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Electronic transport coefficients from density functional theory across the plasma plane
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We investigate the thermopower and Lorenz number of hydrogen with Kohn-Sham density functional theory
(DFT) across the plasma plane toward the near-classical limit, i.e., weakly degenerate and weakly coupled states.
Our results are in concordance with certain limiting values for the Lorentz plasma, a model system which only
considers electron-ion scattering. Thereby, we clearly show that the widely used method of calculating transport
properties via the Kubo-Greenwood (KG) formalism does not capture electron-electron scattering processes. Our
discussion also addresses the inadequateness of assuming a Drude-like frequency behavior for the conductivity
of nondegenerate plasmas by revisiting the relaxation time approximation within kinetic theory.
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I. INTRODUCTION

Besides the equation of state and the optical properties,
the transport coefficients are important quantities to charac-
terize the state of metals and plasmas. The electrical and
thermal conductivity, σ (n, T ) and λ(n, T ), as well as the ther-
mopower α(n, T ) and Lorenz number (named after Ludvig V.
Lorenz [1]) L(n, T ) depend in general on the particle density
n and temperature T but have well-known values for fully
degenerate plasmas according to the Ziman theory [2] and
in the nondegenerate limit as derived in the seminal work of
Spitzer and Härm [3].

Solving fundamental geo- and astrophysical questions on
structure, evolution, and magnetic field generation in stars and
planets relies on accurate knowledge of σ and λ of stellar and
planetary matter [4–9]. The experimental determination of
transport properties for plasmas and metals at such high tem-
peratures is very challenging, and a large part of the research
in the field is carried out via theoretical and computational
methods [10].

The computation of transport coefficients is possible via
kinetic theory [11–15], which was introduced originally for
low-density systems. Calculations for dense plasmas have to
address fundamental problems, e.g., dynamical screening and
strong collisions between electrons and ions, the influence
of the ionic structure during the collisions (dynamic ion-ion
structure factor), and partial ionization (bound states) [16–18].
The fluctuation-dissipation theorem [19] and a Hamiltonian-
based linear response description [20] have been invented to
relate transport coefficients to equilibrium correlation func-
tions. A generalized linear response theory [21,22] makes
this approach practically more applicable, for instance for the
evaluation of the equilibrium correlation functions by pertur-
bation theory and establishing the link to kinetic theory [23].
Alternatively, density functional theory (DFT) can be applied

to calculate transport coefficients via the Kubo-Greenwood
(KG) formalism [20,24,25]. DFT-MD simulations, which
combine the quantum treatment of electrons via density func-
tional theory with the molecular-dynamical (MD) solution of
the ionic motion, allow us to treat strongly coupled Coulomb
systems beyond perturbation theory, e.g., dense nonideal plas-
mas up to condensed matter densities, the so-called warm
dense matter. The effectiveness of the KG approach, which
uses the Kohn-Sham orbitals and energies from DFT, has been
demonstrated in particular for dense plasmas and warm dense
matter [26–35].

Although the DFT-based approach to calculate transport
coefficients in dense plasmas via the KG formalism is very
successful, a fundamental question is still open: whether
or not the influence of electron-electron (e-e) collisions is
properly included. While e-e correlations are accounted for
by the exchange-correlation energy functional in some ap-
proximation to obtain optimal electronic orbitals, it is not
clear whether the exact calculation of e-e collisions can be
performed within a single-particle description without the
explicit treatment of two-particle Coulomb interactions. This
problem has received increasing attention recently [36–39]
and can be checked best in the low-density and high-
temperature region of hydrogen plasmas, where exchange and
correlation energies become irrelevant and exact results for the
transport coefficients are available from the Spitzer theory [3].
Unfortunately, this is just the region where Kohn-Sham-DFT
becomes computationally demanding because high temper-
atures and low densities require huge simulation cells and
a large number of bands, so that it is very challenging to
converge the calculations. For instance, Desjarlais et al. [37]
applied a Drude-like fit to the very low-frequency behavior
of the transport coefficients. From these extrapolated values,
it was concluded that the electrical conductivity agreed with
quantum Lenard-Balescu (QLB) [40–43] results that include
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e-e scattering, whereas the thermal conductivity was too high
by a factor of about two. While these results ruled out for
the first time explict e-e scattering in the DFT calculations,
the agreement with the QLB results suggested that a reduc-
tion in the electrical conductivity analogous to that found in
Spitzer theory due to e-e interactions was present. Shaffer and
Starrett [38] supported this argument in their discussion. In
contrast, a recent analysis of DFT-MD data within a virial
expansion of the electrical conductivity [39] hinted toward e-e
collisions not being correctly accounted for at any level.

