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Turbulence generation by shock interaction with a highly nonuniform medium
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An initially planar shock wave propagating into a medium of nonuniform density will be perturbed, leading
to the generation of postshock velocity perturbations. Using numerical simulations we study this phenomenon
in the case of highly nonuniform density (order-unity normalized variance, σρ/ρ ∼ 1) and strong shocks (shock
Mach numbers Ms � 10). This leads to a highly disrupted shock and a turbulent postshock flow. We simulate
this interaction for a range of shock drives and initial density configurations meant to mimic those which might
be presently achieved in experiments. Theoretical considerations lead to scaling relations, which are found to
reasonably predict the postshock turbulence properties. The turbulent velocity dispersion and turbulent Mach
number are found to depend on the preshock density dispersion and shock speed in a manner consistent with the
linear Richtymer-Meshkov instability prediction. We also show a dependence of the turbulence generation on the
scale of density perturbations. The postshock pressure and density, which can be substantially reduced relative
to the unperturbed case, are found to be reasonably predicted by a simplified analysis that treats the extended
shock transition region as a single normal shock.
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I. INTRODUCTION

Shock propagation through a field of nonuniform den-
sity is a problem of interest in a variety of settings where
shocks arise, including aeronautics (e.g., Refs. [1,2]), astro-
physics (e.g., Refs. [3–5]), and inertial confinement fusion
(e.g., Refs. [6–9]). The problem has a significant concep-
tual overlap with the problem of shock-turbulence interaction,
where a shock propagates through turbulent flow. However, in
the turbulence case, the preshock field may or may not have
density perturbations, depending on the assumed compress-
ibility of the initial turbulence.

The motivating application for the present work is the
controlled generation of turbulence for laboratory study, as
may be useful for laboratory astrophysics [10] or other ap-
plications. For example, compressible turbulence plays a key
role in the formation of stars [11]. A variety of setups for
generating such turbulence exist, often utilizing the collision
of laser ablated plasmas to generate and study turbulence (e.g.,
Refs. [12–14]). Here we consider an approach based on the
interaction of a strong shock with a medium of nonuniform
density as might be realized in a laser-driven high-energy-
density (HED) shock tube [15]. Various fabrication techniques
may permit the specification of the preshock density field in
such a shock tube [16,17]. Here we consider an idealized, yet
close to “realizable,” version of such a shock tube. This setup
also has similarities to a series of experiments studying mixing
processes in inertial confinement fusion [18,19].

*davidovits1@llnl.gov

Various theoretical treatments have been developed to pre-
dict the postshock state when a shock propagates through
a nonuniform medium, particularly when one broadens to
consider shock-turbulence interaction [1,6,7,20–29]. Most of
these treatments are, at least formally, only applicable in the
case where the upstream (preshock) perturbations are small in
some sense and material can only pass through the shock front
once in the interaction. We note that the “quasiequilibrium”
theory of Donzis [30], which is also formally applicable for
small upstream perturbations [small in K ≡ Mt/R1/2

λ (Ms −
1), with Mt and Rλ the upstream turbulent Mach number and
Reynolds number, respectively], has been applied successfully
to interactions where local “holes” are formed in the shock
due to preshock nonuniformity [28]. Such a theory might
also be applied to the case with only preshock density per-
turbations, particularly if these perturbations are sufficiently
smooth. When there are only upstream density perturbations
(that is, as we consider here, when there are no upstream ve-
locity perturbations), the smallness of upstream perturbations
is generally in some measure of the density perturbations rel-
ative to the mean density, with the precise definition varying
between different prior treatments.

Here we characterize the preshock density nonuniformity
by its variance σρ , normalized to the mean density, ρ, and con-
sider cases where σρ/ρ ∼ 1, violating the small-perturbation
assumptions of most theoretical approaches. Further, with
these large preshock density variations, the single shock front
can break into multiple fronts. As such, our approach here
is to conduct a suite of numerical simulations of an (ini-
tially planar) shock propagating through an extended region
of nonuniform density. Ultimately we would like to be able
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to predict the postshock turbulent state given the controllable
parameters, such as the shock drive and the features of the
preshock density nonuniformity.

Analyzing the simulations, we find the postshock state can
be reasonably predicted. In particular, as observed by Inoue
et al. [4], we find here that the scaling of the postshock (tur-
bulent) velocity dispersion with the shock speed and with the
relative preshock density variance is reasonably predicted by
adapting the linear analysis of the Richtmyer-Meshkov insta-
bility (RMI) [31]. Expanding on this result, we show that the
scale of preshock density features influences the turbulence
as well. In the present cases, the preshock density nonunifor-
mity has a dominant perturbation scale, which influences the
postshock turbulence generation as an effective driving scale.

We also show predictability for a postshock volume-
averaged turbulent Mach number. This turbulent Mach
number is primarily influenced by the preshock density struc-
ture, with the response to the drive (shock velocity) saturating
for strong shocks.

Although the present cases often have an extended shock
transition region with a broken-up shock front, we test a
simplified analysis which treats the shock front as a single
(average) normal shock. For the present suite of simulations,
we find this approach is reasonably successful in explaining
the postshock pressure and density behaviors. In the most
perturbed shocks here, the postshock pressure can be less than
half its unperturbed value. This theoretical treatment suggests
that the postshock pressure is relatively insensitive to the
anisotropy of the turbulence generated, while the postshock
density is rather sensitive to anisotropy, especially in the three-
dimensional (3D) case.

The paper is laid out as follows. Section II describes the
setup for our study and simulations; additional details on this
are also contained in the Appendices A and B. The primary
results are given in Sec. III. We provide further discussion of
the results in Sec. IV and then summarize in Sec. V.

II. APPROACH

A. Setup and simulation description

Although shock interaction with highly nonuniform den-
sity arises in a variety of settings, the underlying motivation
here is to use this mechanism to generate turbulence for
laboratory study. This guides the present setup, in which we
simulate an idealized HED shock tube (e.g., Nagel et al. [15]);
an example initial condition is shown in Fig. 1. In this setup,
a radiation source from the right-hand side ablates a (plastic)
sheet (the ablator), launching a shock which passes through
a dense pusher and into the nonuniform-density medium of
interest (the “working material”). The shock runs through the
working material well ahead of the pusher, and the analysis
occurs before the shock exits the working material. In the
present work, our focus is on the turbulence generation dy-
namics in the working material, that is, on the basic problem
of a shock interacting with nonuniform density. Once the
shock enters into the working material, we turn off radiation
physics and the problem becomes a purely hydrodynamic
one.

FIG. 1. An example initial condition for a 2D simulation to illus-
trate the setup of the present simulations. A radiation source from the
right-hand-side boundary acts on the ablator to launch a shock that
travels to the left through a thin, dense, pusher (white vertical strip
immediately to the left of the ablator) and then through the “working
material.” In the working material, which has a nonuniform density
owing to the presence of low-density “voids,” turbulence is generated
by the shock passage.

