy penalty at
xi,τ = 0 roughly corresponds to the unfavorable condition of
a single electron residing on the site, and is approximately
proportional to Ueff/2. In the context of QMC, we aim to
sample fluctuations in the phonon field xi,τ , with the action
S(x) exhibiting a strong repulsion around xi,τ = 0. When λ

is large, this action barrier effectively traps the sign of the
phonon field at each site i.

To overcome this effective trapping, one may employ ad-
ditional types of Monte Carlo updates. We consider reflection
updates to flip the phonon field xi → −xi on a single site i
(at all imaginary times), and swap updates to exchange the
phonon field (xi, x j ) → (x j, xi ) of neighboring sites. Simi-
lar updates have previously been shown to be effective in
DQMC simulations of Hubbard and Holstein models [72,73].
A subtle difficulty arises, however, when attempting to use
such global moves in the context of fixed auxiliary fields �σ

(cf. Sec. II D). Here we demonstrate how the introduction
of the � matrix in the path integral formulation of Eq. (14)
dramatically increases the acceptance rates for these global
moves.

FIG. 3. (a) SDQMC(x̄) for the single-site Holstein model at half-
filling (ti j = 0, ω0 = 1, α = √

2, μ = 0), plotted as a function of
the phonon field x̄ with imaginary-time fluctuations suppressed.
(b) Change in action under the proposed move x0 → x̄, where x0 =
α/ω2

0. Bold blue and red lines represent the average over 100 vectors
�σ , sampled according to Eq. (24) with x̄ = x0. With imaginary-
time fluctuations suppressed, �S is exactly symmetric, whereas �S′

is not.

To develop intuition, we consider the single-site limit (ti j =
0) of the Holstein model at half filling (μ = 0), which satisfies
an exact particle-hole symmetry. In this limit a particle-hole
transformation is realized by

X̂ → −X̂ , ĉ → ĉ†. (57)

This transforms n̂ → 1 − n̂, yet leaves the Hamiltonian Ĥ in
Eq. (1) invariant.

In a traditional DQMC code, the phonon field would be
sampled according to the weight exp(−SDQMC) appearing in
Eq. (14), where

SDQMC = SB − 2 ln(eβαx̄/2 det M ) (58)

and x̄ = ∑
τ xτ /Lτ . In the single site limit, each Bτ becomes

scalar, and we can evaluate Eq. (13) as

det M = 1 + e−�τ
∑Lτ

τ=0 Vτ = 1 + e−β(αx̄−μ). (59)

Taking μ = 0, it follows

SDQMC = SB − 2 ln cosh(βαx̄/2), (60)

up to an irrelevant constant shift.
Let us momentarily ignore fluctuations in imaginary time,

which is justifiable at small ω0. By replacing xτ → x̄, the
bosonic action becomes SB → βω2

0 x̄2/2. Figure 3(a) plots the
resulting SDQMC(x̄). As the inverse temperature β increases,
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FIG. 4. Equilibration of observables with ω0 = 0.1, λ = 0.6, β = 9, and L = 16. The presence of strongly bound bipolarons leads to
large sampling barriers, and simulation with HMC updates alone (S = 0, R = 0) shows a failure to equilibrate on accessible simulation scales.
Including also swap updates (S > 0, R = 0) allows Scdw to partially relax, but effective broken ergodicity is still observable from measurements
of 〈n〉. Reflection updates (R > 0) are crucial to realizing fast decorrelation times in all observables.

a double-well structure emerges, and the action barrier at
x̄ = 0 poses a practical problem for sampling. Equation (60)
ensures the exact symmetry SDQMC(x) = SDQMC(−x), even in
the presence of imaginary-time fluctuations, such that reflec-
tion moves would always be accepted given this choice of
action.

Curiously, the x ↔ −x symmetry is missing from the ac-
tion of Eq. (21) that we actually use for sampling the phonons.
Specifically, S(x,�σ ) �= S(−x,�σ ) at fixed �σ . As a practi-
cal consequence, the proposal of a global update x → −x at
fixed �σ may lead to very low Monte Carlo acceptance rates,
Eq. (25), unless the action is carefully constructed.

To demonstrate how Monte Carlo acceptance rates can
suffer, we consider two �σ -dependent actions, S and S′. The
first we have already defined in Eq. (21),

S = SB + 1

2

∑
σ

|A−T �σ |2, (61)

where A = M�. The second follows from Eq. (8) and would,
more traditionally, be used for the Holstein model,

S′ = SB − βαx̄ + 1

2

∑
σ

|M−T �σ |2. (62)

Both actions are statistically valid—integration over the aux-
iliary fields yields the correct distribution for x,∫

D�σ e−S ∝
∫

D�σ e−S′ ∝ e−SDQMC . (63)

However, the two actions produce very different acceptance
rates for global Monte Carlo moves. Figure 3(b) demonstrates
this by plotting �S and �S′ for a proposed update x0 → x̄,
with imaginary-time fluctuations suppressed. For concrete-
ness we selected the initial condition x0 = α/ω2

0, but the
choice does not qualitatively affect our conclusions. Each
thin curve is plotted using a different randomly sampled �σ ,
drawn from the exponential distributions exp[−S(x0,�σ )] or

exp[−S′(x0,�σ )] in the case of �S (red) or �S′ (blue), re-
spectively.

From Fig. 3(b), it is apparent that the action S has the
symmetry

�S(x̄) = �S(−x̄). (64)

This is an exact result for the single-site, adiabatic limit of
the Holstein model (see Appendix B). The action S′, however,
has a very different qualitative behavior. Here, the proposed
update x0 → −x0 imposes a very large action cost �S′ for
nearly all auxiliary field samples, �σ .

The qualitative difference between �S and �S′ has a
profound effect on the Metropolis acceptance rate, Eq. (25),
for phonon reflections x → −x. We quantify this through
numerical experiments using the single-site Holstein model
at half filling, with moderate parameters ω0 = 1, α = 2, and
β = 4. If we used the full action SDQMC, then the proposed
move x → −x would have a 100% acceptance probability,
which follows from particle-hole symmetry, and is the ideal
behavior. If the naive action S′ is used, then the Metropolis
acceptance rate for a reflection update is only ∼2%, averaged
over random samples of �σ . If the action S is used instead
of S′, then particle-hole symmetry is statistically restored in
the sense of Eq. (64), and the acceptance rate for reflection
updates goes up to ∼68% (larger is better). We will continue
to use the action S throughout the rest of this paper. Although
the action SDQMC yields the highest acceptance rate, it incurs
a computational cost that scales cubically with system size.
The action S maintains a fairly high acceptance rate while
retaining near-linear scaling of the overall method.