Here we re-examine the DFT calculations from Ref. [37]
and show that they were, unfortunately, not sufficiently con-
verged and that the agreement with QLB results that included
e-e scattering [37] was accidental. Although our computa-
tional capabilities to converge DFT transport properties at the
conditions chosen by Desjarlais et al. [37] are still insufficient,
we give a clear answer to the question, whether or not e-e
scattering is correctly included in the KG formalism, via an
alternative route which utilizes the thermopower and Lorenz
number calculated at less extreme plasma conditions. Related
to the DFT calculations, we also address the inadequacy of
assuming a Drude-like frequency dependence in nondegen-
erate plasmas in a special section about the relaxation time
approximation.

In short, this paper shows the first fully converged and
convincing results that a DFT-based evaluation of the KG for-
mula does not include exact contributions from e-e collisions.
To make this inference, we have performed extensive DFT
calculations for hydrogen plasma along a special path across
the density-temperature plane. We find that the asymptotic
behavior of the calculated transport coefficients converges
clearly to the values of the Lorentz plasma, which is a model
system (named after Hendrik A. Lorentz [11,44]) without
e-e collisions, where only the electron-ion (e-i) interactions
are considered, usually described by an effective (screened)
potential.

II. PLASMA PARAMETERS

The state of a hydrogen plasma can be generally character-
ized with two dimensionless parameters [45] that depend on
electron density ne and temperature T . The first is the coupling
parameter, which relates the average Coulomb interaction en-
ergy to the thermal energy,

� = e2

4πε0kBT

(
4πne

3

)1/3

, (1)

where e is the elementary charge, ε0 is the vacuum permittiv-
ity, and kB is Boltzmann’s constant. Second, the degeneracy
parameter describes the importance of quantum effects (de-
generacy, Pauli blocking, etc.) and is given by

� = 8πε0kBT

e2aB

(
1

3π2ne

)2/3

, (2)

where aB is the Bohr radius.
A path perpendicular to the � = 1 and � = 1 lines, which

rise on geometric average with a power of T ∼ n1/2
e in the
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FIG. 1. Density-temperature plane of H plasma with the relevant
lines: � = 1, � = 1, and �8�7 = 1. Blue circles indicate the condi-
tions chosen for our calculations.

plasma plane, can be defined as follows:

T =
(

4

9π

)14/3( 3

4π

)2( 2

aB

)7 e2

4πε0kBn2
e

, (3)

or equivalently by �8�7 = 1. We may call this path an escape
route from correlation and quantum effects because it repre-
sents the shortest route from the highly degenerate (� � 1)
and strongly coupled (� � 1) region to the nondegenerate
(� � 1) and weakly coupled (� � 1) conditions, anchored
at � = � = 1; see Fig. 1.

Following this route allows us to efficiently reach con-
ditions for which certain limiting laws for the transport
coefficients of plasmas are known. Our main DFT calculations
were run along this path between 15 000 K and 1.46 g/cm3

up to 400 000 K and 0.2826 g/cm3 and closely approached
characteristic limiting cases at both ends.

III. RELAXATION TIME APPROXIMATION

Before discussing our DFT calculations, we describe a
simpler and well understood approach to calculate electronic
transport properties of plasmas, which will be used for various
comparisons. This model considers a Lorentz plasma, where
electrons scatter only at ions via a statically screened Coulomb
potential and all particles are uncorrelated. It is derived by
solving the Boltzmann equation within the relaxation time
approximation (RTA) [11], which was done, e.g., by Lee and
More [46] and can be evaluated for arbitrary degeneracy.

When assuming frequency-dependent perturbations
∼ exp(iωt ) by an electrical field E(ω) and a temperature
gradient ∇T (ω) at constant pressure, the following
nonequilibrium distribution function for the plasma electrons
is derived:

f (v) = f0 + τ

1 + iωτ

∂ f0

∂E
v ·

[
eE +

(
E − he

T

)
∇T

]
, (4)

where he is the enthalpy per electron, v the velocity, τ =
τ (E ) the relaxation time, and f0(E ) is the Fermi distribution
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function:

f0(E ) = 1

z−1 exp(E/kBT ) + 1
. (5)

The Fermi function depends on the kinetic energy E =
mev2/2 and fugacity z = exp(μe/kBT ), where me is the mass
and μe is the chemical potential of the electrons.