Our simulations use the radiation-hydrodynamics code
HYDRA [32], but, to simplify theoretical comparisons and
to simplify comparison with shock-turbulence work, we
run hydrodynamic-only simulations (once the shock profile
is established) and treat the working material as an ideal
monatomic (γ = 5/3) gas. We also ignore thermal conduction
in the working material; while it is common in shock-
turbulence interaction studies to include thermal conduction
(e.g., treating the material as air), analytic predictions for the
postshock flow typically do not account for it. The present
simulations utilize artificial viscosity to capture the shock. We
also neglect explicit (physical) viscosity, so that the simula-
tions should not be regarded as direct numerical simulation
but are rather in the spirit of implicit large eddy simulations
[33]. Here we focus our analysis on large-scale quantities
(e.g., the root-mean-square turbulent velocity and average
density, pressure, or temperature), which are expected to be
least influenced by the (numerical) dissipation details (see,
e.g., Ref. [34]). As described later, we test sensitivity of the
present results to the simulation resolution and believe the
conclusions of the work are robust in this regard.

As a result of the idealities just described, while we choose
to report lengths and certain other quantities in HED-shock-
tube relevant units, we also provide the information necessary
to nondimensionalize quantities in terms of the preshock
conditions for comparison with other idealized simulations.
Apart from influencing the choices of the size of density
nonuniformities relative to the simulation domain, the primary
HED-shock-tube feature of the present simulations is the de-
tails of the shock drive, which generates a decaying shock and
is discussed briefly below and in detail in Appendix B.

As described above, an initially planar shock is launched
into the right-hand side of the working material, which has
a short (∼0.2 mm) uniform section before the nonuniformity
begins. The shock propagates to the left (negative x direction)
for a length (∼2.5 mm) that is substantially larger than the
scales of the nonuniformity (� 0.2 mm, see the “voids” in
Fig. 1). After the shock (on average) has propagated this
length (to an average position of x ≈ 1 mm in Fig. 1), the
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FIG. 2. (a) A density plot from a typical 2D simulation around
the time of analysis, after the (average) shock front has propagated
∼2.5 mm through the nonuniform material to x ∼ 1 mm. Vertical
dashed lines indicate the analysis region, and the density is shown
in units of g/cm3. Only the “working material” region is plotted,
the pusher and ablator material (see Fig. 1) are out of frame at x �
2.25 mm. Plots (b) and (c) show, respectively, 1D profiles (averaged
over y) for the mean x directed velocity (vx) or the (turbulent) veloc-
ity dispersion (σv) and the mean density ρ or the density dispersion
(σρ).

postshock quantities are analyzed; here we largely report on
averaged quantities, which are averaged over a postshock strip
of fixed width (0.2 mm) a distance (∼0.1 mm) behind the end
of the shock transition. The choice of averaging window is
discussed in more detail in Sec. II B below. Figure 2(a) shows
an example density snapshot when the shock has propagated
this distance for a 2D simulation. Also shown in Fig. 2 are the
1D profiles (averaged in y), which we discuss later, as well as
indicators for the analysis region.

For this study, we conduct a suite of 2D simulations,
supplemented with a smaller set of 3D simulations. This
permits us to study the effects of varying the preshock den-
sity structure as well as the (average) shock Mach number
(drive strength), while also enabling some comparison to 3D.
For the 2D simulations, we vary across five different initial

TABLE I. Table of parameters which influence the turbulence
generated by the shock and are varied in the present simulations. The
2D simulations cover most of the 45 (5 × 3 × 3) possible parame-
ter combinations and also include repeats of certain combinations.
These repeats use different random seeding for “void” placement to
test variability in the analysis (see text). There are six 3D simula-
tions, which have approximate parameter values, listed in the format
[Ms, (σρ/ρ )0, R] of [18,0.3,120], [18,0.9,120], [18,1.07,120], [37,
0.9, 120], [18, 0.9, 90], and [37, 0.9, 90].

Parameter Values (2D)

Shock Mach number [Ms] 12, 15, 18, 20, 37
Pre-shock density variance [(σρ/ρ )0] 0.38, 1.05, 1.9
“Void” radius [R (microns)] 23, 45, 90

shock strengths (Mach numbers) and, for the preshock den-
sity nonuniformity, three different density-variance values and
three different scale parameters. Each of these three param-
eters (shock velocity, preshock density variance, and scale
of density nonuniformity) influences the magnitude of the
turbulent velocity generated post shock. The parameter values,
which we now discuss, are summarized in Table I.

Here we characterize the preshock material by its mean
density (ρ0 ≈ 0.05 g/cm3 for all cases) and its (normalized)
density variance, reported as the standard deviation of the
density divided by the mean density (σρ/ρ )0. These quantities
are computed over the “working material” but excluding the
uniform region on its right side (see Fig. 1). The three density-
variance conditions we use have (σρ/ρ )0 ∼ 0.38, 1.05, 1.9,
which are created by embedding circles (2D) or spheres (3D)
of lower or higher density in a uniform-density background.
Figures 1 and 2 show examples of the cases with (σρ/ρ )0 ∼
1.05, which have low-density (10−3 g/cm3) circular “voids”
covering approximately half the area in the initial preshock
material, which has a density of 0.1 g/cm3 in the nonvoid
regions (resulting in ρ0 ≈ 0.05). The scale of the preshock
density modulations is controlled by the radius of these
“voids”; in 2D we use R ≈ 23, 45, 90 microns, while for 3D
we run cases with R ≈ 90, 120 microns. The (σρ/ρ )0 values
for the 3D simulations vary somewhat from these 2D values.
More details on the “working material” initial conditions for
the different cases are described in Appendix A.

The five shock strengths are characterized by their aver-
aged Mach number (Ms ∼ 12, 15, 18, 20, 37; in our units
the preshock sound speed is Cs,0 ≈ 2.4 km/s and all materials
are initialized at room temperature, 293 K). Since the initial
temperature in the “working” material is uniform, but the
density is nonuniform, the initial (ideal gas) pressure will
be nonuniform. While in a real experiment initial material
strength could keep this initial condition stationary, here we
use a “quiet start” routine that prevents premature motion,
with a temperature-based shutoff threshold well below the
postshock temperature in our weakest shock.

In the absence of any preshock density perturbations,
the shock strength in each case decays as it traverses the
“working” material (it also decays when there are density
perturbations). Although the detailed flow conditions set up
by the ablation which launches the shock are complicated,
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this decay is not unexpected given there is a finite reservoir
of high pressure available to drive the shock (the shocks
launched in these laser-driven HED shock tubes are more akin
to blast waves than constant-pressure shocks). As a result, the
shock velocity also decays somewhat and the average values
reported here come from a linear fit to the position versus time
of the average shock position as it propagates in the vicinity
(∼ ± 0.5 mm) of the “observation” position. The position of
the shock at any given time is defined by the maximum of the
gradient of the averaged (1D) velocity vx(x) in the shock tran-
sition region. In Figs. 2(b) and 2(c), respectively, the decaying
shock strength can be seen in the (gradually) decreasing mean
velocity (vx) and average density (ρ) in the postshock region.
The (turbulent) velocity dispersion, σv , also decreases behind
the shock (moving to larger x); both the decaying underlying
shock profile and dissipation (turbulent decay) can contribute
to this decrease.

