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Bayesian parameter estimation from dispersion relation observation data with Poisson process
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In this study, we estimate the distribution of lattice model parameters based on Bayesian estimation using
the dispersion relation spectral data of lattice vibration. The dispersion relation of lattice vibration is observed
using inelastic scattering of neutrons or x rays and is used to analyze the speed of sound and interatomic force.
However, the current analysis method of dispersion relation observation data in the field of experimental physics
requires manually fitting parameters, so the analysis is costly and cannot effectively handle high-dimensional
data and large amounts of data. Moreover, it is impossible to discuss the estimation accuracy with the conven-
tional method. Therefore, we solve these problems by estimating the distribution of parameters using Bayesian
inference. We propose a lattice model parameter estimation method that uses Bayesian inference with a physical
observation stochastic process and determine the method’s effectiveness using artificial data.
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I. INTRODUCTION

In condensed-matter physics, various physical responses
occur in terms of elementary excitations. Each elementary
excitation is characterized by its energy (frequency) and
momentum (wave vector). The energy and momentum are
connected by a dispersion relation, which is one of the more
important characteristics of elementary excitation. The dis-
persion relations are also essential to understanding sound
propagation, specific heat, thermal conductivity, supercon-
ductivity, etc. Dispersion relations of bosonic excitations are
generally observed by neutron scattering or x-ray scatter-
ing. The phonon dispersion relation was first observed in an
inelastic neutron scattering measurement of germanium by
Brockhouse and Iyengar [1,2]. Since then, the inelastic neu-
tron scattering technique has been widely used for studying
phonons. In the early days of inelastic neutron scattering, a
reactor-based neutron source was utilized. The amount of ob-
tained data was small and could be analyzed in a simple way
irrelevant to the type of spectrometer. First, peak positions in
the inelastic scattering spectrum at a certain momentum trans-
fer q were estimated and regarded as the eigenfrequencies of
phonons. Then, the obtained dispersion relation was fitted to
a theoretical model with variable parameters and the validity
of the model was evaluated intuitively. The establishment
of high-power accelerator-based neutron sources like ISIS,
SNS, J-PARC, and CSNS and the combination of a high-
power pulsed source and two-dimensional position-sensitive
detectors remarkably improved data acquisition efficiency.
A time-of-flight neutron spectrometer designed for inelas-
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tic scattering measurements like MAPS [3], MERLIN [4],
HYSPEC [5], ARCS [6], 4SEASONS [7], AMATERAS [8],
and HRC [9] produces a large amount of event data in a
four-dimensional (4D) frequency (ω)–momentum (q) space
that can be obtained within a couple of days. Analysis of event
data is presently visualized as a two-dimensional contour plot
of a one-dimensional spectrum for specified regions in the 4D
space. Then, the physical model parameters are inferred to fit
the estimated dispersion relations. However, the fitting is usu-
ally performed only for the visualized specified regions based
on experience. Since the analysis is limited for the visualized
data, it is impossible to effectively perform the inference of
the physical parameters by considering all the event data.

To solve these problems, we propose a method of esti-
mating the distribution of model parameters directly from
high-dimensional event data. We estimate model parameters
in the framework of Bayesian inference. In recent years, the
estimation of model parameters by Bayesian inference has
been actively applied to physical property research together
with spectroscopy [10–15]. Since the calculation of Bayesian
posterior probabilities is difficult theoretically, it is calculated
numerically using the exchanged Markov chain Monte Carlo
(REMC) method [16–19]. In a previous study [20], we as-
sumed Gaussian noises in the observation process for the
inference. The fluctuation of event numbers often follows the
Poisson process. In this study, we improve the method of
estimating the model parameter distributions by introducing
Poisson noise into the observation process.

We conduct numerical experiments using a simple model
and artificial data. The dispersion relations are calculated as
the vibration eigenmodes of the classical harmonic-oscillator
lattice model of the body-centered cubic type. We assume that
each eigenmode is expressed as a Lorentzian with an identical
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peak height and width as a function of energy. Some sets
of artificial histogram data are generated from the Poisson
process of the obtained spectral intensities. We show that
our method is superior to the previous research method for
data with a short observation time in terms of accuracy and
reliability of Bayesian estimation.

II. FORMULATION OF DATA GENERATION PROCESS

In this study, we propose a method of estimating lattice
parameters from the event data of a histogram. The analysis
target is a body-centered cubic harmonic lattice model.

A. Dispersion relation

Let u(r, t ) be the displacement vector and let the variable a
be the lattice constant. In addition, the elastic constants for the
first, second, and third nearest neighbors are set to α1, α2, and
α3, respectively. The eigenequation of motion is expressed as

−ω2Mu(q) = Du(q), (1)

where u(q) is the Fourier transformation of the displacement
vector

u(r, t ) = u(q)ei(q·r−ωt ), (2)

M is the mass of the atom, and the coefficient matrix D is the
q-dependent real symmetric matrix of 3×3.