A. Zero-frequency limit

After calculating the expectation values of electrical cur-
rent j and generalized heat current j′Q at ω = 0,

j = − 2em3
e

(2π h̄)3

∫
d3v v f (v), (6)

j′Q = 2m3
e

(2π h̄)3

∫
d3v v

(
mev2

2
− he

)
f (v), (7)

the following set of Onsager coefficients is obtained, which
can be written as integrals over the energy:

Kn = −8(−e)2−n

3π1/2meλ3
e (kBT )3/2

∫ ∞

0
dE En+3/2τ (E )

∂ f0

∂E
, (8)

where λe = h̄
√

2π/mekBT is the thermal wavelength. When
assuming only e-i scattering at a screened Coulomb potential,
the relaxation time in first Born approximation reads [47–49]

τ (E ) = 27/2πε2
0m1/2

e

niZ2
i e4

E3/2

ln �(E )
, (9)

where ni and Zi = 1 are density and charge state of the
ions, respectively. Due to its weak energy dependence, the
Coulomb logarithm ln �(E ) may be pulled out of the inte-
gration and later evaluated at a mean value, which then leads
to the following expression:

Kn = 25ε2
0me(kBT )3

3π h̄3niZ2
i e2

(
kBT

−e

)n
�n+4Fn+2(z)

ln �(z)
, (10)

where the Fermi integrals are defined as

Fj (z) = 1

� j+1

∫ ∞

0
dx

x j

z−1 exp(x) + 1
, (11)

with Euler’s gamma function � j+1.
Here we deviate from the original Lee-More model and

use the following formula for the statically screened Coulomb
logarithm [48–50]:

ln � = 1

2

[
ln(1 + b) − b

1 + b

]
, (12)

with the following argument:

b(z) = 8meẼ (z)

h̄2κ2
e (z)

= 6me(kBT )2ε0λ
3
e

h̄2e2

F1/2(z)

F 2
−1/2(z)

. (13)

The equation above follows from the screening parameter of
a Lorentz plasma [17]:

κ2
e (z) = 2e2

ε0λ3
ekBT

F−1/2(z), (14)

and from calculating the mean energy of the scattering elec-
trons as

Ẽ (z) =
∫

dE E1/2E ∂ f0

∂E∫
dE E1/2 ∂ f0

∂E

= 3

2
kBT

F1/2(z)

F−1/2(z)
, (15)

which gives Ẽ = 3kBT/2 in the nondegenerate limit and Ẽ =
EF , which is the Fermi energy, for complete degeneracy.

In summary, all transport coefficients of interest can be
calculated within this RTA model by evaluating a set of six
Fermi integrals and using an inversion formula for the fugac-
ity, see, e.g., Ref. [18]. In particular, the electrical conductivity
is given by

σ = K0 = 26ε2
0me(kBT )3

π h̄3niZ2
i e2

F2(z)

ln �(z)
. (16)

With the ideal enthalpy per electron,

he = 5

2
kBT

F3/2(z)

F1/2(z)
, (17)

the thermopower coefficient can be written as

a = − e

kB
αe = −eK1

kBT K0
− he

kBT
= 4

F3(z)

F2(z)
− 5

2

F3/2(z)

F1/2(z)
. (18)

Finally, the Lorenz number is

L =
( e

kBT

)2
(

K2

K0
− K2

1

K2
0

)
= 20

F4(z)

F2(z)
− 16

F 2
3 (z)

F 2
2 (z)

. (19)

Here the Wiedemann-Franz law, L = π2/3, follows directly
from the Sommerfeld expansion of Fermi integrals. Expres-
sions for the nondegenerate limits are easily obtained, since
all Fj (z) ≈ z = neλ

3
e/2 there, e.g., we immediately find the

numbers a = 1.5 and L = 4.

B. Frequency-dependent coefficients

The frequency-dependent coefficients are derived in the
same way as Eq. (8). Their real parts then read

Kn(ω) = −8(−e)2−n

3π1/2meλ3
e (kBT )3/2

∫ ∞

0
dE

En+3/2τ (E )

1 + ω2τ 2(E )

∂ f0

∂E
.

(20)
An analytical integration shows that the coefficient

K0(ω) = σ (ω) fulfills the sum rule [37],

2me

πe2

∫ ∞

0
dω σ (ω) = 2

λ3
e

F1/2(z) = ne, (21)

for any relaxation time τ (E ) if the thermodynamics of the
electron gas is ideal.