The simulations for all cases use an initially uniform grid.
For the 2D runs the grid in the “working” material consists of
either ∼846 × 512 cells (R ≈ 45, R ≈ 90) or ∼1694 × 1024
cells (R ≈ 23), where the initial domain size is ∼3.8 by 2.048
(x by y, in mm). The 3D runs use either ∼492 × 300 × 300
(R ≈ 120) or ∼657 × 400 × 400 (R ≈ 90) cells in a do-
main that is ∼3.8 × 2.048 × 2.048 mm. Our simulations use
HYDRA’s arbitrary Lagrange Eulerian (ALE) hydrodynamics
features, so that the mesh tends to move with the flow. This
results naturally in a more closely spaced postshock mesh,
where the flow scales are also finer. In addition to the runs
shown, we have rerun a subset of the 2D cases with double
the resolution in each dimension in order to test numerical
convergence; these runs do not appear to change the scalings
for averaged quantities we present here. As an example, run-
ning the case R ≈ 45, (σρ/ρ )0 ∼ 1.05, Ms ∼ 18 with double
the resolution is observed to result in changes to analysis-
region averaged (see below) quantities of between 0.6% and
2.9%, depending on the quantity. Measured in terms of initial
cells per void, the R ≈ 23, 45 cases are the lowest effective
resolution.

The boundary conditions in the shock-normal directions (y,
z) are for zero normal velocity (zero velocity into the bound-
ary). Since the material is stationary for x < xshock,minimum,
the boundary on this side has no effect up to the time of the
analysis. In a similar way, the shock propagates well ahead of
influences from the boundary at xmaximum, see Appendix B for
more description of the drive side.

B. Generation of analysis quantities

Here we describe the generation of postshock analysis
quantities in this work. First we discuss the choice of anal-
ysis (averaging) window, which induces some scatter in the
analysis. Then, we discuss the averaging procedure within this
window.

In general, we are interested in the generation of postshock
turbulence in the interaction of a shock with a nonuniform
medium, in a setup similar to what might be achieved exper-
imentally. For the current setup, all postshock quantities may
vary spatially in the shock-normal (x) direction; on top of any
such variation, we also have the (statistical) variations caused
by the compressible turbulence. Further, it is not practical to

collect significant statistics on the large number of simulation
cases here. As a result, we choose to average over a finite
region of the postshock to provide some statistics, which
represents a choice in determining the “postshock” quantities
(with analogy to experiment).

Drawing a comparison to shock turbulence interaction
studies, even in cases with converged statistics, there are
different ways to define postshock quantities, for example,
the peak in the postshock after an adjustment period, or by
some sort of extrapolation back to the average shock position
(see, e.g., the discussion in Larsson et al. [35]). Here we
simply define the postshock quantities by averaging over a
window in the postshock. The position of this window is
set to be on order of the large eddy scales behind the shock
transition to allow development (this is also the scale of the
adjustment region in the shock turbulence case [35]). The
width of the window, also on this order, helps to provide
some statistics. Note that we aim not to move the averaging
window too far downstream, since we will then necessarily be
increasingly conflating the generation of postshock state with
its decay.

In the case of the turbulent velocity, the choice in defin-
ing the “postshock” value is not so consequential for the
results presented in Sec. III; it is already useful to predict
the postshock turbulence in some specified region down-
stream of the shock (and we may then work to anticipate
its evolution from there). The same can be said for other
quantities. In the latter part of the results (Sec. III), we com-
pare analytic theory for a single average shock jump to the
postshock density and pressure. Here the present choice for
the postshock state can be expected to create noise in the
comparison. In all figures containing quantities averaged in
the postshock, we display uncertainty bars (vertical and/or
horizontal lines) for data points. These are found by redoing
the analysis, shifting the center of the averaging window by
�x = ±0.05 mm (25% of its width) upstream or downstream
from the nominal position shown in Fig. 2 and described in
Sec. II A.

We now describe the averaging approach in the analysis
window. Averaging is carried out in two stages, in order
to separate averaging (first) over the statistically homoge-
neous directions (y or y, z) from averaging (second) over
the analysis region, over which quantities should not be,
strictly speaking, statistically homogeneous. We now describe
the first stage, with the second stage described shortly there-
after.

In the first stage, quantities are averaged over the shock-
normal directions (y or y, z) to create average profiles that
depend on the shock-parallel coordinate [e.g., the profiles
shown in (b) and (c) of Fig. 2]. For a general quantity f , the
average value in an extent of width w, centered on the point
xi, is

f (xi; w) =
∑
x j∈Cj

Vj f j/
∑
x j∈Cj

Vj

Cj ≡ [xi − w/2, xi + w/2]. (1)

We define the interval Cj so that the sum over the index j
is carried out over all simulation points with x coordinate in
the targeted window. As a result of ALE, the initially uniform

065206-4



TURBULENCE GENERATION BY SHOCK INTERACTION … PHYSICAL REVIEW E 105, 065206 (2022)

mesh is in general nonuniform after shock passage. Thus,
this (volume) average is weighted by the cell volume, Vj . We
pick an averaging window w = 0.01 mm (for all cases) that is
similar to, but always at least modestly larger than, the initial
cell size, such that this first average approximates an average
over the statistically homogeneous (symmetry) directions.

In addition to the volume-weighted average defined in
Eq. (1), indicated by the overline, we also consider a density-
weighted (Favre) average, f̃ . The density-weighted profile
f̃ (xi; w) is defined identically to Eq. (1) but with the cell mass
mj substituted for the cell volume Vj .

Defining difference quantities f ′ = f − f and f ′′ = f −
f̃ , the volume-weighted dispersion of quantity f is σ f =
( f ′2)1/2. In particular we study in Sec. III the total velocity
dispersion, σv = (σ 2

vx
+ σ 2

vy
+ σ 2

vz
)1/2. There we also consider

the (density-weighted) Reynolds stresses, ταβ = ṽ′′
αv′′

β .
For most of the results discussed in Sec. III, we go a

step further than this first average by averaging quantities
again, this time over the analysis region described above,
x ∈ [1.1, 1.3] mm. This second average is indicated by 〈〉
and is either volume-weighted or density-weighted to match
the inner averaging. For example, 〈 f 〉 applies Eq. (1) but
to the average quantity f on the larger averaging window
x ∈ [1.1, 1.3]. This larger averaging region should reduce
sampling noise, at the cost of now averaging over a window
in which (ensemble-averaged) quantities may change with
position. By averaging first locally, dispersions are referenced
to the local mean rather than the mean over a wider profile. For
most quantities presented here, simply computing averages or
dispersions in one step over the whole of the analysis region
yields nearly identical results; there are noticeable but very
modest differences for Figs. 8 and 9.