The diagonal component dii and the off-diagonal compo-
nent di j of D are
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Here, λ1(q), λ2(q), and λ3(q) are three eigenvalues of the
matrix D. The dispersion relation can be described as

ωi =
√

−λi(q)

M
(i = 1, 2, 3). (9)

B. Data observation process

The dispersion relation is observed as 4D histogram data
that includes statistical noises. In this section, we introduce
the observation process into the dispersion relation.

Each eigenmode has a lifetime. Thus the spectrum profile
is represented by a Lorentzian. The intensity for energy Ei and
momentum q j can be written as

I (Ei, q j ; α) =
3∑

k=1

ηk (q j )φk[Ei; q j,α, γ (q)], (10)

φk (E ; q,α, γ ) ∝ 1

π

γ 2

[E − h̄ωk (q; α)]2 + γ 2
. (11)

γk (q) is the width of a Lorentzian; ηk (q) is the intensity
of each mode basis, which is determined by the measurement
system, momentum q, temperature, etc. γk is also dependent
on the momentum q and temperature in general. 	 = {α, η, γ}
are considered as model parameters and α = {α1, α2, α3}.

For simplicity purposes, we assume that γk and ηk are
constants:

I (Ei, q j ; 	) =
3∑

k=1

ηkφk (Ei; q j,α, γk ). (12)

The observed average of spectral intensities ȳi j for the obser-
vation time T is represented as

ȳi j = [I (Ei, q j ; 	) + B]T . (13)

If the observation process follows Poisson distribution, the
acquired spectral data Y = {yi j} can be

P(yi j |I (Ei, q j ; 	) = ȳ
yi j

i j exp(−ȳi j )

yi j!
. (14)

Here, we introduce a uniform background B independent of
energy or momentum.

C. Previous study: Observation process of data

In a previous study [20], we assumed that the observa-
tion process followed a Gaussian distribution, so the acquired
spectral data Y = {yi j} can be

P(yi j |I (Ei, q j ; 	) = N(
I (Ei, q j ; 	), σ 2

REMC

)
, (15)

where σREMC is the lower bound noise intensity for REMC. In
this study, since it is generally impossible to know the noise
intensity of data, we estimate noise [21] by giving the noise a
lower bound.

III. ANALYSIS

Bayesian inference

In this section, we show a method of estimating model pa-
rameters by Bayesian inference from the obtained observation
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FIG. 1. Examples of the synthetic data of the generated dispersion relation. Panels (a)–(d) are spectrum data when T = 100, 10, 1,
and 0.1, respectively. The parameters used to generate the data are shown in Table I.

data. The observation point is X = {xi j |xi j = (Ei, q j )}, and the
observation value is Y = {yi j}. We can write observation data
D = {X,Y }.

The amount of data is N = |D|. Then, assuming that each
observation follows the same independent distribution, the
probability distribution of Y is

P(Y |X,	) =
∏
i, j

P(yi j |I (Ei, q j ; 	), (16)

=
∏
i, j

ȳ
yi j

i j exp(−ȳi j )

yi j!
, (17)

= exp[−NE(	)], (18)

E(	) ≡ 1

N

∑
i j

(ȳi j − yi j ln ȳi j + ln yi j!). (19)

From the Bayes’ theorem, the posterior probability of the
model parameter 	 is

P(	|D) = P(Y |X,	)ϕ(	)

P(Y |X )
, (20)

= 1
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ϕ(	)

∏
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= 1

Z (D)
exp(−NE)ϕ(	), (22)

where ϕ(	) is the prior distribution and Z (D) is the marginal
likelihood or normalization constant

Z (D) =
∫

exp[−NE(	)]ϕ(	)d	. (23)

We use the prior distributions ϕ(	) = ϕα (α)ϕγ (γ )ϕη(η).
Each distribution is written as half-Cauchy distributions
ϕα (α) = ∏3

k=1 C(αk; ια ) and ϕη(η) = ∏3
k=1 C(ηk; ιη ) and the

inverse gamma distribution ϕγ (γ ) = ∏3
k=1 G(γk; aγ , bγ ),

where the half-Cauchy distribution is
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and the inverse gamma distribution is
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∏

i
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aγ

γ

(aγ )
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These prior distributions are the same as those in the previous
study [20].

In this study, the posterior probability distribution is calcu-
lated numerically by using the REMC method [16,22].

IV. NUMERICAL EXPERIMENT

In this section, we evaluate the performance of our model
parameter estimation method that uses Bayesian inference.
We show numerical experiments that compare the perfor-
mances of our method and the previous method using the same
synthetic data.