The use of reflection and swap updates provides tremen-
dous speedups in practical studies of the Holstein model going
beyond the single-site limit. Figure 4 shows the equilibration
process for a Holstein model on a N = 162 square lattice.
We used a relatively large coupling λ = 0.6, such that on-site
action barriers are large. At inverse temperature β = 9, the
system is in a robust CDW phase. We ran the same simulation
twice using two different random seeds, shown in the left
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and right columns. With μ = 0, we know the system is at
half-filling, 〈n〉 = 1.0. However, in practice this correct filling
fraction is only reliably observed when reflection updates are
enabled. For Scdw, both reflection and swap updates help re-
duce decorrelation times. In practice, using some combination
of reflection and swap updates makes sense, with reflection
updates being crucial for the system to converge properly to
the correct filling.

In addition to reducing decorrelation times, reflection and
swap updates also help ameliorate a concern of ergodic-
ity breaking [43,45,60]. If the phonon configuration x only
smoothly evolves under the Hamiltonian dynamics (Sec. III),
then it would be formally impossible to cross the nodal surface
where det M = 0, for which the action (SDQMC or S) diverges.
To be sure that we are sampling the entire space of phonon
configurations, for which det M may change sign, we should
also incorporate some discontinuous Monte Carlo updates that
allow for jumps across nodal surfaces. The reflection and
swap updates proposed in this section are therefore a good
complement to pure HMC sampling.

V. PRECONDITIONING

A. Preconditioner algorithm

Each iteration of HMC requires solving the linear system
in Eq. (31),

MT Mv = b, (65)

for the unknown v. The required number of CG iterations to
reach a fixed level of accuracy scales approximately like the
condition number of M (equivalently, the square root of the
condition number of MT M).

Convergence can be accelerated if a good preconditioner P
is available. One can solve for u in

P−T MT MP−1u = P−T b (66)

and then determine v = P−1u. This is advantageous if MP−1

has a smaller condition number than M, and if P−1 can be
efficiently to applied to a vector. In practice, each iteration of
preconditioned CG requires one matrix-vector multiplication
using MT M, and one using (PT P)−1 [58].

A good preconditioner frequently benefits from problem-
specific insight. For the Holstein model we make use of the
fact that the τ -fluctuations in the phonon fields are damped
due to the contribution to the total action S from the bosonic
action SB in the sampling weight exp(−S). It follows that the
imaginary-time fluctuations of the block matrices Bτ should
be relatively small. Inspired by this, we propose a precondi-
tioner P that retains the sparsity structure of M, Eq. (10), but
with fluctuations in τ effectively “averaged out.” Specifically,
we define

P =

⎛
⎜⎜⎜⎜⎝

I B̄
−B̄ I

−B̄ I
. . .

−B̄ I

⎞
⎟⎟⎟⎟⎠, (67)

where

B̄ = 1

Lτ

Lτ −1∑
τ=0

Bτ = e−�τ V̄ e−�τ K (68)

and V̄ is defined to satisfy

e−�τ V̄ = 1

Lτ

Lτ −1∑
τ=0

e−�τVτ . (69)

This preconditioner P can be interpreted as describing a
semi-classical system for which imaginary-time fluctuations
are suppressed. We emphasize, however, that our purpose with
preconditioning is to solve the full Holstein model without any
approximation.

Careful benchmarks of P as a preconditioner to M will
be presented in Sec. V B. Here, we can briefly provide some
intuition about why it should work. For small �τ , we have
Bτ ≈ I − �τ (Vτ + K ). At this order of approximation, V̄ be-
comes the imaginary time average over Vτ . The bandwidth of
the hopping matrix K on the square lattice is 8, whereas fluc-
tuations in diagonal elements (V̄ − Vτ )ii = α(x̄i − xi,τ ) are
typically order 1 or smaller for the models considered in this
work (fluctuations are controlled by ω0 when the dimension-
less coupling λ is held fixed). The relatively small magnitude
of these Vτ fluctuations suggests that P should be a good ap-
proximation to M for the dominant part of the eigenspectrum
(larger eigenvalues). We note, however, that P is frequently
observed to be ineffective at capturing eigenvectors associated
with the smallest eigenvalues of M, and this seems to be the
biggest limiting factor in the utility of P as a preconditioner.

An important, but nonobvious, property of this precondi-
tioner is that the matrix-vector product P−1v can be evaluated
very efficiently. To demonstrate this, we will first show that the
matrix P becomes exactly block diagonal after an appropriate
Fourier transformation in the imaginary time τ index.

The block structure of M in Eq. (10) treats τ = 0 as a
special case. To make all of Bτ appear symmetrically, we
introduce a unitary matrix,

�τ,τ ′ = δτ,τ ′e−π iτ/Lτ . (70)

Observe that the matrix �M�† has the same sparsity structure
as M, but a factor of −e−π i/L appears in front of each Bτ , and
the block B0 is no longer a special case.

Next we may employ the discrete Fourier transformation
Fω,τ defined in Eq. (46). Under a combined change of basis,
M becomes

M̃ = UMU†, (71)

where

U = F� (72)

is unitary, with matrix elements given by

Uω,τ = 1√
Lτ

e− 2π i
Lτ

τ (ω+1/2). (73)

By construction, the indices τ and ω range from 0 to Lτ − 1.
It is interesting to observe, however, that the extension of τ

would naturally introduce antiperiodic boundary conditions
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(Uω,τ+Lτ
= −Uω,τ ), allowing ω to be interpreted as indexing

Matsubara frequencies.
Explicit calculation gives the N × N blocks of M̃ as

M̃ω,ω′ = δω,ω′ I − e−iφω′ B̂ω−ω′√
Lτ

, (74)

where

φω = 2π

Lτ

(
ω + 1

2

)
, (75)

B̂ω = 1√
Lτ

Lτ −1∑
τ=0

e− 2π i
Lτ

τωBτ . (76)

We emphasize that M̃ is an exact representation of M, but
in a different basis. When the fluctuations in imaginary time
are small, M̃ is dominated by its diagonal blocks,

M̃ω,ω =I − e−iφω B̄, (77)

where B̄ = B̂0/
√

Lτ coincides with Eq. (68).
We may define the preconditioner to be block diagonal in

the Fourier basis,

P̃ = diag(M̃ ). (78)

Transforming back to the original basis,

P = U†P̃U , (79)

makes contact with the equivalent definition in Eq. (67).
To apply the preconditioner to a vector v, we must evaluate

P−1v = U†P̃−1Uv. (80)

The action of U and U† can be efficiently implemented using
a fast Fourier transform (FFT). Because P̃ is block diagonal,
its inverse is also block diagonal,

P̃−1
ω,ω′ = δω,ω′M̃−1

ω,ω. (81)

Therefore, applying P̃−1 to a (N × Lτ )-dimensional vector
v̂ = Uv is equivalent to applying each of the M̃−1

ω,ω blocks
to the corresponding N-dimensional sub-vector v̂ω. In Ap-
pendix C we describe how the kernel polynomial method
(KPM) [74] can be used to carry out efficiently these matrix-
vector multiplications. The key idea is to approximate each of
M̃−1

ω,ω using a numerically stable Chebyshev series expansion
in powers of the matrix B̄.