As a final note, where there is no reason for confusion,
we use the overline for other averaging as well, as in the
average preshock density ρ0, or in the average shock speed
U s, where the average results from the linear fitting procedure
for the time evolution of the average shock position, described
in Sec. II A.

III. RESULTS

In the context of young supernova remnants, prior work [4]
on the interaction of strong shocks with density nonuniformity
suggests that the postshock velocity dispersion is reasonably
predicted by the result of linear analysis of the Richtmyer-
Meshkov instability [31]. Accordingly, with the average shock
velocity U s, and defining an average Atwood number for the
preshock material as A = (σρ/ρ )0/[1 + (σρ/ρ )0], the post-
shock velocity dispersion is σv ∝ AU s.

Figure 3 shows the analysis-region velocity dispersion,
〈σv〉, versus the quantity AU s for our suite of 2D and 3D
simulations. It is apparent that the proportionality predicted by
the simple linear RMI result holds for the observed velocity
dispersions. It is also apparent that the characteristic “void”
radius, R, of the preshock density nonuniformity has an in-
fluence on the turbulent velocity dispersion (we find that the
shock speed itself, for a given drive, is relatively insensitive to
R, consistent with Kim et al. [37]).

FIG. 3. Post-shock turbulent velocity dispersion (km/s) versus
the product of preshock average Atwood number and mean shock
speed (km/s). Each point is the result of analyzing a single sim-
ulation. Shown are a suite of 2D runs covering three different
characteristic scales (R = 23, 45, 90) with many different values
of the product AU s. A smaller set of three-dimensional runs with
R = 90, 120 are also shown. The lines show, for each of the four
different radii (R = 23, 45, 90, 120), the prediction of Eq. (2). This
relation is observed to reasonably predict the turbulent velocity
dispersion, although with increasing spread as R increases due to
sampling effects (see text for further discussion and discussion of
the 3D runs). The lines (error bars) associated with points in this and
following figures show the spread in results obtained on moving the
averaging window within the near postshock region, see Sec. II B.

Consider two cases that are closely matched in all quan-
tities (A, U s, ρ0, etc.) but that differ in R. When a flow’s
dynamics are governed by some velocity v and length scale l
(viscosity is negligible), we have by dimensional analysis that
the specific rate of energy change can be written dE/dt =
v3/l (e.g., for turbulence forced in equilibrium at a length
scale l f with an rms velocity urms, the rate of energy injection,
or dissipation ε, dE/dt = ε ∝ u3

rms/l f [38]). Suppose it were
the case that the energy injection rate into the postshock tur-
bulence in these matched cases is comparable. At present, the
maxima of the preshock density spectra are correlated with
the void diameter, with this (nonuniform) density leading to
the turbulence. The (large-scale) postshock velocity is char-
acterized by σv . Then for matched cases analyzed at a fixed
distance behind the average shock position, as is done here,
we hypothesize σv ∝ R1/3. The trend lines shown in Fig. 3 for
the 2D runs are

〈σv,2D〉 = 0.52(R/45)1/3AU s, (2)

and we observe the anticipated scaling with radius. Figure 4(c)
supports the notion that there is effectively forcing at l f ∝ R.
While this dimensional analysis gives a scaling with radius
consistent with the present simulation results, it is possible
there is some alternate explanation which would also lead to
consistent results. Note that, among other assumptions, we
have assumed negligible viscosity; in the turbulence case this
is only strictly true in the high-Reynolds-number limit. We
should expect limitations on this scaling in radius, which we
discuss further in Sec. IV.

Note that the coefficient of proportionality in Eq. (2), 0.52
(chosen to approximately fit the data), will in general depend
on choices we have made in our setup. Most simply, the

065206-5



SETH DAVIDOVITS et al. PHYSICAL REVIEW E 105, 065206 (2022)

FIG. 4. Panel (a) shows a slice of the local fluctuating velocity magnitude, v′ = (v′2
x + v′2

y + v′2
z )1/2, (in km/s) through the center of the

analysis region (x = 1.2 mm), for a 3D simulation with R = 90 and (σρ/ρ )0 ∼ 0.9, Ms ∼ 18. This slice then is perpendicular to the shock
propagation direction (in a plane parallel to the average shock front). Panel (b) shows the observed (blue solid line) probability distribution
function for v′ in the analysis region, and also shows (green dashed line) a Maxwell-Boltzmann distribution characterized by the analysis-
region-averaged velocity dispersion 〈σv〉, P(v′) = 4πv′2Exp[−3v′2/2〈σv〉2]/(2π〈σv〉2/3)3/2. This is the velocity distribution observed for fully-
developed turbulent flows, even at high Mach number (see Fig. A1 in Ref. [36]). Panel (c) shows spectra for the perpendicular piece of the
fluctuating velocity (v2

⊥ = v′2
y + v′2

z ) as a function of the perpendicular mode number [n⊥ ∝ k⊥ = (k2
y + k2

z )1/2] for both the R = 90 case and
a case with R = 120 that is otherwise identical. The spectrum in each case is averaged (in x) over the analysis region and its magnitude
is normalized to a unit peak. We see that in both cases a broad spectrum has developed, with a peak that can be approximately associated
with the initial void diameter, npeak,90 = 11 ∼ 2/(2 × 0.09) ∼ Ly,z/2R, npeak,120 = 8 ∼ 2/(2 × 0.12). Note that the simulation resolution for
the R = 120 case is lower (see Sec. II A), and both cases were linearly interpolated onto an identical uniform grid for plotting and computing
spectra (the simulations use an ALE mesh, also see Sec. II A).

turbulent velocity dispersion generally decreases with dis-
tance behind the average shock front [see Fig. 2(b)], and as
a result the inferred proportionality coefficient will depend on
the downstream distance of the postshock averaging region.
The postshock velocity dispersion could depend on properties
of the preshock density nonuniformity beyond those consid-
ered in Eq. (2), that is, beyond A and a scale factor R. Such
effects could change the coefficient of proportionality as well.

For example, although the quantity of data is too limited
for a firm conclusion, the 3D cases in Fig. 3 are not very
well fit by Eq. (2) with a coefficient of ∼0.52, being better
fit with a coefficient ∼0.6 [and still following the overall
scalings of Eq. (2)]. It would be reasonable to expect that this
is a result of differences in the effective coefficient for shock
interaction with spherical inhomogeneities in 3D compared
with circular ones in 2D (that is, that the coefficient acts as
a geometrical factor). However, as we discuss further shortly,
we cannot conclude firmly at present that this is not simply
a consequence of the (statistical) variation in the quantities in
the averaging region (that is, after averaging multiple such 3D
runs we may find this apparent discrepancy vanishes).

