
PHYSICAL REVIEW E 105, 065209 (2022)

Kinetic interpretation of the classical Rayleigh-Taylor instability
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Rayleigh-Taylor (RT) instabilities are prevalent in many physical regimes ranging from astrophysical to
laboratory plasmas and have primarily been studied using fluid models, the majority of which have been ideal
fluid models. This work presents a five-dimensional (two spatial dimensions, three velocity space dimensions)
simulation using the continuum-kinetic model to study the effect of the collisional mean free path and transport
on the instability growth. The continuum-kinetic model provides noise-free access to the full particle distribution
function permitting a detailed investigation of the role of kinetic physics in hydrodynamic phenomena such as
the RT instability. For long mean free path, there is no RT instability growth, but as collisionality increases,
particles relax towards the Maxwellian velocity distribution, and the kinetic simulations reproduce the fluid
simulation results. An important and novel contribution of this work is in the intermediate collisional cases
that are not accessible with traditional fluid models and require kinetic modeling. Simulations of intermediate
collisional cases show that the RT instability evolution is significantly altered compared to the highly collisional
fluidlike cases. Specifically, the growth rate of the intermediate collisionality RT instability is lower than the
high collisionality case while also producing a significantly more diffused interface. The higher moments of the
distribution function play a more significant role relative to inertial terms for intermediate collisionality during
the evolution of the RT instability interface. Particle energy flux is calculated from moments of the distribution
and shows that transport is significantly altered in the intermediate collisional case and deviates much more so
from the high collisionality limit of the fluid regime.

DOI: 10.1103/PhysRevE.105.065209

I. INTRODUCTION

Rayleigh-Taylor (RT) instabilities occur when a dense fluid
is accelerated into a lighter fluid; for example, under the
influence of a gravitational field [1,2]. While this instability is
traditionally studied in a strictly fluid regime [3,4], applying a
fully kinetic treatment allows for study of a range of collision-
ality, from collisionless and intermediate, where fluid models
are not applicable, to highly collisional regimes approaching
the fluid limit [5–8].

This work explores a fully kinetic treatment of the clas-
sical RT instability for a single neutral particle species for
varying collisionality, with a future goal of extending into a
collisional two-species plasma with evolving electromagnetic
fields. A body of literature exists studying magnetohydrody-
namic and extended-magnetohydrodynamic modeling of the
RT instability [9–11], the role of viscosity, resistivity, and
thermal conduction in RT and magneto-RT instability growth
[12–14], and the role of incorporating some kinetic effects on
the magneto-RT instability through the use of higher-fidelity
fluid models [15,16].

Kinetic effects can emerge when mean free paths are
long relative to a relevant characteristic length scale. Shock-
driven implosion experiments at the OMEGA laser facility
[17] have shown evidence of kinetic phenomena in high-
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energy-density regimes, such as nonhydrodynamic mixing,
thermal decoupling, and species separation [18–20]. The
emergence of kinetic effects within a shock may imply the
presence of kinetic effects for the RT instability when mean
free paths are long relative to the fluid interface. Other im-
plosion experiments at OMEGA have studied the physics
relevant to RT instability growth in core-collapse super-
novae but focused on a purely hydrodynamic interpretation
of the results [21–23]. As there is evidence of a transition
from a hydrodynamic to a kinetic regime within OMEGA
high-energy-density experiments, fully kinetic simulations to
accompany RT experiments may offer a novel explanation
of disparities between experiment and hydrodynamic simu-
lations.

For these studies, the continuum-kinetic capabilities of the
plasma simulation framework Gkeyll [24] are used to evolve
particle distribution functions, f . Gkeyll uses a discontin-
uous Galerkin method [25–27] to discretize and evolve the
Boltzmann equation [28,29],

∂ f

∂t
+ v · ∇x f + a · ∇v f =

(
∂ f

∂t

)
C

, (1)

where x and v are the two independent particle position and
velocity, respectively. The acceleration vector, a, is simply
gravity, g, for this work, as only neutral particles will be
considered. The right-hand term accounts for particle colli-
sions and is approximated here by the Bhatnagar-Gross-Krook
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(BGK) operator [30,31],(
∂ f

∂t

)
C

= ν( fM − f ), (2)

where fM is an ideal Maxwellian distribution function calcu-
lated from moments of f , and ν is the collision frequency.
The BGK operator is necessarily conservative in number den-
sity, momentum, and energy when ν is constant with respect
to particle velocity as it is in this work. This approxima-
tion is appropriate for neutral species, as considered here.
For a plasma, ν is generally known to scale with particle
velocity as v−4. Assuming constant ν for a plasma would
overestimate energy fluxes in the high-energy tails of the
distribution.