B. Preconditioner speedup

Here we present results that demonstrate the utility of our
preconditioner P, while also providing insight into the scaling
of HMC with both system size N and inverse temperature β.
The overwhelming computational cost in HMC is repeatedly
solving the linear system Eq. (31) for varying realizations of
the phonon field xi,τ . If the number of CG iterations required
to find a solution is independent of N , then the total simulation
cost would scale near linearly with N .

In all cases, we terminate the CG iterations when the rela-
tive magnitude of the residual error,

ε = |b − MT Mv|/|b| (82)

FIG. 5. Average CG iteration count as a function of system size
N for λ = 0.25. Comparing the left and right columns, the precondi-
tioner significantly reduces the iteration count.

becomes less than a threshold value εmax. When calculating
�SF in Eq. (27) to accept or reject a Monte Carlo update, we
use εmax = 10−10. When calculating ∂SF/∂x in Eq. (42) we
use εmax = 10−5.

We benchmark using Holstein models of various systems
sizes at two phonon frequencies ω0 = 0.1 and ω0 = 1.0, both
with dimensionless coupling λ = 0.25. Figure 5 shows the
average iteration count as a function of the number of lat-
tice sites, N . For all temperatures and lattice sizes, the ω0 =
0.1 simulations require fewer CG iterations than comparable
ω0 = 1.0 simulations. For ω0 = 0.1 without the precondi-
tioner, the iteration count only weakly depends on system
size. However, with the preconditioner the iteration count
becomes nearly independent of system size, and is decreased
by more than a factor of 20. For ω0 = 1.0, the growth of CG
iteration count as a function of system size remains sub-linear.
Introducing the preconditioner does not change the qualitative
structure of this dependence, but still reduces the iteration
count by more than a factor of 5 in all cases.

The dependence of iteration count on β is further explored
in Fig. 6. For both ω0 = 0.1 and ω0 = 1.0, we observe a
sharp jump in the order parameter Scdw as the temperature
is lowered, indicating that both systems order into a CDW
phase. In the lower panel we see the average iteration count
versus β. Both with and without the preconditioner, in the case
of ω0 = 1.0 the iteration count increases monotonically with
β. Simulations with ω0 = 0.1 have two qualitatively different
behaviors: With preconditioning, the iteration count is rela-
tively flat, but without preconditioning, the iteration count has
a local maximum near where we would estimate the transition
temperature to be based on Scdw.

The preconditioner significantly reduces the average iter-
ation count for both ω0 = 0.1 and 1, but the effect is more
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FIG. 6. Scdw and average CG iteration count as functions of β for
λ = 0.25 and N = 162. For both ω0 = 0.1 and ω0 = 1.0, the system
goes through a CDW transition as the temperature is lowered. In the
case of ω = 1.0 the known transition temperature is approximately
βcdw ≈ 6.

pronounced for smaller ω0, where imaginary time fluctuations
are smaller. In the adiabatic limit, corresponding to the atomic
mass going to infinity, the fluctuations in τ would vanish, and
the preconditioner would become perfect. The adiabatic limit
can equivalently be reached by sending the phonon frequency
to zero (ω0 → 0) while holding λ fixed.

The practical benefit of preconditioning depends strongly
on the numerical cost CP to apply the preconditioner P−1 to a
vector. The natural reference scale is CM , the cost to apply
the unpreconditioned matrix M to a vector. In our imple-
mentation, we measure (CP + CM )/CM ≈ 4, approximately
independent of model details (see Sec. C 5 for a theoretical
analysis). At ω0 = 0.1, preconditioning reduces the iteration
count by about a factor of 20, yielding an effective speedup of
order 20/4 = 5.

Wall-clock times for the simulation results reported in
Figs. 5 and 6 can be found in Appendix D. The results confirm
that the computational cost scales near-linearly in both system
size and inverse temperature β. Furthermore, the speedups due
to preconditioning are very close to the estimates given above.

VI. STOCHASTIC MEASUREMENTS
WITH FFT ACCELERATION

In a traditional determinant QMC code, measurements of
the Green function are obtained by explicit construction of
the matrix M−1. This cubic-scaling cost can be avoided by
using stochastic techniques to estimate individual matrix ele-
ments. We review these methods, and then demonstrate how
to efficiently average Green function elements over all space
and imaginary times by using the FFT algorithm. Finally, we

will introduce a strategy to reduce the relatively large stochas-
tic errors that appear when forming stochastic estimates of
multiple-point correlation functions.

A. Measurements in QMC

A fundamental observable in QMC simulation is the time-
ordered, single-particle Green function,

Gi, j (τ ) =
{〈ĉi(τ )ĉ†

j (0)〉, 0 � τ < β,

−〈ĉ†
j (0)ĉi(τ )〉, −β � τ < 0,

(83)

where ĉi(τ ) ≡ eτH ĉie−τH denotes evolution of the electron
annihilation operator in continuous imaginary time τ . Mul-
tipoint correlation functions can be expressed as sums of
products of single-particle Green functions via Wick’s the-
orem [56,75]. Given an equilibrium sample of the phonon
field, the matrix G = M−1 provides an unbiased estimate of
the Green function,

Gi, j (τ ) ≈ G(i,l ),( j,l ′ ), (84)

where τ = �τ · (l − l ′) satisfies −β < τ < β. In what fol-
lows we will revert to using the symbol τ = 0, 1 . . . , (Lτ − 1)
as a matrix index instead of a continuous imaginary time.