Equation (20) can be integrated numerically using the
relaxation time (9). To remain fully consistent with the pre-
vious subsection, we keep the Coulomb logarithm constant
here, too. Note that a Drude behavior of the coefficients
Kn(ω) ∼ (1 + ω2τ 2)−1 is found only in the fully degenerate
limit, where τ = τ (EF ). For weakly degenerate electrons, the
∼E3/2 proportionality of the relaxation time generates signif-
icantly different frequency dependencies of the Kn(ω).
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IV. DFT CALCULATIONS

We use a combination of density functional theory
(DFT) [51,52] and molecular dynamics (MD) to simu-
late the ion dynamics in our H plasma using the VASP
code [53–55], generating ionic configurations for subsequent
calculations of transport coefficients. In these DFT-MD sim-
ulations, we treat exchange and correlation effects with the
Perdew, Burke, Ernzerhof (PBE) approximation [56] and use
a PAW pseudopotential (labeled PAW H_h_GW) [57,58] with
a plane-wave energy cutoff of 1200 eV and the Baldereschi
mean-value point [59]. We simulate either 64, 128, or
256 atoms for several 1000 time steps with a length of 0.1 fs
at constant temperatures regulated with a Nosé-Hoover ther-
mostat [60,61]. This is done for temperatures between 15 000
and 75 000 K. The pair correlation functions indicate that the
ionic structures become increasingly uncorrelated as temper-
ature rises and density decreases; see Appendix A for more
details. We therefore use the same ionic configurations from
the DFT-MD simulations made at 75 000 K for all calcula-
tions of transport coefficients at higher temperatures and only
rescale the box sizes to have them match the required smaller
densities. This simplification may introduce inaccuracies in
the region of intermediate coupling. Nevertheless, it warrants
the emergence of configurations of uncorrelated, distant ions
toward sufficiently low density and, thus, achieve consistency
with the assumptions made in the derivation of the Lorentz
and Spitzer limiting values we aim to compare with.

The electronic transport coefficients are then calculated
with static DFT calculations using 5–10 ionic configura-
tions from each DFT-MD run and sufficiently large k-point
sets [59,62] to reach convergence. Here we exclusively use the
bare Coulomb potential with a cutoff energy of 2000 eV for
the electron-ion interactions. The necessary number of bands
was determined for each individual density and temperature
with systematic convergence tests. It increases drastically with
the temperature along the �8�7 = 1 line. For example, 120
bands per atom were found to be sufficient at 300 000 K
(� = 0.52 and � = 2.1). The following expressions for the
frequency-dependent Onsager coefficients [25] are evaluated:

Ln(ω) = 2π (−e)2−n

3V ω

∑
kνμ

|〈kν|v̂|kμ〉|2( fkν − fkμ)

×
(Ekμ + Ekν

2
− he

)n

δ(Ekμ − Ekν − h̄ω), (22)

where ω is the frequency, V the volume of the simulation
box, Ekμ and fkμ are the energy eigenvalue and Fermi occu-
pation number of the Bloch state |kμ〉 calculated from DFT,
and 〈kν|v̂|kμ〉 are matrix elements with the velocity operator
taken from the optical routines of VASP [63]. The enthalpy
per electron he = μe + T se is calculated from the chemical
potential μe and entropy per electron se that are derived
self-consistently in the DFT. Due to the discrete spectrum of
eigenvalues caused by the periodic boundary conditions of the
simulation box, it is necessary to broaden the delta function
to a small, finite width, which is done here with a Gaussian
function.

The static electrical conductivity is the limit of L0(ω)
at zero frequency, also known as the Kubo-Greenwood

formula [20,24]:

σ = lim
ω→0

L0(ω), (23)

while the thermal conductivity can be calculated via

λ = 1

T
lim
ω→0

(
L2(ω) − L2

1 (ω)

L0(ω)

)
. (24)

In addition, we can directly obtain the thermopower coeffi-
cient:

a = − e

kB
α = − e

kBT
lim
ω→0

L1(ω)

L0(ω)
, (25)

and the Lorenz number:

L =
( e

kBT

)2
lim
ω→0

[
L2(ω)

L0(ω)
− L2

1 (ω)

L2
0 (ω)

]
. (26)

The corresponding phenomenological equations read [64]:

j = L0E − L1

T
∇T = σE − σα∇T, (27)

j′Q = L1E − L2

T
∇T = T σαE − (λ − T σα2)∇T . (28)

Note that the coefficients Kn used in the RTA model in Sec. III
differ from the coefficients Ln of the KG formalism by terms
proportional to he/e:

L0 = K0, (29)

L1 = K1 + he

e
K0, (30)

L2 = K2 + 2he

e
K1 + h2

e

e2
K0. (31)

Because Eqs. (23)–(26) cannot be evaluated directly at ω = 0,
extracting their converged DC limits is challenging, especially
at high temperatures due to the large number of partially oc-
cupied bands that contribute to the summations in the small-ω
region. Especially, having a higher index n in the coefficients
Ln results in stronger weighting of summands with higher
eigenenergies Ekν . This causes the quantities from Eqs. (23)–
(26) to show different convergence behaviors at small ω. For
all numerical values presented here, we have ensured that
sufficient convergence has been reached to guarantee unbiased
extrapolations (here using linear functions) to obtain the DC
numbers.

The quantities most challenging to converge at high T are
the thermal conductivity (24) and the electrical conductiv-
ity (23), because they approach their ordinates with a very
steep slope. These calculations require very large particle
numbers to resolve the low-frequency region sufficiently well
to guarantee precise extrapolations to the DC limit. Desjarlais
et al. [37] assumed that the conductivity shows Drude-
like frequency dependence at low frequency and performed
extrapolations to ω = 0 accordingly. A global Drude-like fre-
quency dependence requires that the dynamics of all electrons
contributing to the conductivity is determined by a single
relaxation time τ [50]. This case holds approximately for
degenerate electrons (� � 1), where Pauli blocking allows
scattering processes only for electrons near the Fermi level.
But in general, the relaxation time depends on the velocity v
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FIG. 2. Frequency-dependent electrical conductivity of hydro-
gen at 40 g/cm3 and 500 eV from DFT in comparison with the
results from RTA, Eq. (20). Thin dashed lines indicate extrapolations
with Drude functions, σ = σ0/(1 + ω2τ 2), fitted to the DFT data at
frequency ranges between 0.5 and 2 eV. For comparison a Drude
function scaled to match the zero-frequency value of the RTA and,
simultaneously, fulfill the sum rule (21) is also shown.

of the incident electron, e.g., assuming electron-ion scatter-
ing in first Born approximation as in Eq. (9), we have τ ∼
v3/ ln �(v). Thus, the frequency dependence of the conduc-
tivity cannot be expected to globally match with a Drude-like
form at high temperatures and this, in turn, will add uncer-
tainty when employing low-frequency extrapolations to the
DC limit. The following section illustrates this problem in
more detail by re-examining an example from the work of
Desjarlais et al. [37] who investigated hydrogen at very high
density and temperature.

V. RE-EXAMINATION OF CALCULATIONS FROM
DESJARLAIS ET AL. (2017)

We have independently revisited the DFT calculations by
Desjarlais et al. [37] at kBT = 500 eV and 40 g/cm3 (� =
0.13) by performing new DFT-MD simulations with 128, 256,
and 512 hydrogen atoms. The simulations were run with a
time step of 0.003 fs, 25 bands per atom, and a plane-wave
cutoff energy of 5000 eV. The electrical conductivity was then
calculated from several ionic configurations with 30 bands
per atom and a plane-wave cutoff energy of 8000 eV. The
Baldereschi k point [59] was used in all calculations. Results
are displayed in Fig. 2.

It is clearly seen that the DFT conductivities are missing
essential contributions at low frequency the fewer particles
are considered, thus, even the calculations with 512 atoms
are likely still underconverged. At sufficiently high frequency,
all DFT results merge with the RTA curve, which is derived
independently from the DFT and whose shape is determined
by the energy dependence of the relaxation time (9). This con-
vinces us to conclude that, at these weakly coupled conditions,
the RTA indicates the correct zero-frequency limit that DFT
would produce if convergence could be reached.

Both the RTA and Drude models have a quadratic de-
pendence on frequency for very low frequency, but have

differing higher-order dependence. The Drude-like extrapola-
tion to zero frequency will introduce inaccuracy in the zero
frequency limit, relative to the RTA functional form, when
convergence with respect to particle number is insufficient. In
Ref. [37], the zero-frequency limit was derived from simula-
tions with 256 atoms, the limit of what was computationally
feasible at the time. The zero frequency limit was obtained
through an extrapolation with a Drude function fitted to data
between ∼0.5 and 1 eV. These circumstances lead to an un-
derestimation of the electrical conductivity and, consequently,
to a qualitatively different interpretation of results because
of an accidental concordance with Lenard-Balescu calcula-
tions. Given that the other two conditions from Ref. [37]
at 700 and 900 eV are even more challenging to converge,
those results for the electrical and thermal conductivity would
also be expected to be unconverged with respect to particle
number.