Gkeyll discretizes f on a phase-space grid of up to six
dimensions by decomposing f using a set of piecewise poly-
nomials with superlinear order up to p [32]. Distribution
functions are then evolved in time using a strong-stability-
preserving Runge-Kutta method.

II. PROBLEM DESCRIPTION

Distribution functions in this work are five-dimensional,
with two spatial and three velocity space dimensions,
(x, y, vx, vy, vz ), and have initial conditions derived from hy-
drostatic equilibrium with

∇p = −nmg. (3)

All units are normalized using a particle species of mass
m = 1.0, upper bound density n1 = 1.0, and gravity g = 1.0.
The initial number density and pressure profiles are as fol-
lows:

n(y) = n0

2
tanh

(
αy

Ly

)
+ 3

2
n0, (4)

p(y) = mgn0

2

{
ln

[
cosh

(
αy

Ly

)]
+ 3y

}
+ 3

2
n0T0, (5)

where n0 = 0.5 is the density at the center of the interface,
Ly = 1.0 is half the length of the simulation domain in y,
and T0 is an arbitrary constant chosen to ensure the mini-
mum pressure in the domain is positive. With the density
and pressure profiles above, the interface between the high-
and low-density regions is continuous and has width defined
by α. Simulations are initialized with α = 25 to ensure the
width of the interface is small relative to the domain size.
This initial density profile corresponds to an Atwood number,
At = (n1 − n2)/(n1 + n2), of 1/3. Boundary conditions are
periodic in x and static reservoir in y, where the edge ghost
layers of cells are a continuation of the initial conditions
and do not evolve in time. Distribution functions are initially
Maxwellian in velocity space, according to

f (v) = n(
2πv2

th

)3/2 exp

(
− (v − u)2

2v2
th

)
, (6)

for initial bulk velocity u, where vth = √
T/m is thermal ve-

locity. The pressure profile given by Eq. (5) is used to calculate
a temperature T = p/n, which is then used to initialize the
Maxwellian distribution.

FIG. 1. Initial conditions in number density (left), bulk velocity
(center), and square of thermal velocity (right).

While these initial conditions are hydrostatic, they are not
a true Boltzmann equilibrium for the case of finite collision
frequency, as any deviations from Maxwellian are not imme-
diately damped out by collisions. Additionally, if the collision
frequency is not sufficiently high, the interface diffuses and
the fluid layers mix before the instability grows.

To generate the RT instability, a single-mode sinusoidal
perturbation of wavenumber k is applied to the y-direction
bulk velocity, uy, according to

uy = −0.1vth,c cos (kx) exp

(
− y2

2y2
r

)
, (7)

where k = π/(2Lx ), vth,c is the initial thermal velocity at the
center of the domain, Lx = 0.75 is half the simulation domain
length in x, and yr = Ly/10 is a characteristic decay length
for the perturbation. The initial conditions of n, v2

th, and uy are
shown in Fig. 1.

III. RESULTS

Collision frequencies are calculated from a chosen Knud-
sen number, Kn = λm/Lx, i.e., the ratio between particle mean
free path λm and scale length Lx. Collision frequencies are
assumed to be constant spatially and temporally, according
to ν = vth,c/λm. However, collision frequency is generally
known to scale with density and temperature [33], and RT in-
stability simulations with spatially varying collisionality will
be explored in future work. In this work, values of Kn are
chosen as 0.1, 0.01, and 0.001. Simulations are run to an end
time of three classical RT instability growth periods, τRT =
1/

√
kgAt . Time evolution of number density and temperature

for each case is shown in Figs. 2 and 3, respectively, for times
0, 1.5τRT, and 3.0τRT.

The fluid interface diffuses in all cases due to finite col-
lisionality. As mean free path increases from the limit of
infinite collisionality, particles stream past one another over
longer distances without interacting. The net result is a mix-
ing of the fluid layers that speeds up as the mean free
path increases, as particles are not affected by the pres-
sure gradient until a collision event. With no perturbation,
the interface continues to diffuse until the fluid layers mix
completely.