B. Stochastic approximation of the Green function

In a traditional determinant QMC code, one would explic-
itly calculate the full matrix G = M−1 at a cost that scales
cubically in system size. To reduce this cost, we instead em-
ploy the unbiased stochastic estimator

G ≈ (Gξ )ξT , (85)

for a random vector ξ with components that satisfy 〈ξi〉 = 0
and 〈ξiξ j〉 = δi, j . For example, each component ξi may be
sampled from a Gaussian distribution, or uniformly from
{±1}. The bold symbol i represents a combined site and
imaginary-time index, (i, τ ). Equation (85) may be viewed as
a generalization the Hutchinson trace estimator Tr G ≈ ξ †Gξ

[76]. Various strategies are possible to reduce the stochastic
error [77,78].

The vector v = Gξ can be calculated iteratively at a cost
that scales near-linearly with system size. For example, one
may solve the linear system MT Mv = MT ξ using CG with
preconditioning (cf. Sec. V).

Once Gξ is known, individual matrix elements can be
efficiently approximated,

Gi, j ≈ (Gξ )iξ j . (86)

For products of Green functions elements, we may use

Gi, jGk,l ≈ (Gξ )iξ j (Gξ ′)kξ
′
l . (87)

This product of estimators remains an unbiased estimator
provided that the random vectors ξ and ξ ′ are mutually in-
dependent.

C. Averaging over space and imaginary time using FFTs

To improve the quality of statistical estimates, it is fre-
quently desirable to average Green function elements over all
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space and imaginary-time,

G� ≈ 1

N
∑

i

Gext
(i+�),i, (88)

where N = NLτ . The symbol � indicates a displacement in
both position and imaginary-time. The matrix Gext will be
defined below as an extension of G that accounts for antiperi-
odicity of imaginary time. Using direct summation, the total
cost to calculate G� for every possible displacement � would
scale like O(N 2). However, we will describe a method using
FFTs that reduces the cost to approximately O(N lnN ).

Consider a finite, D-dimensional lattice with periodic
boundary conditions. For a Bravais lattice, each site can be
labeled by integer coordinates, 0 � nd < Ld , where Ld is the
linear system size for dimension d . The combined index i =
(n1, . . . , nD, τ ) can then be interpreted as integer coordinates
for both space and imaginary-time; the index (i + �) can
be interpreted as a displacement of all (D + 1) coordinates.
We must be careful, however, with boundary conditions. The
Green function is antiperiodic in continuous imaginary time,
Gi, j (τ + β ) = −Gi, j (τ ). To encode this antiperiodicity in ma-
trix elements, we define

Gext = QGQT =
[

G −G
−G G

]
, (89)

where

Q =
[

I
−I

]
. (90)

The extended matrix Gext effectively doubles the range of
the imaginary time index, 0 � τ < 2Lτ , such that space and
imaginary time indices become periodic,

nd + Ld ≡ nd , τ + 2Lτ ≡ τ. (91)

Using Eq. (85), we obtain a stochastic approximation for
the time averaged Green function elements,

G� ≈ 1

N
∑

i

(QGξξT QT )(i+�),i

= 1

N
∑

i

aibi+�, (92)

involving the vectors

a = Qξ =
[

ξ

−ξ

]
, b = QGξ =

[
Gξ

−Gξ

]
. (93)

This can be written

G� ≈ 1

N (a � b)�, (94)

where a � b denotes the circular cross-correlation. Like the
convolution operation, it can be expressed using ordinary
multiplication in Fourier space,

(a � b)� = F−1{F[a]∗F[b]}�. (95)

Here, F denotes the (D + 1)-dimensional discrete Fourier
transform. This formulation allows using the FFT algorithm
to estimate G� at near-linear scaling cost.

In the QMC context, Wick’s theorem ensures that multi-
point correlation functions can always be reduced to products

of ordinary Green functions. The latter can be estimated
using a product of independent stochastic approximations,
as in Eq. (87). Here, again, we can accelerate space and
imaginary-time averages using FFTs. In the case of four-point
measurements, Wick’s theorem produces three types of Green
function products. The first is∑

i

Gi+�,iGi+�,i ≈
∑

i

(GξξT )i+�,i(Gξ ′ξ ′T )i+�,i

=
∑

i

[ξiξ
′
i ][(Gξ )i+�(Gξ ′)i+�], (96)

which is again recognized as a cross correlation �. This can
be expressed compactly by introducing � to denote element-
wise multiplication of vectors,∑

i

Gi+�,iGi+�,i ≈ [(ξ � ξ ′) � (Gξ � Gξ ′)]�, (97)

The other two averages that appear for four-point measures
can be expressed similarly,∑

i

Gi+�,i+�Gi,i ≈ [(ξ � Gξ ) � (ξ ′ � Gξ ′)]�, (98)

∑
i

Gi+�,iGi,i+� ≈ [(ξ � Gξ ′) � (ξ ′ � Gξ )]�. (99)

D. Reducing stochastic error in multipoint
correlation function estimates

To reduce the stochastic error in Eq. (86), we may average
over a collection of random vectors, [ξ1, . . . ξNrv ],

Gi, j ≈ 1

Nrv

Nrv∑
n=1

(Gξnξ
†
n )i, j . (100)

A similar strategy could be used to replace Eq. (87) with an
average over Nrv independent estimates.

A significant reduction in error is possible by averaging
over all

(Nrv

2

) = Nrv(Nrv − 1)/2 pairs of random vectors,

Gi, jGk,l ≈
(

Nrv

2

)−1 ∑
n<m

(Gξnξ
†
n )i, j (Gξmξ †

m)k,l . (101)

This improved estimator is an average of unbiased estimators
and therefore remains unbiased. Furthermore, if Nrv is much
smaller than the vector dimension N , then these

(Nrv

2

) ≈ N2
rv

estimates are approximately mutually independent. It follows
that the stochastic error in Eq. (101) decays approximately
like N−1

rv . This scheme is advantageous because, for moder-
ate Nrv, the dominant computational cost is calculating the
Nrv matrix-vector products [Gξ1, . . . GξNrv ]. There remains the
task of evaluating the sum over all pairs n �= m. For each pair,
we must evaluate cross-correlations as in Eq. (95), but the
required FFTs are relatively fast.

Figure 7 demonstrates how the improved stochastic ap-
proximator in Eq. (101) can significantly reduce error bars for
certain observables in QMC simulation. Measurements and
corresponding estimated errors are plotted as a function of
Nrv. For the observables 〈n〉 and Scdw, the error appears largely
independent Nrv; in these two cases, the dominant source of
statistical error seems to be limited by the effective number of
independent phonon configurations sampled.
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FIG. 7. Left: QMC measurements, employing stochastic Green function estimation with Nrv random vectors. Right: Error for each
measured quantity. Simulations were performed using ω = 1, λ = 0.25, β = 6, L = 16, Ntherm = 1000 and Nsim = 2000.