The number of voids contributing postshock motion to the
averaging region decreases as R increases, since the domain
size (and averaging window) is fixed for all cases. This de-
creasing sample is observed to lead to increasing scatter in
〈σv〉 as R increases in the 2D cases, where we rerun some
of the cases multiple times varying only the seed used to
generate the random perturbations of the preshock void po-
sitions (see also Appendix A). In particular, in Fig. 3, 2D
runs with AU s � 40 are repeated multiple times with different
randomized void shifts, with the R = 90 cases showing most
spread around the trend line as expected. As a final note on
the proportionality coefficient, Inoue et al. [4], working in 3D,
find a coefficient of 1 for a density nonuniformity with a power
spectrum following an isotropic k−5/3 power law (maximum
at the simulation box size); see also the discussion in Sec. IV.

In accordance with the results shown in Fig. 3, we may
exert a measure of control on postshock turbulent velocities
in such a shock-tube setup by altering the preshock density
structure (see also Appendix A) and the velocity of the shock.
A second aspect of the postshock turbulence we may wish to
influence is the turbulent Mach number, which quantifies the
compressibility of the turbulence. As we show shortly, there
is a measure of independent control for the turbulent velocity
and Mach number.

Dividing Eq. (2) by the postshock sound speed averaged
over the analysis region, 〈Cs〉, we will find a turbulent Mach
number

〈σM〉 = 0.52(R/45)1/3AMs. (3)

From Eq. (3), we see that 〈σM〉 = 〈σv〉/〈Cs〉 can be influenced
by the preshock density (A) and is also proportional to the
shock Mach number with respect to the postshock sound
speed. We denote this Mach number Ms = U s/〈Cs〉. As for
the shock velocity, the overbar here is to recall the fact that
there is only an average shock front position and that the
velocity of this front decays somewhat during propagation.

Figure 5 shows 〈σM〉 versus AMs for the suite of runs. We
can observe that the relation Eq. (3), which is used to gen-
erate the trend lines, fits the simulation suite reasonably well
(with again some uncertainty for the 3D cases). Note that this
characteristic turbulent Mach number, 〈σM〉, being defined in
terms of an average rather than a local sound speed, will only
in general equal the average of the local Mach number for the
isothermal turbulent fluctuation case, which the present case is
not. The probability distributions and correlations of density
and sound speed in a similar setup are analyzed in detail in
Dhawalikar et al. [39]. We also note that the present Mach
number is a volume-weighted one, which in general can be
different than the mass-weighted result.

In comparing Fig. 3 to Fig. 5, we observe a cluster-
ing of certain points in the latter. This is a result of the

065206-6



TURBULENCE GENERATION BY SHOCK INTERACTION … PHYSICAL REVIEW E 105, 065206 (2022)

FIG. 5. A postshock turbulent Mach number computed using
the velocity dispersion and the average sound speed in the analysis
region. The results closely follow the relation Eq. (3), which is used
to generate the trend lines in the figure (again with a slightly different
coefficient for 3D runs). Compared with Fig. 3, there is a clustering
here of points with the same A but different U s due to the fact that
Ms saturates while U s does not, see Eq. (4) and the surrounding
discussion.

saturation of Ms in Eq. (3), such that different values of U s

yield similar values of Ms. Then variation in σM is driven pri-
marily by variation in A. We now elaborate on this saturation
of Ms.

In the most basic analysis, considering the case of an
unperturbed 1D shock, we can use the Rankine-Hugoniot
conditions [38] to write Ms as

Ms = (γ + 1)M2
s√(

2γ M2
s − γ + 1

)[
(γ − 1)M2

s + 2
] . (4)

Here Ms is the usual shock Mach number with respect to the
preshock medium.

In the limit of strong shocks where the terms in M2
s domi-

nate, we have from Eq. (4) that Ms → (γ + 1)/
√

2γ (γ − 1).
That is, while the shock Mach number is unbounded, Ms

saturates at a γ dependent value; for γ = 5/3 this value is
4/

√
5 ≈ 1.79.

Consider then the ratio σv/σM ∼ U s/Ms. Since Ms will
be near its saturation value for a wide range of achievable
shock Mach numbers (shock speeds), the resulting turbulence
can have similar σM values at substantially different turbulent
velocity dispersions σv . Viewed in a different light, this means
that, so far as increasing this turbulent Mach number is con-
cerned in the present regime (as controlled by the simulated
equations), there is a rapidly diminishing return to driving
with higher-Mach shocks as Ms saturates in Eq. (4). Note
that as γ → 1 this constraint is relaxed.

In utilizing the unperturbed 1D shock relations, the preced-
ing analysis ignored any possible corrections to this postshock
Mach number arising from the shock becoming disrupted by
the density nonuniformity. That is, if the turbulence generation
came at the expense (in part) of postshock temperature, then
one might expect a reduction in the postshock sound speed
and a corresponding increase in Ms over the 1D saturation
value.

FIG. 6. The postshock temperature (eV), volume averaged over
the analysis region, plotted against a measure of the (downstream)
turbulent pressure relative to the shock ram pressure. The postshock
temperatures cluster based on the shock drive strength, Ms ∼ 14
(circle, black), Ms ∼ 16 (down triangle), Ms ∼ 20 (star), Ms ∼ 22
(up triangle), Ms ∼ 37 (x, brightest red). Also shown are the 3D
run results for Ms ∼ 20 (left triangle) and Ms ∼ 37 (left triangle,
brightest red), which have the same behavior as the 2D runs. For
each drive strength, a horizontal dashed line shows the postshock
temperature averaged over the analysis region when the preshock
is uniform (A = 0). The postshock volume-averaged temperature
is observed to be insensitive to the relative (to the shock strength)
turbulence intensity generated in the interaction.

In the case of the present volume-averaged Mach num-
ber, no such feedback is discernible with the current suite
of simulations. Figure 6 shows the postshock temperature
averaged over the analysis region, again using volume weight-
ing. Here the average temperature is plotted for each case
against the quantity 〈τxx〉/U

2
s , which is the ratio of the xx

component of the density-weighted Reynolds stress tensor to
the square of the shock speed. This quantity represents the
relative contributions of the turbulence and shock to a mo-
mentum conservation equation across the average shock front;
we discuss such an analysis shortly. Figure 6 shows that the
volume-averaged postshock temperature appears insensitive
to the relative amount of turbulence (〈τxx〉/U

2
s ).

Here we have focused on the behavior of the volume-
averaged sound speed and the associated turbulence and
postshock Mach numbers. Below, we analyze the volume-
averaged postshock pressure and density, which are related
to the density-weighted temperature through the (ensemble)
averaged ideal gas law, p = ρRT̃ . Here R is the ideal gas
constant as usual. As we will find, these quantities are im-
pacted by the degree of disruption of the shock (as measured
by 〈τxx〉/U

2
s ). As a result, we should expect that, if the density-

weighted postshock Mach number is of interest, the limit
imposed by Eq. (4) can be relaxed by the reduction in post-
shock T̃ for increasing “void” radius and A.