For the lowest collisionality case, the interface diffuses
so quickly relative to the RT instability growth timescale
that there is effectively no interface where the instability can
form. As collisionality increases by an order of magnitude,
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FIG. 2. Time evolution of number density for varying collision-
ality. Left to right is Kn of 0.1 (a), 0.01 (b), and 0.001 (c). Top
to bottom is time 0.0, 1.5τRT, and 3.0τRT. Note that the low col-
lisionality case (left column) presents no RT instability growth,
and the intermediate collisionality case (middle column) presents
significantly altered RT instability growth compared to the high
collisionality case (right column) which approaches the fluid limit.

the interface diffuses slowly enough that the RT instability is
able to grow. At the end time, the expected bubble and spike
structures are present with diffuse edges. The most collisional
case approaches the expected fluid result, with minimal diffu-
sion of the interface and mushroom structures on the bubble
and spike as secondary Kelvin-Helmholtz instabilities form.
The temperature distribution exhibits identical behavior to the
density evolution. Note that the growth of the RT instability
for the intermediate case is slower than that of the highly
collisional case.

In order to quantify the effects of collisionality on RT in-
stability growth, an approach similar to [6] and [34] is used to
calculate a growth rate, γ0, that includes viscous and diffusive
effects,

γ0 =
√

kgAt + ν2
v k4 − (νv + ξ )k2, (8)

where νv = vth,cλm/2 is the kinematic viscosity, and ξ = νv

is the diffusion coefficient. Note that [6] and [34] include
an additional factor for dynamic diffusion effects to calcu-
late a time-dependent growth rate, which has been neglected
here. Because the primary dynamic diffusion effect is the
diffusion of the interface, which occurs exclusively early in
the simulation, those early data points are excluded from the
growth rate calculation to achieve a constant linear growth rate
that describes RT instability growth for the majority of the
simulation. Growth rates are calculated using h, the difference

FIG. 3. Time evolution of temperature for varying collisionality.
Left to right is Kn of 0.1 (a), 0.01 (b), and 0.001 (c). Top to bottom
is time 0.0, 1.5τRT and 3.0τRT.

between the top of the bubble and the bottom of the spike, and
are presented in Fig. 4 for the case of Kn = 0.01 and 0.001,
compared with a neutral fluid simulation using the Euler equa-
tions. It is assumed that kinetic simulations converge to those
of the Euler equations in the limit of infinite collisionality
as nonideal transport becomes negligible. Early data points

FIG. 4. Logarithm of h, the difference between spike and bubble
heights, as a function of time for Kn = 0.01 and 0.001 and a fluid
simulation using the Euler equations. Data points early in time are
excluded from the fit due to dynamic diffusion of the interface for
the kinetic cases and wave launching for the fluid case. Note as
Kn decreases, the RT instability growth rate approaches the fluid
simulation result.
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TABLE I. Values of RT instability growth rates, calculated from
simulation (γ ) and theory (γ0).

Case γ γ0

Kn = 0.01 0.9635 0.9723
Kn = 0.001 1.1369 1.1603
Fluid 1.1708 1.1816

are also ignored for the fluid simulations, as the perturba-
tion to uy causes waves to be launched that interfere with
RT instability growth early in time. Growth rates calculated
from the linear fits in Fig. 4 are compared with theoretical
growth rates in Table I. There is good agreement between the
calculated growth rates and the theoretical growth rates with
static diffusion, and as Kn increases, γ and γ0 approach the
fluid result. The slight decrease in agreement from the 0.01
Kn case to the 0.001 case is likely due either to the presence of
diffusion in the kinetic case or to not capturing the transition
from time-varying growth to linear growth as well in the data
output frames (i.e., the transition is between data points 3
and 4 for the 0.001 case). While fluid simulations of the RT
instability have been performed with viscosity [12–14,35],
the presence of a fluid viscosity alone is insufficient to ex-
plain the diffusion of the interface seen here (including the
dynamic diffusion effects early in time). To explain the kinetic
parameter regime of the intermediate collisionality case, this
work probes into a detailed kinetic interpretation of the RT
instability.

While highly collisional regimes asymptoting to fluid re-
sults are reasonably well understood for the neutral fluid
RT instability, intermediate collisional regimes require ki-
netic simulations since the fluid model is no longer valid
in these regimes. Variation in RT instability growth as a
function of collisionality implies the emergence of kinetic
effects as collisionality decreases and distribution functions
are allowed to become less Maxwellian. A metric to quan-
tify non-Maxwellian distributions spatially can aid in probing
the five-dimensional distribution function by highlighting po-
tential areas of variation from equilibrium. In an attempt to
capture the spatial distribution of such variations, a density
analog is constructed from the distribution function and a
constructed Maxwellian as follows:

nN (x) =
∫

| f (x, v) − fM (x, v)|d3v. (9)