For the observable Ps, however, we find the error �Ps to
depend strongly on the quality of the stochastic estimator,
controlled by Nrv. The observed scaling �Ps ∼ N−1

rv matches
the theoretical expectation for stochastic error in Eq. (101).
This indicates that the stochastic measurements are the pri-
mary source of error in Ps.

It is also important to consider the relative computational
cost of measurements as Nrv increases. Figure 8 plots the
time spent making measurements tmeas, relative to the total
simulation time ttotal, versus Nrv. Even at the maximum value
of Nrv = 32 tested, the time spent making measurements is
significantly less than half the total run-time. The fact that the
tmeas/ttotal grows linearly at large Nrv indicates that calculating
the matrix-vector products Gξn is the dominant computational
cost in the measurement process. The curvature at small Nrv is
a result of ttotal including the overhead time spent equilibrating
the system before measurements begin. A practical limita-
tion on Nrv may be memory usage, since Eq. (101) requires

FIG. 8. Wall-clock time spent taking measurements tmeas relative
to the total run-time ttotal as a function of Nrv. Simulation parameters
are the same as in Fig. 7.

that all vectors [ξ1, . . . ξNrv ] and [Gξ1, . . . GξNrv ] be stored
simultaneously.

Although Nrv appears to have little impact on some observ-
ables, it seems reasonable to set Nrv � 10 in most cases, given
the negligible computational costs.

VII. CONCLUSION

This paper introduces a set of algorithms that collec-
tively enable highly scalable, finite temperature simulations
of electron-phonon models such as the Holstein and SSH
models. Traditionally, such studies would be performed using
DQMC, but that approach is limited in two important respects.

First, with a computational cost that scales cubically with
system size, DQMC simulations of the Holstein model have
been restricted to lattices of no more than a few hundred
sites. As a result, DQMC studies of the Holstein model have
typically been confined to relatively simple geometries in one
or two dimensions. In the HMC approach explored in this
paper, we replace each Fermion determinant det M(x) that
appears in DQMC with a Gaussian integral over a newly
introduced auxiliary field �σ (Sec. II D). This field must be
multiplied by the inverse matrix M−1(x); for this, we use
the iterative conjugate gradient (CG) method, with a com-
putational cost that scales near-linearly with system size. As
a result, it becomes possible to simulate lattice sizes a full
order of magnitude larger than is possible with DQMC. We
accelerate CG convergence by introducing a preconditioner
P that retains the structure of M(x), but discards fluctuations
in imaginary time (Sec. V). These advances open the door
to studying both more complicated multiband models in two
dimensions, as well as three-dimensional systems.

Second, DQMC simulations rely on a local updating
scheme that results in long autocorrelation times that increase
with decreasing phonon frequency. This has restricted DQMC
simulations to systems where the phonon energy is compara-
ble to the hopping amplitude, ω0 ∼ t . However, in most real
materials the relative phonon energy is much smaller, ω0 � t .
We address this limitation by using HMC to update efficiently
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the entire phonon field simultaneously. To do so, we employ
a Hamiltonian dynamics with a carefully defined dynamical
mass matrix that slows down the modes with highest fre-
quency in imaginary time, which counteracts stiffness in the
bosonic action SB (Sec. III B 1). Additionally, we employ a
time-step splitting algorithm (Sec. III B 2) that uses a smaller
time step to integrate the bosonic forces −∂SF/∂x, relative
to the time step for the fermionic forces. As a result, we are
able to simulate efficiently electron-phonon models with small
phonon frequencies, which are of greatest physical relevance
for real materials.

At moderate to strong electron-phonon coupling, sim-
ulations of the Holstein model also suffer from long
autocorrelation times as a result of the phonon-mediated,
electron-electron binding. We introduce two additional types
of Monte Carlo updates, termed reflection and swap updates,
to address this issue. While similar types of updates have been
employed in DQMC simulations of the Holstein model, we
are able to do so while maintaining near linear scaling with
system size.

Finally, we introduce techniques for efficiently measuring
correlation functions. Elements of the matrix M−1(x) can
be estimated stochastically, provide samples of the single-
particle Green’s function. It is frequently desirable to average
correlation measurements over both real space and imaginary
time to reduce the error. A straightforward approach to per-
forming this average results in a computational cost that scales
as O(N2L2

τ ), which would violate our target of near linear-
scaling cost. To recover the desired scaling, we formulated the
real space and imaginary time averages as cross-correlations
(with periodic boundaries), which enables their efficient eval-
uation using FFTs. As a consequence, measurements come
almost “for free,” relative to the computational work required
to sample the phonon field.

Electron-phonon interactions play an important role in de-
scribing emergent behaviors that occur in certain strongly
interacting materials. The methods outlined in this paper al-
low for the efficient simulation of electron-phonon models
over a much greater range of system sizes and parameter
regimes, than was previously possible. This capability makes
accessible the study of many new material systems where
electron-phonon interactions are believed to play a prominent
role in determining the low energy physics.
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APPENDIX A: REVIEW OF PATH
INTEGRAL FORMALISM

Here we review how the partition function for the Holstein
model,

Z = trel-ph e−βĤ , (A1)

can be formulated as a path integral over phonon fields. The
trace is over the combined Fock space for both electron and
phonon operators. The Suzuki-Trotter approximation yields
[79]

Z ≈ trel-ph
[
e− �τ

2 Ĥel-ph e−�τ (Ĥel+Ĥph )e− �τ
2 Ĥel-ph

]Lτ

= trel-ph
[
e−�τ Ĥel-ph e−�τ Ĥel e−�τ Ĥph

]Lτ
, (A2)

where β = �τ Lτ is the discretization in imaginary time. This
approximation is valid to order O(�2

τ ). In the second step
we used the fact that Ĥph and Ĥel commute, and the cyclic
property of the trace.