First, we generated the dispersion relation data of the
body-centered cubic lattice model based on Eq. (14). The
parameters used to generate the synthetic data are shown
in Table I. We chose points with high symmetry in the first
Brillouin zone of momentum space and sampled the straight
line connecting each point [0, 0, 0] → H[0, 0, 2π/a] →
N[0, π/a, π/a] → P[π/a, π/a, π/a] → [0, 0, 0].
Examples of the synthetic data are shown in Fig. 1.
Figures 1(a)–1(d) are the spectrum data when the observation
time is T = 100, 10, 1, 0.1. Model parameter estimation is
obtained as a posterior probability of the spring constant
sampled by the REMC method (see Table II).

Figures 2–5 show examples of spring constant estimations.
The posterior probability distributions for the synthetic data
with observation time T = 100, 10, 1, 0.1 [Figs. 1(a)–1(d)]
are Figs. 2–5.

The estimated mean and the spread of the estimated dis-
tribution are shown statistically because the spread of the
distribution was evaluated as the reliability in our numerical
experiments. For simplicity purposes, we consider the stan-
dard deviation as the spread of the estimated distribution. To
statistically evaluate the mean and standard deviation obtained

TABLE I. Parameters of synthetic data. (Note that the phonon
energy is independent of the lattice constant a. The lattice constant is
relevant only to the size of the first Brillouin zone.)

N 50
(α1, α2, α3) (N/m) (300, 200, 100)
(η1, η2, η3) (1, 1, 1)
(γ1, γ2, γ3) (meV) (0.0025, 0.0025, 0.0025)
Matom (kg) 2×10−26

B 0.8
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FIG. 2. Posterior distributions of α for the observation data generated by T = 100. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true α. The parameters used for the REMC method of
estimating α are shown in Table I.

FIG. 3. Posterior distributions of α for the observation data generated by T = 10. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true α. The parameters used for the REMC method of
estimating α are shown in Table I.

FIG. 4. Posterior distributions of α for the observation data generated by T = 1. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true α. The parameters used for the REMC method of
estimating α are shown in Table I.
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FIG. 5. Posterior distributions of α for the observation data generated by T = 0.1. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true α. The parameters used for the REMC method of
estimating α are shown in Table I.

FIG. 6. Posterior distributions of η for the observation data generated by T = 100. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true η. The parameters used for the REMC method of
estimating η are shown in Table I.

FIG. 7. Posterior distributions of γ for the observation data generated by T = 100. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true γ . The parameters used for the REMC method of
estimating γ are shown in Table I.
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FIG. 8. Posterior distributions of η for the observation data generated by T = 10. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true η. The parameters used for the REMC method of
estimating η are shown in Table I.

FIG. 9. Posterior distributions of γ for the observation data generated by T = 10. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true γ . The parameters used for the REMC method of
estimating γ are shown in Table I.

FIG. 10. Posterior distributions of η for the observation data generated by T = 1. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true η. The parameters used for the REMC method of
estimating η are shown in Table I.
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FIG. 11. Posterior distributions of γ for the observation data generated by T = 1. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true γ . The parameters used for the REMC method of
estimating γ are shown in Table I.

FIG. 12. Posterior distributions of η for the observation data generated by T = 0.1. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true η. The parameters used for the REMC method of
estimating η are shown in Table I.

FIG. 13. Posterior distributions of γ for the observation data generated by T = 0.1. The results with the proposed and previous method are
shown on the left and right, respectively. The intersections of the red lines represent the true γ . The parameters used for the REMC method of
estimating γ are shown in Table I.
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FIG. 14. Posterior distributions of B for the observation data generated by T = 100, 10, 1, 0.1. The parameters used for the REMC method
of estimating B are shown in Table I. Note that the parameter B is fixed to the true value in the previous method [20].

by each inference, Tables III and IV show the average values
and the standard deviations obtained with 10 inferences.

V. DISCUSSION

In the numerical experiments in Sec. IV, we compared the
method proposed in this study with a method from a previous
study and evaluated their performances in estimating physical
model parameters from dispersion relation observation data.
Since the observation data should be physical event measure-
ment data, it was generated by the Poisson process.

Figures 2–5 show that our method was more accurate than
the previous study’s method. In addition, Tables III and IV
show that our method improved the inference performance by
about 100 times with respect to the observation time compared
with the previous study’s method.

The inference performance differed based on whether the
model and the likelihood function matched. The likelihood
function of the model of our method has a Poisson distribu-
tion, and the model and the generation process of observation
data match. However, the likelihood function of the model
of the previous study’s method has a Gaussian distribution,
which does not match the generation process of the obser-
vation data. We determined that the estimation performance
could be substantially reduced because the noise model of the
estimation model did not match the noise mechanism of the
observed data. An appropriate noise mechanism must be in-
troduced into the estimation model to improve the estimation
performance.