This non-Maxwellian density allows for spatial represen-
tation of non-Maxwellian distribution functions and has units
of density, allowing for simple comparison to the density
profiles in Fig. 2. Non-Maxwellian density for each Kn is
presented below in Fig. 5. Note that recent work by Cagas
et al. [36] shows that a boundary layer forms at reservoir
boundaries for the Vlasov-BGK model, Eqs. (1) and (2). The
boundary layer is approximately one mean-free-path wide and
non-Maxwellian. Therefore, three layers of cells at the top and
bottom of the domain are omitted in Fig. 5 in order to maintain
a useful color scale for the regions of interest. As expected,
high collisionality leads to a decrease in nN by approximately
an order of magnitude between the most and least collisional

FIG. 5. Density of nonideal distribution, according to Eq. (9),
for Kn of 0.1 (left), 0.01 (center), and 0.001 (right), normalized to
number density. Note the varying color scale for each subplot.

cases. For the case where the RT instability does not develop,
nN simply follows an almost identical distribution to density,
comparing Fig. 2(a3) to the left plot of Fig. 5. However, for the
cases where the RT instability develops, the interfaces appear
as regions of peak nN . Magnitudes of nN are small relative to
n, even for the least collisional case that has the highest peak
nN .

To further characterize the effect of varying collision-
ality, two higher moments of the distribution function are
defined:

Pi j = m
∫

viv j f d3v, (10)

Qi jk = m
∫

viv jvk f d3v. (11)

As in Wang et al. [37], by defining wi = vi − ui,
Eq. (11) can be expanded and tensor contracted to
get the particle energy flux (using Einstein’s summation
convention),

1

2
Qiik = 5

2
uk p + 1

2
mnuku2

︸ ︷︷ ︸
I

+ qk + ui
ik︸ ︷︷ ︸
II

, (12)

where

qk = 1

2
m

∫
wiwiwk f d3v (13)

is the heat flux vector in the gas frame, and the stress tensor

i j is related to the pressure tensor,

Pi j = m
∫

wiw j f d3v, (14)

by 
i j = Pi j − pδi j with scalar pressure p = Pii/3. The pres-
sure tensor is also related to the second moment by Pi j =
Pi j + mnuiu j . Note that the use of collision frequency that
is independent of particle velocity leads to an overestimation
of energy fluxes in the high-energy tails of the distribution if
charged species are considered instead of neutral species. In
the case of charged species, the energy fluxes presented here
will be greater in magnitude than those calculated with a col-
lision frequency that varies with velocity. This work considers
neutral species. Individual terms are grouped in Eq. (12) by
whether they arise from Maxwellian parts of the distribution
(group I), or non-Maxwellian parts (group II). Group I will
be referred to as ideal terms, while group II are the nonideal
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FIG. 6. Terms of the expanded particle energy flux (3.5) in the y direction for Kn of 0.01 (top) and 0.001 (bottom), normalized to n0v
3
th,c.

Energy flux is calculated at normalized time 3.0τRT for the 0.01 case and 2.1τRT for the 0.001 case to have similar amplitudes. Note the varying
color scale of each column.

terms. The y component of each term of Eq. (12) (normalized
to n0v

3
th,c) is plotted in Fig. 6 for the cases of Kn = 0.01

and 0.001 for times with similar instability amplitude. Note
that magnitudes of each column (term) vary by orders of
magnitude, so color scales are distinct by column to show
spatial features. The first ideal term is the dominant term by
several orders of magnitude at its peak for both cases. As col-
lisionality increases, all terms increase in magnitude, though
the ideal terms increase more than the nonideal terms. This
can be seen by taking the ratio of the average of the absolute
values of the ideal terms to that of the nonideal terms. The
ratio is 21.5 for the less collisional case and 283.8 for the more
collisional case, indicating the particle energy flux becomes
less dominated by the ideal terms as collisionality decreases.
This is an important and impactful result as it is the first
to present an order of magnitude increase in the importance
of the nonideal terms for the less collisional (more kinetic)
case of the RT instability. The overall increase in energy flux
with increased collisionality, even when comparing similar
amplitudes of RT instability growth, relates to the increase in
growth rate shown in Table I, as larger total flux leads to faster
instability growth.

By taking moments of a first-order Chapman-Enskog ex-
pansion of the BGK collision operator, expressions for the
heat flux, qi,BGK, and stress tensor 
i j,BGK, can be obtained

assuming a nearly Maxwellian distribution,


i j,BGK = − p

ν

(
∂ui

∂x j

∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, (15)

qi,BGK = − 5p

2mν

∂T

∂xi
. (16)

Figure 7 presents the nonideal terms of the particle energy
flux calculated directly from the distribution function with
those calculated from the expansion. Note the color scale is
held constant for each term compared across the two different
values of collisionality. For both degrees of collisionality, the
heat flux terms are similar in both magnitude and spatial
distribution. The stress terms show more deviation between
true and approximate results likely due to the fact that two
stress tensor elements are involved in the calculation, so errors
from the first-order approximation compound. As collision-
ality decreases from Kn = 0.001 to 0.01, the approximate
stress term deviates more from the direct calculation because
the assumption of near-equilibrium distribution becomes less
accurate with decreasing collisionality.