The next step is to evaluate the phonon trace in the position
basis. This is done by repeatedly inserting the identity opera-
tor

∫
dN x |x〉〈x|, where |x〉 = |x1, x2, . . . xN 〉 denotes an entire

real-space phonon configuration, such that the integral is un-
derstood to be over all sites. Using 〈xτ |xτ+1〉 = δ(xτ − xτ+1),
the result is

Z ≈ trel

∫
Dx

Lτ −1∏
τ=0

e−�τ Ĥel-ph(xτ )e−�τ Ĥel〈xτ |e−�τ Ĥph |xτ+1〉,

(A3)

where the differential Dx indicates a path integral over all
phonon fields xi,τ . Ĥel-ph(xτ ) denotes the operator Ĥel-ph with
the replacement X̂ �→ xτ , subject to the periodic boundary
condition xLτ

≡ x0. Next we write

Z ≈ trel

∫
Dx e−SB

Lτ −1∏
τ=0

e−�τ Ĥel-ph(xτ )e−�τ Ĥel , (A4)

where

e−SB =
Lτ −1∏
τ=0

〈xτ |e−�τ Ĥph |xτ+1〉. (A5)

Again using a symmetric operator splitting,

e−�τ Ĥph ≈ e−�τ

ω2
0

4 X̂ 2
e−�τ

1
2 P̂2

e−�τ

ω2
0

4 X̂ 2
, (A6)

we find

〈xτ |e−�τ Ĥph |xτ+1〉 ≈ e− �τ ω2
0

4 (x2
τ +x2

τ+1 )〈xτ |e−�τ
1
2 P̂2 |xτ+1〉,

(A7)

which is locally valid to O(�3
τ ). In this notation, we are

treating xτ and P̂ as N-component vectors. The second factor
can be evaluated by inserting a complete set of momentum
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states,

〈xτ |e−�τ
1
2 P̂2 |xτ+1〉 =

∫
dN p 〈xτ |p〉e−�τ

1
2 p2〈p|xτ+1〉

=
∫

dN p e− �τ
2 p2+ip·(xτ+1−xτ )

∝ e− �τ
2 (

xτ+1−xτ
�τ

)2
. (A8)

Combining Eqs. (A4)–(A8), and recalling that xLτ
= x0, we

arrive at the “bosonic action” for the phonons,

SB ≈ �τ

N∑
i=1

Lτ −1∑
τ=0

[
1

2
ω2

0x2
i,τ + (xi,τ+1 − xi,τ )2

2�2
τ

]
+ const.

(A9)
This approximation is valid to order O(�2

τ ) because we have
chained the approximation in Eq. (A7) order 1/�τ times.

With some algebraic rearrangement, the partition function
in Eq. (A4) may be written

Z ≈
∫

Dx e−(SB−�τ α
∑

i,τ xi,τ )trel

Lτ −1∏
τ=0

∏
σ=↑,↓

e−�τ V̂τ,σ e−�τ K̂σ ,

where

V̂τ,σ =
∑

i

(αxi,τ − μ)n̂i,σ , (A10)

K̂σ = −
∑

i j

ti j ĉ
†
i,σ ĉ j,σ , (A11)

are purely quadratic in the Fermions, making it possible to
evaluate the remaining electron trace. Since the two spin sec-
tors are not coupled, the result is [1]

trel

Lτ −1∏
τ=0

∏
σ=↑,↓

e−�τ V̂τ,σ e−�τ K̂σ = (det M )2.

where M is a NLτ × NLτ matrix, conveniently expressed in
block form,

M(x) =

⎛
⎜⎜⎜⎜⎜⎝

I B0

−B1 I

−B2
. . .
. . .

. . .

−BLτ −1 I

⎞
⎟⎟⎟⎟⎟⎠. (A12)

I is the N × N identity matrix, and

Bτ = e−�τVτ e−�τ K .

The Vτ and K are matrix counterparts of the Fock-space oper-
ators of Eqs. (A10) and (A11), with elements

(Vτ )i j = δi j (αxi,τ − μ), Ki j = −ti j .

Putting together the pieces, the partition function may be
approximated,

Z ≈
∫

Dx e−(SB−�τ α
∑

i,τ xi,τ )(det M )2, (A13)

which is valid up to an error of order O(�2
τ ).

APPENDIX B: STATISTICAL SYMMETRY
OF THE ACTION

Here we demonstrate how the particle-hole symmetry of
the single-site Holstein model at half-filling emerges in the
action S(x,�σ ) of Eq. (21), provided that imaginary-time
fluctuations can be ignored.

Consider the change in action

�S(x) = S(x) − S(x0), (B1)

for a move x0 → x. For particle-hole symmetry to be re-
spected, we should find

�S(x)
?= �S(−x), (B2)

such that MC proposals x0 → x and x0 → −x would be ac-
cepted with equal probability. This condition is equivalent to
vanishing

δS = S(−x) − S(x). (B3)

Observe that the starting configuration x0 is irrelevant. Let us
now investigate the condition δS = 0.

The bosonic action SB(x) defined in Eq. (9) is symmetric
at half filling, but symmetry breaking may arise from the
fermonic action SF(x,�σ ) defined in Eq. (22). The result is

δS = 1

2

∑
σ

�T
σ

(
D−1

−x − D−1
x

)
�σ , (B4)

where

Dx = AT
x Ax, (B5)

and the auxiliary field �σ is arbitrary. If Dx = D−x, then
δS = 0, and the particle-hole symmetry of Eq. (B2) would be
satisfied.

We now show that Dx indeed satisfies this symmetry in the
special case of the adiabatic limit of the single-site Holstein
model at half-filling (μ = 0). Without the hopping matrix K ,
the block matrices Bτ = e−�τ αxτ become effectively scalar. In
the absence of imaginary-time fluctuations, we replace Bτ →
B̄ = e−�τ αx̄. Next, we explicitly calculate AT = �T MT using
Eqs. (10) and (16),

AT
x̄ =

⎛
⎜⎜⎜⎜⎜⎝

B̄1/2 B̄−1/2

−B̄−1/2 B̄1/2

−B̄−1/2 . . .
. . .

. . .

−B̄−1/2 B̄1/2

⎞
⎟⎟⎟⎟⎟⎠. (B6)

The subscript x̄ emphasizes our neglect of imaginary-time
fluctuations. It follows,

Dx̄ =

⎛
⎜⎜⎜⎜⎜⎝

B̄ + B̄−1 −I I

−I B̄ + B̄−1 . . .

−I . . .
. . .

. . . −I
I −I B̄ + B̄−1

⎞
⎟⎟⎟⎟⎟⎠, (B7)

The transformation x̄ → −x̄ corresponds to B̄ → B̄−1. We
conclude Dx̄ = D−x̄, as claimed, which implies particle-hole
symmetry of the action, Eq. (B2). The result is exact in the
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adiabatic limit (infinite atomic mass), for which imaginary-
time fluctuations can be ignored.