We constructed a model for inelastic scattering of the ex-
perimental data of neutrons, and we introduced the Poisson
noise model since the acquired data was stochastically mea-
sured count data. Poisson noise can be used for the count

TABLE II. Parameters of the priors and REMC conditions for
parameter estimation.

L 48
M 120 000
Burn in step 60 000
ια 150
ιη 0.5
aγ 4.001
bγ (meV) 0.010 01
ξ 1.4

data of stochastic events. In the Poisson distribution, the mean
and the variance are the same value, but there are actual data
cases in which the mean and the variance of the distribution
are not the same value even for count data. This is because
there are noise factors that cannot be expressed by the Poisson
distribution alone, such as the characteristics of measuring
instruments or physical phenomena from other systems. In ac-
tual operation, if multiple noise models are possible, the noise
model must be evaluated by model selection. In Bayesian
inference, the appropriateness of the estimation model for
the data can be measured using Bayesian free energy. First,
the free energy is calculated for each model and the model
with the minimum free energy is considered the most suitable
model for the data.

Unlike the previous study’s method, it is not necessary to
estimate the noise level in our method because it does not
include noise parameters in the observation model. Therefore,
the uncertainty due to noise estimation does not affect the pa-
rameter estimation and stable analysis results can be obtained
by our method.

In event measurement, the data is better retained as raw
count data. In the fields of physical measurement and infor-
mation measurement, measurement data is often processed
and not retained as raw count data. Our method dramatically
improves estimation accuracy by being probabilistically mod-
eled using a Poisson process on Bayesian inference and by
treating the data as raw count data. The properties of count
data can improve estimation accuracy. Therefore, in event
measurement, the data should be retained as raw count data.

VI. CONCLUSION

We proposed a method of estimating the interaction param-
eters of the crystal lattice from dispersion relation observation
data, conducted numerical experiments using artificial data,
and discussed performance evaluations. We introduced the
Poisson process into the inference model with our method.
Therefore, our method achieved better inference accuracy
than the previous study’s method and we could infer physical
parameters with high accuracy from short-time measurement
data. In future study, we will perform more practical Bayesian
modeling for actual data analysis. The shell model [23] can be
handled as a more practical model for calculating the disper-
sion relation of lattice vibration. By extending our model, we
can achieve more accurate model parameter estimation and
optimization of experimental observation conditions.
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TABLE III. Descriptive statistics values of posteriors by Poisson EMC.

Posterior mean Posterior standard deviation

Time α1 (N/m) α2 (N/m) α3 (N/m) α1 (N/m) α2 (N/m) α3 (N/m)

1000 300.00 ± 0.11 200.01 ± 0.09 100.03 ± 0.07 0.09 ± 0.00 0.11 ± 0.01 0.08 ± 0.01
100 299.93 ± 0.26 199.92 ± 0.40 100.07 ± 0.26 0.26 ± 0.01 0.33 ± 0.01 0.24 ± 0.02
10 300.33 ± 1.02 199.88 ± 1.05 99.69 ± 0.46 0.85 ± 0.09 1.10 ± 0.11 0.81 ± 0.08
1 301.72 ± 3.04 200.41 ± 4.46 98.65 ± 2.70 3.30 ± 1.39 3.67 ± 0.99 2.69 ± 0.96

0.1 1101.65 ± 924.92 1219.80 ± 2014.31 1056.90 ± 814.90 12 382.66 ± 15 656.31 9369.42 ± 19 538.85 9769.06 ± 12 901.07
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APPENDIX: ESTIMATION RESULTS
OF THE SPECTRUM PARAMETERS

Here, the estimation results of the other parameters
of the proposed method in Sec. IV are described in
Figs. 6–14.

TABLE IV. Descriptive statistics values of posteriors by Gaussian EMC.

Posterior mean Posterior standard deviation

Time α1 (N/m) α2 (N/m) α3 (N/m) α1 (N/m) α2 (N/m) α3 (N/m)

1000 300.00 ± 0.06 199.99 ± 0.06 100.01 ± 0.03 0.08 ± 0.00 0.10 ± 0.00 0.07 ± 0.00
100 299.88 ± 0.39 199.98 ± 0.63 100.09 ± 0.35 0.89 ± 0.42 1.24 ± 0.40 0.95 ± 0.32
10 2869.40 ± 4335.94 1288.29 ± 685.08 1037.25 ± 327.82 75 030.23 ± 182 473.8 18 510.97 ± 19 274.41 10 078.06 ± 8481.60
1 1092.83 ± 793.79 1469.85 ± 1518.43 973.71 ± 344.36 28 949.34 ± 54 884.65 41 824.27 ± 78 722.12 18 154.27 ± 26 247.32

0.1 4154.65 ± 9067.73 1409.29 ± 1107.07 1061.90 ± 235.39 325 395.19 ± 898 216.3 45 478.45 ± 74 316.54 24 386.52 ± 17 130.80
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