One may wonder how well the postshock quantities apart
from the turbulent velocity, which we have already discussed,
can be predicted with a simplified treatment that takes the
present extended shock transition to be a single (average) nor-
mal shock. Following work on shock-turbulence interaction
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[24,35], we write the (Favre) averaged conservation equa-
tions across such a normal shock,

�ρṽx� = 0, (5)

�ρṽ2
x + p + ρτxx� = 0, (6)

�
ρṽ3

x

2
+ γ

γ − 1
pṽx + ρṽx

(
τxx + τii

2

)
� ≈ 0. (7)

In Eqs. (5)–(7), �� denotes jumps in the quantity across the
shock front, for example, � f � = f1 − f0, with the subscripts
denoting pre (0) and post (1) shock. In writing Eq. (7)
we have dropped a turbulent triple correlation term and the
temperature-velocity correlation. At present, we assume ax-
isymmetry (for 3D), τyy = τzz, and express the trace of the
Favre-averaged Reynolds stress, τii, in terms of an anisotropy
α = τxx/τyy. Then, τii = τxx(1 + (d − 1)/α), where d = 2 for
2D and d = 3 for 3D.

In the present case there is no turbulence preshock. To
simplify the calculation, we drop the preshock pressure, which
is small for all our cases compared to the ram pressure asso-
ciated with the shock (we work in a frame where the average
shock is stationary). Taking the postshock turbulence τxx and
anisotropy α as given, Eqs. (5)–(7) can be solved to give
the postshock (average) density, pressure, and flow velocity.
At present, we power expand these solutions in the quantity
τxx/U

2
s , which is observed from Fig. 6 to be (reasonably) small

for all our cases.
Using the power-expanded solutions, we normalize the

postshock quantities to their values in the unperturbed case
(τi j = 0, denoted τ0). To first order, the (normalized) post-
shock density and pressure are

ρ1

ρ1,τ0

≈ 1 − 2α(3 − γ ) − 2(d − 1)(γ − 1)

4α

γ + 1

γ − 1

τxx

U 2
s

, (8)

p1

p1,τ0

≈ 1 + (d − 1)(γ − 1)2 + α(1 − 6γ + γ 2)

4α

γ + 1

γ − 1

τxx

U 2
s

.

(9)

When γ = 5/3, as for our suite of simulations, one finds from
Eqs. (8) and (9),

ρ1

ρ1,τ0

≈ 1 − 8

3

(
1 − d − 1

2α

)
τxx

U 2
s

, (10)

p1

p1,τ0

≈ 1 − 8

9

(
7 − d − 1

2α

)
τxx

U 2
s

. (11)

Figures 7 and 8 use the simulations to investigate the
postshock pressure and density, respectively, relative to the
unperturbed cases. In each case, the predictions of Eqs. (10),
(11) are also plotted. Overall, there is fair agreement between
these theoretical results using a single average normal shock
and the simulation results. We now discuss some features of
the pressure and density results.

The pressure result, Eq. (11), suggests that the pressure
jump is relatively insensitive to the anisotropy (for α � 1) and
dimensionality, especially compared to the density result in
Eq. (10). We observe this in the simulation results in Fig. 7,
which are relatively collapsed to a line even though we ignore
the influence of d and α when plotting them and we also plot

FIG. 7. As Fig. 6, but showing the analysis-region-averaged
pressure rather than the temperature. Here for each drive case we
normalize the pressure by its value in the unperturbed (uniform
upstream density) case, which collapses the different drive cases.
The solid (blue) line shows the prediction of Eq. (11) with d = 3
and α = 1.

Eq. (11) for a single pair of d , α. The density result is more
sensitive to d and α, and we include these factors as they enter
in Eq. (10) when plotting in Fig. 8.

Figure 7 shows that the postshock pressure is more than
halved from the unperturbed case in our simulations with the
largest turbulent contribution relative to shock ram pressure
(largest 〈τxx〉/U

2
s ). As previously noted, the density-weighted

average temperature, T̃ , is related to the volume averaged
pressure and density through the ideal gas equation of state,
p = ρRT̃ . It then depends on τxx/U

2
s .

FIG. 8. As Fig. 7 and Fig. 6 but showing the analysis-region-
averaged density jump across the shock relative to the density jump
in the unperturbed case (when averaged over the analysis region,
the unperturbed cases yield density jumps ∼3.3–3.8). Here the sub-
script τ0 indicates the unperturbed case, and the subscript 1 is post
shock. The density jump across the shock is more sensitive to the
anisotropy α than is the pressure jump, and so here we plot against
the quantity [1 − (d − 1)/(2α)]〈τxx〉/U

2
s which arises in Eq. (10).

The (blue) dashed line shows Eq. (10). For brevity, we label the y
axis as the ratio of the (analysis-region averaged) postshock density
in the perturbed case versus the unperturbed case, y = 〈ρ1〉/〈ρ1,τ0 〉.
However, we actually compute the ratio of density jumps between the
two cases, y = (〈ρ1〉/ρ0 )/(〈ρ1,τ0 〉)/ρ0,τ0 ), which can differ somewhat
because, while the unperturbed preshock density ρ0,τ0 = 0.05 g/cm3

everywhere, the average preshock density in the perturbed cases is
only approximately 0.05, ρ0 ≈ 0.05 g/cm3.
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FIG. 9. A measure of the turbulence anisotropy α in the post-
shock analysis region versus 〈τxx〉/U

2
s . Case symbols follow the

legend in Fig. 3. Two trend lines are plotted, one (dashed, gray) for
the 2D cases and one (dotted, orange) for the 3D cases. The slopes
differ by a factor of two, see the discussion near the end of Sec. III.

We turn now to the anisotropy of the turbulence generated
in this shock interaction with nonuniform density. As dis-
cussed above, the basic theory represented by Eqs. (8) and (9)
predicts that the density and pressure jumps are more or less
sensitive to the anisotropy. We note that the relation Eq. (2)
also fits the mass-weighted velocity dispersion 〈√τii〉 reason-
ably well for the current suite of simulations. Then, this result,
if combined with the anisotropy α, can be used to “close”
the shock jump relations Eqs. (5)–(7), with the understanding
that we have ignored the triple velocity correlation and the
temperature-velocity correlation.

At present we simply construct trend lines for the
anisotropy in the suite of simulations. Figure 9 shows the av-
eraged anisotropy α = 〈τxx〉/〈τyy〉 plotted against the relative

turbulent momentum contribution 〈τxx〉/U
2
s . We observe that

the anisotropy generally increases with 〈τxx〉/U
2
s (although at

low values there is a saturation at α ∼ 1 in the 2D cases).
The trend line shown in Fig. 9 for the 2D cases is α ∼

1 + 13(〈τxx〉/U
2
s − 1/40). For the 3D cases, the trend line

shown is α ∼ 1 + 26〈τxx〉/U
2
s , so that the 3D case trend line

has double the slope. This is expected on the grounds of di-
mensionality. Recalling τii = τxx(1 + (d − 1)/α), suppose we
consider matched 2D and 3D cases. Since Eq. (2) fits the sim-
ulation suite’s mass-weighted velocity dispersions reasonably
well, and the 2D and 3D cases are not clearly distinguishable
in this regard, take τii,2D ∼ τii,3D. Then we have α3D ∼ 2α2D.