APPENDIX C: PRECONDITIONER IMPLEMENTATION

In Sec. V we described a preconditioner P that is block
diagonal in the Fourier space representation. Along the diag-
onal, its N × N blocks have the form

M̃ω,ω = I − e−iφω B̄, (C1)

where

φω = 2π

Lτ

(
ω + 1

2

)
, B̄ = e−�τ V̄ e−�τ K , (C2)

and both V̄ and K are Hermitian matrices. Applying P−1 to a
vector requires application of the N × N matrices M̃−1

ω,ω, for all
indices ω = 0, 1, . . . Lτ − 1. Here we describe how the kernel
polynomial method (KPM) [74] may be used to perform these
matrix-vector products efficiently. This approach systemati-
cally approximates each matrix M̃−1

ω,ω in polynomials of B̄.
A first observation is that the matrices e−�τ V̄ and e−�τ K

in their exact forms are positive definite and Hermitian. From
this, we can guarantee that all eigenvalues of B̄ are real [80].
The checkerboard approximation to e−�τ K slightly violates
Hermiticity, but even in this case, we have observed empir-
ically that the eigenvalues of B̄ remain exactly real in the
context of our QMC simulations.

A second observation is that the eigenvalues b̄ of B̄ are
bounded near 1,

b̄min � b̄ � b̄max, (C3)

otherwise �τ would not be sufficiently small for the Suzuki-
Trotter expansion to be meaningful. In the Holstein model,
K will typically have a much larger spectral magnitude than
V̄ , so we can get the correct scaling with the approximation
B̄ ≈ e−�τ K . On the square lattice with hopping t = 1, the ex-
treme eigenvalues of K are ±4. Given our choice of �τ = 0.1,
the extreme eigenvalues will be of order exp(±�τ 4), namely,
b̄min ≈ 0.7 and b̄max ≈ 1.6.

It will be convenient to define a rescaled matrix,

A = 2(B̄ − b̄min)/�b̄ − 1, (C4)

with �b̄ = b̄max − b̄min. The eigenvalues y of A satisfy −1 �
y � 1. This will allow us to approximate

M̃−1
ω,ω = (1 − e−iφω B̄)−1 = fω(A), (C5)

using Chebyshev polynomials in A. We may view

fω(y) = (1 − e−iφω b̄)−1, (C6)

as a scalar function that acts on the eigenvalues y of A, which
are related to the eigenvalues b̄ of B̄ via

y = 2(b̄ − b̄min)/�b̄ − 1. (C7)

1. Chebyshev polynomial approximation

An arbitrary scalar function f (y) may be expanded in the
basis of Chebyshev polynomials,

f (y) =
∞∑

m=0

cmTm(y), (C8)

valid for −1 � y � 1. In this domain, the Chebyshev poly-
nomials can be written Tm(y) = cos(m arccos y), such that the
coefficients cm may be interpreted as the cosine transform of
f in the variable θ = arccos(y).

The Chebyshev polynomials satisfy a generalized orthogo-
nality relation,∫ +1

−1
w(y)Tm(y)Tm′ (y)dy = qmδm,m′ , (C9)

where

w(y) = (1 − y2)−1/2,

qm = π

2
(1 + δm,0).

The expansion coefficients are then given by

cm = 1

qm

∫ +1

−1
w(y)Tm(y) f (y)dy. (C10)

Usually a closed form solution for cm is not available, but
one can use Chebyshev-Gauss quadrature to obtain a good
approximation,

cm ≈ π

qmNQ

NQ−1∑
n=0

cos(mθn) f (cos θn), (C11)

where NQ is the number of quadrature points, and θn = π (n +
1
2 )/NQ are the abscissas. A fast Fourier transform can be used
to calculate all coefficients cm efficiently [74].

The utility of the expansion in Eq. (C8) is that we can
obtain a good approximation by truncating

f (y) ≈
NP−1∑
m=0

gmcmTm(y), (C12)

at an appropriate polynomial order NP. Here one has the op-
tion to introduce damping factors gm associated with a kernel.
The damping factors should be close to 1 for m � NP and
may decay to 0 as m → NP. An appropriately selected ker-
nel guarantees uniform convergence of the Chebyshev series,
avoiding numerical artifacts such as Gibbs oscillations. In
our application, we are working with the smooth functions in
Eq. (C6), and we will simply set gm = 1.

For a given polynomial order NP, we find it sufficient to
use NQ = 2NP quadrature points to approximate the expansion
coefficients cm in Eq. (C11).

2. Selecting the polynomial order

Figure 9 illustrates Chebyshev approximation of the real
and imaginary parts of fω = (1 − e−iφω b̄)−1 for various poly-
nomial orders NP. Angles φω near zero give rise to sharper
features in fω, which require a larger polynomial order NP to
resolve.

We will use the convention that the angle φω is between
0 and π . This effectively restricts our attention to 0 � ω <

Lτ /2, which is possible due to the symmetry fLτ −ω−1(b̄) =
f ∗
ω (b̄).

In practice, we can achieve a good polynomial approxima-
tion using the heuristic

NP = ⌊
�b̄

(
a1φ

−1
ω + a2

)⌋
, (C13)
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FIG. 9. Chebyshev polynomial approximation of fω = (1 −
e−iφω b̄)−1 on a given interval b̄min � b̄ � b̄max. To resolve the sharp
features in fω for small angles φω, the polynomial order should scale
like NP ∼ φ−1

ω .

where �·� denotes the floor function; the coefficients a1 and
a2 are both of order 1 and independent of system details
(temperature, etc.). Note that the polynomial order NP scales
linearly with the range �b̄ = b̄max − b̄min over which an ap-
proximation is required. Observe that the polynomial order
NP decays rapidly when ω moves away from zero, such that
the typical value of NP is of order 1.

3. Using KPM to evaluate matrix-vector products

We wish to apply the matrix

M̃−1
ω,ω = (I − e−iφω B̄)−1 = fω(A), (C14)

to a vector, where A is a rescaling of B̄ as defined in Eq. (C4).
Using the truncated Chebyshev expansion, we may approxi-
mate

M̃−1
ω,ω ≈

NP−1∑
m=0

cmTm(A). (C15)

The expansion order Np and scalar coefficients cm, given in
Eq. (C10), implicitly depend on φω, b̄min, and b̄max.

A key result from KPM is that the task of evaluating the
matrix-vector product,

M̃−1
ω,ωu ≈

NP−1∑
m=0

cmTm(A)u =
NP−1∑
m=0

cmαm, (C16)

does not require explicit construction of the dense matrix
M̃−1

ω,ω. Instead, we will iteratively calculate the vectors

αm = Tm(A)u. (C17)

The Chebyshev polynomials satisfy a two-term recurrence
relation,

Tm+1(A) = 2ATm(A) − Tm−1(A). (C18)

Multiplying by u on the right yields an explicit scheme for
computing αm,

αm+1 = 2Aαm − αm−1, (C19)

beginning with

α0 = u, α1 = Au. (C20)

As the vectors αm become available, they are accumulated into
the right-hand side of Eq. (C16), eventually giving the desired
matrix-vector product.