Higher moments of the distribution function are also mea-
sures of nonideal distribution, so the spatial distribution of
gas-frame higher moments should correlate with nN . Pre-
sented in Fig. 8 are comparisons of nN , y-direction vector
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FIG. 7. Comparison of energy-flux nonideal terms, Eq. (12),
calculated from distribution function and those calculated from a
first-order Chapman-Enskog expansion of the collision operator. Top
and bottom rows of each comparison are Kn = 0.01 and 0.001, re-
spectively. Note the similarities in spatial distribution and magnitude
and that color scales are constant by term and row (collisionality).
Stress terms show more discrepancy because they are calculated from
several stress tensor elements, so errors compound.

skewness, qy, and y-direction excess kurtosis,

δKy =
∫

w4
i f d3v −

∫
w4

i fM d3v. (17)

As expected, the distribution of nN aligns with those of the
higher moments. Additionally, the magnitudes of the nor-
malized higher moments increase as collisionality decreases,
which is expected as decreased collisions deviate from a

FIG. 8. Non-Maxwellian density, nN , compared with gas-frame
y-direction skewness, qy, and excess kurtosis, δKy. Note the presence
of local extrema for all quantities around the RT instability interface.

Maxwellian distribution function towards a more kinetic
regime. The evolution of the intermediate collisionality RT
instability is clearly distinguished from the high-collisionality
regime to explain the kinetic effects that produce the differ-
ence in growth rates and morphology. These results present a
high-fidelity kinetic interpretation of the classical RT instabil-
ity in low and intermediate collisionality regimes where fluid
models are inadequate.

IV. CONCLUSION

Single-mode Rayleigh-Taylor instabilities are successfully
simulated in 2x3v using the continuum-kinetic capabilities of
Gkeyll for a range of collisionalities. As mean free paths
become smaller relative to the width of the simulation domain,
the resulting instability approaches the classical fluid result,
as expected. Growth rates estimated using static viscosity
and diffusion agree well with calculated growth rates when
early dynamic diffusion of the interface is left out of the fit.
Non-Maxwellian density, the velocity space integration of the
difference between a local particle distribution function and
a corresponding Maxwellian distribution calculated from the
first three moments, shows that, as collisionality increases, the
distribution function approaches a Maxwellian (fluid) distri-
bution. Local maxima in non-Maxwellian density also occur
around the primary areas of transport, i.e., the edges of the
bubble and spike. A decomposition of the particle energy flux
shows that transport is dominated by terms that arise from the
Maxwellian parts of the distribution, and the ideal terms of the
expansion become more dominant as collisionality increases
toward the fluid limit.

An important and novel contribution of this work is in
the intermediate collisional cases that are not accessible with
traditional fluid models and require kinetic modeling. The
continuum-kinetic model used in this work provides unique
access to the full noise-free distribution function to investigate
the kinetic regime. Simulations of intermediate collisional
cases show significantly altered RT instability evolution com-
pared to the high collisionality fluidlike cases highlighting the
importance of kinetic physics through higher moments of the
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distribution function. These higher moments include the heat
flux vector, which is the third moment indicating the skew-
ness of the distribution, and the fourth moment indicating the
kurtosis of the distribution. The heat-flux vector plays a more
significant role relative to inertial terms in the intermediate
collisional cases compared to the highly collisional cases. A
quantitative comparison shows an order of magnitude differ-
ence in the ratio of the nonideal terms to the ideal terms when
comparing the intermediate collisional cases to the highly
collisional fluidlike cases. These kinetic effects are primarily
noted in the region of the RT instability interface. Regimes
of intermediate collisionality often occur in astrophysical and
laboratory plasmas requiring a kinetic model due to the in-
validity of the fluid model for these cases, highlighting the
significance and relevance of the results presented here.
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APPENDIX: GETTING Gkeyll AND REPRODUCING
RESULTS

Readers may reproduce our results and also use Gkeyll
for their applications. The code and input files used here
are available online. Full installation instructions for Gkeyll
are provided on the Gkeyll website [24]. The code can be
installed on Unix-like operating systems (including Mac OS
and Windows using the Windows Subsystem for Linux) either
by installing the prebuilt binaries using the CONDA package
manager [39] or building the code via sources. The input files
used here are under version control and can be obtained from
the repository at [40].
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