Note that as the analysis region is moved further down-
stream (to the right in Fig. 2), we observe that the anisotropy
tends to decrease towards equilibrium (not shown). A sim-
ilar behavior is observed in wind tunnel shock-turbulence
experiments [40]. Since the different “void” radius cases have
different characteristic turbulence scales, the rate of change of
this and other quantities with downstream distance may differ
from one radius case to another.

IV. DISCUSSION

Although we have shown here a degree of control over
turbulence generation through varying the average Atwood
number A of the preshock state, there may be significant

FIG. 10. Examples of initial density field constructions for the
different density variance cases in 2D. See text of Appendix A.

freedom yet to explore in tailoring the preshock density state
to generate a desired turbulent state. Now we briefly outline
a few ways in which this could be useful, as motivation for
future work.

At present the preshock density perturbations are intro-
duced in a spatially homogeneous fashion. One could, instead,
vary A (or the void radius R) spatially, with the goal of in-
troducing or eliminating spatial gradients in the turbulence
intensity (or turbulence length scale). For example, Fig. 2
shows that the turbulent velocity dispersion σv decreases with
distance behind the (average) shock. Could one reduce this
effect by beginning with A(x)? In a similar fashion, one might
study turbulence with gradients in turbulence intensity (or
gradient in length scale) by beginning with A varying in one
or more of the transverse directions, A(y) [or R(y)].

Note that to generate our higher-density-variance cases
[(σρ/ρ )0 ∼ 1.9 for 2D cases], we have introduced, in addi-
tion to the “voids” seen in Fig. 2, smaller radius “beads”
of higher density than the initially uniform background [see
Fig. 10(b) in Appendix B]. Strictly speaking this introduces
a second (and smaller) radius into the problem, which may
somewhat increase the scatter observed in various figures with
respect to the trend lines, but evidently does not overwhelm
the main scaling in R in Figs. 3 and 5. Nonetheless, it may be
worthwhile in the future to consider alternate methods to
introduce any such third density into the problem when trying
to raise A. It should be kept in mind that the introduction of
multiple materials with different equations of state into the
preshock medium may alter at least certain present results.

The shock-tube setup studied here appears well suited for
generating a specified volume of turbulent flow. One could
also consider, instead, more spatially inhomogeneous setups.
In the neutral gas case, for example, there is the turbu-
lence generated in jet mixing layers [41]. The generation of
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turbulence by jets is also of interest in the astrophysical
context, for example through instability in heliospheric jets
interacting with the interstellar medium [42].

Another area of future interest is the generation of post-
shock magnetohydrodynamic (MHD) turbulence for a shock
propagating through a medium with nonuniform density. Let
us make a simple estimate of the maximum possible average
magnetic fields in the present cases by assuming the postshock
turbulent energy is instead partitioned equally into turbulent
energy and magnetic energy (that is, we assume a magnetic
energy density of half the original turbulent energy density).
Given postshock mean densities on the order of �0.1 g/cm3,
and fluctuating velocities � 40 km/s, we find in this simple
estimate magnetic fields ∼10–100 T.

The ratio of postshock thermal pressure to postshock
turbulent pressure (“turbulent β”) for the present suite of
simulations varies from ∼1 to 25. As such, continuing with
the above simple estimate, we would find magnetic β (the
ratio of the thermal pressure to magnetic pressure) of �2; this
result is similar to the results of ideal MHD calculations of a
shocked nonuniform medium in a different context [43]. Note
that we do not claim such fields would necessarily be present
for the cases studied in this work. In the present cases the
turbulent β tends to be lower (the inferred relative magnetic
field is higher) for lower Mach number shocks where the
postshock is cooler. We should expect to need to consider the
conductivity of such plasmas (which is important also in HED
shock tube designs looking at magnetized Rayleigh-Taylor in-
stability [44]), as well as whether there are sufficient seeds for
the magnetic field (or the use of a preimposed initial magnetic
field).

In the present simulations, where the material in which the
turbulence is generated is treated as an ideal gas with γ = 5/3,
our results suggest a limit to the achievable volume-weighted
Mach numbers. From Eq. (3), we have that σM is proportional
to A, Ms, and a combined coefficient that, at a minimum,
depends on properties of the preshock density beyond σρ/ρ.
As we have already discussed, when γ = 5/3, Ms saturates
in the unperturbed 1D theory at ∼1.79, and it appears to also
saturate in the perturbed (nonuniform preshock density) case.
This saturation, however, can be relaxed if one is concerned
with density-weighted quantities.

By definition A = (σρ/ρ )0/[1 + (σρ/ρ )0] also has a max-
imum achievable value of 1. Although it is not apparent
as written, we should expect the combined coefficient,
0.52(R/45)1/3, to similarly have a maximum achievable value
as a consequence of (average) momentum and energy conser-
vation. In other words, the total possible turbulence generation
will be limited by the available shock energy and momentum.
In practical terms, the scaling in R must either saturate at or
before the domain size; for the “voided” preshock density con-
struction here, we aim for many voids across the domain for
statistical purposes (with too few voids we may also question
whether the resulting state will be “turbulent”). As previously
noted, Inoue et al. [4] finds a proportionality coefficient of
1 (σv = AU s) using a power-law preshock density spectrum
peaked at the simulation box size.

One apparent way to make it easier to achieve higher Mach
numbers is to reduce γ . In the context of HED plasmas, γ

could be reduced by operating in a regime with substantial

radiative loss in the postshock plasma. There is the possibility
in the current setup of doping the “working” material with the
aim of increasing the amount of radiative loss.

Since a reduction in γ increases the compressibility, we
should expect the extent of the postshock region to be reduced,
which may make the analysis more difficult. Indeed, simula-
tions of the present setup using a (tabular) carbon equation of
state for the foam show compression ratios in the unperturbed
cases that well exceed the maximum of ρ1,τ0/ρ0,τ0 → 4 for the
case with γ = 5/3. One may anticipate a reduced effective
γ , leading to higher compression, for such cases where the
material can ionize substantially across the shock.

Regarding Eq. (2), which states that σv ∝ R1/3AU s, we
also comment that the original theoretical result for the linear
RMI fits better when the post-shock Atwood number is uti-
lized rather than the preshock Atwood number [31] (see also
the discussion in Brouillette [45]). Here we consider preshock
quantities for ease of developing predictive capabilities (and
because here the postshock average Atwood number should be
determined self-consistently with the turbulence). However,
even without using directly a postshock Atwood number, it
is possible that an alternate average Atwood number could
be constructed that would lead to improved predictive power
for σv once one considers more general cases of turbulence
generation by shock interaction. Such possible cases include
weaker shocks or a preshock medium that contains more than
a single material (is governed by a different equation of state
or γ in different regions). In these cases it might prove useful
to make some accounting in the average Atwood number
for the expected (local) density jump varying for different
preshock regions (even ignoring turbulence).