4. A full recipe for the preconditioner

Here we summarize all steps needed to apply the precon-
ditioner in Eq. (67) efficiently. Our task is to evaluate the
matrix-vector product,

P−1v = U†P̃−1Uv. (C21)

The unitary matrix U is defined in Eq. (72) and can be effi-
ciently applied with an FFT. The matrix P̃ is zero except for
its diagonal blocks M̃ω,ω, which are given by Eq. (C1). The
main challenge is to apply the N × N matrix M̃−1

ω,ω to a vector.
We must do so for each index ω.

The matrix M̃ω,ω is a function of B̄ = e−�τ V̄ e−�τ K . If we
can find numbers b̄min and b̄max that assuredly bound all eigen-
values of B̄, then we may approximate M̃−1

ω,ω as in Eq. (C15).
To estimate b̄max, we may use the Arnoldi iteration, repeat-

edly applying the matrix B̄ to an initial random vector. This
method produces an upper Hessenberg matrix, which serves
as a low-rank approximation to B̄. After about 20 iterations,
the largest eigenvalue of this Hessenberg matrix (increased
by 5%, to be safe) provides a suitable estimate of b̄max. For
numerical stability reasons, we estimate b̄min by applying the
Arnoldi iteration to B̄−1 = e�τ K e�τ V̄ , estimating its maximum
eigenvalue and then taking the inverse. This is possible be-
cause, just like for B̄, we are able to apply B̄−1 to a vector
efficiently.

Given the approximation in Eq. (C15), we can efficiently
calculate M̃−1

ω,ωu using Eq. (C16), where the vectors αm =
Tm(A)u are iteratively calculated using the Chebyshev recur-
rence in Eq. (C19).

The appropriate polynomial order NP depends on the index
ω. A reasonable choice is given in Eq. (C13).

5. Scaling of costs

The calculation of the matrix-vector product in Eq. (C16)
requires NP − 1 matrix-vector multiplications involving B̄,
where NP depends on ω via Eq. (C13). Since the indices ω

and L − ω − 1 are effectively equivalent, we restrict attention
to 0 � ω < Lτ /2. We can sum over all such ω values to count
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the total number of required matrix-vector multiplications

Nmat-vec = 2
Lτ /2−1∑
ω=0

[NP(ω) − 1]

= 2
Lτ /2−1∑
ω=0

⌊
�b̄

(
a1φ

−1
ω + a2

)⌋ − Lτ . (C22)

The factor of 2 accounts for the skipped indices, Lτ /2 � ω <

Lτ . Removing the floor function is justified when ω is order
1, such that φ−1

ω is order Lτ [cf. Eq. (C2)], and in general
produces an upper bound,

Nmat-vec � 2�b̄

(
a1

Lτ /2−1∑
ω=0

φ−1
ω + a2Lτ /2

)
− Lτ . (C23)

We can explicitly evaluate the sum,

Lτ /2−1∑
ω=0

(ω + 1/2)−1 = ln 4 + γ + ψ (Lτ /2 + 1/2), (C24)

where γ = 0.577 . . . is the Euler-Mascheroni constant and
ψ (x) = ln x + O(x−1) is the digamma function. To a good
approximation, the upper bound is

Nmat-vec � Lτ�b̄

[
a1

π
(γ + ln 2Lτ ) + a2

]
− Lτ . (C25)

Typically a1 = a2 = 1 and �b̄ ≈ 1. For, say, Lτ = 200
(corresponding to inverse temperature β = 20 at �τ = 0.1),
the bound of Eq. (C25) gives

Nmat-vec/Lτ � 2.1, (C26)

whereas direct numerical evaluation of the sum yields
Nmat-vec/Lτ = 1.6. We infer that the bound of Eq. (C25) is in
general a fairly tight one.

Note that Lτ applications of the matrix B̄ =
exp(−�τV̄ ) exp(−�τ K ) are equivalent to the work required
to apply the matrix M in Eq. (10). It follows that the task
of applying the preconditioner in the Fourier basis, P̃−1,
is about two times more expensive than applying M. To
apply P−1 = U†P̃−1U , we additionally require two FFTs.
For the benchmarks performed in this paper, we measured
numerically that the total cost to apply P−1 is about three
times greater than the cost to apply M.

APPENDIX D: SIMULATION TIME VERSUS SYSTEM
SIZE AND INVERSE TEMPERATURE

In this Appendix we report the wall clock time for a full
simulation, as a function of both system size N and inverse
temperature β. Each simulation was performed using only
a single core of an Intel i7-4770 and i7-2600 processor (no
parallelism).

All simulations used to generate results in this Ap-
pendix were for Holstein systems with a dimensionless
electron-phonon coupling of λ = 0.25. Each simulation per-
formed Ntherm = 1000 HMC updates to equilibrate the system,
followed by an additional Nsim = 2000 HMC updates. Each
HMC update consisted of Nt = 100 time steps, and each
time step requires two CG solves. Each HMC update was

FIG. 10. Wall clock time for a full simulation (including over
650k CG solves) as a function of system size N . The corresponding
average iteration counts per CG solve are shown in Fig. 5.

followed by 4 reflection and 4 swap updates, requiring 8 + 8
CG solves. Additionally, a total of Nsim = 2000 measurements
were taken, each requiring Nrv = 10 CG solves. In total, the
simulation involved approximately 668k CG solves, which
comprise the dominant computational cost. This simulation
run-time was sufficient to achieve very accurate statis-
tics, as demonstrated by the SCDW measurements shown in
Fig. 6(a).

Figure 10 displays the total simulation wall clock time as
a function of N , and corresponds to Fig. 5, which shows the
average iteration count per CG solve. In all panels we see that
the wall clock timescales in an approximately linear fashion

FIG. 11. Wall clock time for a full simulation as a function of
inverse temperature β with system size N = 256. The corresponding
average iteration counts are shown in Fig. 6.
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with N . Empirical fitting of the wall clock time to a power
law curve in N yields an exponent between 1.0 and 1.3 in all
cases. Additionally, we see that the preconditioner uniformly
decreases the simulation time, although the relative speedup
is more significant at ω0 = 0.1 than ω0 = 1.0.

In similar fashion, Fig. 11 shows the wall clock time versus
β, and should be compared with Fig. 6(b), which reports the
average iteration count per CG solve. Once again we see that
the preconditioner strictly reduces total simulation times, and
that the wall clock timescales near linearly with β.
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