V. SUMMARY

Using numerical simulations we have studied the turbu-
lence generated by a strong shock passing through a medium
with highly nonuniform density. The medium and the drive
of the shock are constructed to be in the spirit of those
that might be achieved in an HED shock-tube experiment.
We find that the postshock turbulent velocity and volume-
weighted turbulent Mach number (using an average sound
speed) are reasonably predicted by combining theoretical con-
siderations with fits for the present simulations. With the
turbulence known, we find that an analysis based on a single
normal shock also reasonably predicts the postshock aver-
aged pressure and density. Since the turbulence production in
the simulations responds in a reasonably predictable way to
changes in the preshock density structure and the shock-drive,
both of which are controllable, we may consider the present
setup as the basis for a scheme for controlled turbulence
generation in the laboratory. Planned future work will utilize
the present results to aid in the design of an HED shock-tube
platform for turbulence generation.
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APPENDIX A: PRESHOCK DENSITY

Here we provide some additional detail on the nonuniform
density that exists prior to the shock propagation. The overar-
ching goal is to support the main physics analysis by achieving
different values of the (initial) density variance (σρ/ρ )0 with
approximately fixed averaged density (ρ0). At the same time,
although it is not the focus of the present work, we choose
constructions that are in the spirit of what might be possi-
ble for HED shock-tube targets through existing techniques
[16,17].

As noted in Sec. II, we create three different conditions
for the normalized density variance (σρ/ρ )0 ∼ 0.38, 1.05, 1.9
(for the 2D runs), while ρ0 ∼ 0.05 g/cm3 in all cases. For
the cases with density variance of about 1, the preshock
density is created by “voiding” an initially uniform density
(ρ = 0.1 g/cm3) such that roughly half the area is taken up
by circular “voids.” In the simulations, we set the density in
these “void” regions to be a very small value (10−3 g/cm3)
rather than zero. Figure 10(a) shows a 2D example of such a
case. Here we arrange the centers of the 2D spheres logically
following a single layer of a hexagonal-close-packed (HCP)
lattice, but with the spacings relaxed to achieve the targeted
50% void fraction. The centers are then randomly displaced
in each Cartesian direction by a value drawn from a uniform

distribution with a maximum (plus and minus) similar to the
unperturbed inter-void spacing along that direction. Note that
we orient the HCP lattice such that there are no lines of fixed
y (or fixed y and z in 3D) that pass through the region without
intersecting both voids and material.

To create the lower initial density variance cases,
(σρ/ρ )0 ∼ 0.38, we use the same process just described, but
with a lower initial uniform density (ρ = 0.066 g/cm3) and a
higher “void” density, such that the “voids” are instead simply
a somewhat lower density (ρ = 0.03 g/cm3).

The higher density variance cases (σρ/ρ )0 ∼ 1.9 also fol-
low a similar procedure as the (σρ/ρ )0 ∼ 1.05 cases, but
additionally make use of small regions of higher density
(“beads”) to increase the density variance. These regions are
circular (2D) or spherical (3D), and have a density of 4× the
initial uniform density (so ρ = 0.4 g/cm3). In the 2D cases,
an example of which appears in Fig. 10(b), there are two such
beads (small, white, circles) for each void, with a radius of
R/5. These beads are positioned, with random perturbations,
in the region between the voids.

The 3D cases are in general similar to the 2D ones, with
spherical “voids” and “beads” substituting for circular ones
and the “void” arrangement following a relaxed and randomly
perturbed HCP lattice. Most spherical cases use a somewhat
lower void volume fraction, such that, with empty (very
low density) voids and ρ = 0.1 g/cm3 for the initial density
(σρ/ρ )0 ∼ 0.87. A single lower density variance case is run
with (σρ/ρ )0 ∼ 0.3. One 3D case of higher density variance
was run; this case had R = 120 (microns) and bead radius
R = 14 (microns), with 10 higher density (again 4×) beads
for each void, yielding (σρ/ρ )0 ∼ 1.03.

APPENDIX B: SHOCK DRIVE

Here we give more details on the manner in which the
shock is launched into the “working” material where the
present study of turbulence generation is focused. As for the
construction of the preshock density outlined in Appendix A,
the intent here is not to represent any existing or proposed
experiment in detail, but rather to allow for varying conditions
to support the present study of turbulence generation. In brief,
the five different shock-drive conditions (parameterized here
simply by the average shock Mach number) are generated by
simulating the ablation of a stacked outer ablator (plastic) and
inner pusher (a dense material) by a halfraum radiation drive.
The different shock-drive conditions are then created by either
scaling the radiation drive temperatures of the halfraum drive
(which consists of radiation temperature versus time), or by
altering the thicknesses of the ablator and pusher layers.

Thus, while we run without radiation physics when study-
ing the interaction of the shock with the nonuniform density,
we run with (60 group) radiation diffusion in the beginning
(on order of the first 10 ns) of our simulations, until the shock
profile in the right-hand-side of the “working” material is
established. At this point, the radiation physics is turned off
(which greatly speeds up the simulations). At all times we
run with thermal conduction in the ablator and pusher layers,
calculated using the theory of Lee and More [46]. The heavy
inner pusher, which abuts the right hand side of the “working”
material at the start of the simulation (see Fig. 1), serves to
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enhance the separation of the shock propagation from the
motion of the ablator.

Our base halfraum drive follows one inferred from exper-
iments [47] with a peak radiation temperature of ∼163 eV
after about 2 ns, extended with a gradually falling tail (see
also [15]). The ablator is simulated (using tabular opacity,
and a quotidian equation of state [48]) as a mixture of car-
bon (∼41.3%), hydrogen (∼57.2%), oxygen (∼0.5%), and
germanium (∼1%). The ablator has a density of ρ ≈ 1.13
g/cm3 while the pusher is taken as density ρ = 16.7 g/cm3.
At present for the sake of opacity calculations we treat the
pusher as copper. This density and opacity combination then
does not correspond to a real material but similar shock drives
are achievable with self-consistent combinations.

The halfraum drive is applied at the right-hand side of the
simulation domain, which is separated from the ablator by
2 mm of helium gas at a density of 5 × 10−3 g/cm3 (the

helium region is truncated in Fig. 1 to improve visibility of
the rest of the domain). The right-hand-side boundary is free
(Lagrangian), allowing for continuing ejection of ablator. No
radiation is permitted to leave the domain from the boundaries
parallel to the x (shock-propagation) direction, which yields a
planar shock.

The five drives we use pair a scaling of the halfraum drive
in radiation temperature with a thickness of the ablator and
pusher layers. In the format [shock Mach number, peak ra-
diation temperature (eV), pusher thickness (microns), ablator
thickness (microns)], these pairings are [12, 195, 15, 200],
[15, 228, 20, 250], [18, 228, 15, 100], [20, 228, 10, 200],
and [37, 260, 5, 100]. The inclusion of the drive side in the
simulation raises the total resolution above the values given in
Sec. II, increasing the number of cells in the x (first) direction
by approximately 200–400 depending on the case (e.g., the
full R = 90 3D simulations are ∼900 × 400 × 400).
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