Our present inability to converge the DC electrical con-
ductivity at kBT = 500 eV and 40 g/cm3 requires us to seek
alternative options to solve our scientific question. The first
adjustment is reducing the density and temperature to less
extreme conditions by following the escape route �8�7 = 1.
Second, instead of founding our reasoning on the electrical
and thermal conductivity we will utilize the thermopower and
Lorenz number instead. These quantities require less extreme
particle numbers for the determination of their DC values as
is explained in the next section.

VI. THERMOPOWER AND LORENZ NUMBER ALONG
THE ESCAPE ROUTE

While the considerations explained in the preceding
section, in principle, also apply to the thermopower coeffi-
cient (25) and the Lorenz number (26), these quantities are
a lot less prone to the convergence issues discussed. This
is likely explained by Eqs. (25) and (26) being ratios of
Onsager coefficients (22) by definition, which results in a
partial compensation of the leading terms that determine the
slopes in the Ln at small frequencies. Consequently, these
functions approach their ordinates much less steeply. Their
DC values can be found much more easily by standard means
of comparing results obtained with different particle numbers
and extrapolating the physically relevant section of the curves
across the regions of artificial drops (in Ln) or divergences (in
certain ratios of different Ln) close to ω = 0; see Fig. 3 for an
example.

The numbers L and a are shown in Fig. 4 for con-
ditions along the �8�7 = 1 line. Concordance of DFT
results with known limits for � � 1 (L = π2/3 and a = 0),
which are not susceptible to e-e scattering mechanisms
due to Pauli blocking [11,65], had been established in the
past [25,27].

However, in the opposite limit, Fig. 4 clearly shows that
the DFT calculations do not approach the Spitzer results, but
instead the Lorentz plasma values (e-i scattering only), which
are substantially higher; see also Table I. Thus, we conclude
that e-e collisions are not accounted for in DFT when follow-
ing the KG formalism, i.e., by computing electronic transport
coefficients from Eqs. (22).
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FIG. 3. Lorenz number and thermopower coefficient from our
DFT calculations at 200 000 K and 0.3997 g/cm3 (� = 0.84 and
� = 1.23) for different particle numbers and their linear extrapola-
tions (bold lines) to the DC limits.

VII. FURTHER DISCUSSION

The reason why e-e scattering is absent in DFT transport
properties is that the Kohn-Sham interaction operator,

vKS ({ri}) =
∑

i

[
−

∑
I

e2ZI

4πε0|ri − RI |

+ e2

4πε0

∫
d3r′ ne(r′)

|ri − r′| + vxc,i(ri )

]
, (32)

where r′ is a position vector and ri and RI , respectively, are
electronic and ionic position coordinates, has the same single-
particle structure (separable into additive single-electron
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FIG. 4. Thermopower coefficient (red) and Lorenz number
(black) from DFT (full) and RTA (dashed) along the �8�7 = 1 line.

TABLE I. Values for the transport coefficients for hydrogen
plasma according to the Spitzer theory [3,49] accounting for e-i and
e-e scattering compared with the values from the KG formalism
(DFT) at � = 0.52 and � = 2.1.

Quantity Lorentz (e-i) Spitzer (e-i and e-e) DFT-MD

a 1.5 0.7033 1.51 ± 0.03
L 4.0 1.6220 3.94 ± 0.2

terms) as the interaction operator for adiabatic e-i scattering:

vei({ri}) = −
∑
i,I

e2ZI

4πε0|ri − RI | , (33)

but with the additional Hartree and exchange-correlation
terms. To achieve the correct Spitzer results in a Hamiltonian-
based formalism, which is possible within generalized linear
response theory [21,22], e-e scattering has to be included
directly via the fundamental two-particle interaction operator
(not separable into additive single-electron terms):

vee({ri}) =
∑
i< j

e2

4πε0|ri − r j | . (34)

Such a treatment leads to mathematical structures that are
significantly different from the compact set of Onsager co-
efficients (22) in the KG formalism [66,67]. The mean-field
Hartree potential in DFT,

vH ({ri}) =
∑

i

e2

4πε0

∫
d3r′ ne(r′)

|ri − r′| , (35)

which becomes merely a global constant in a homogeneous
electron gas at very high T , is unable to reintroduce e-e colli-
sion effects in the electronic transport coefficients. The same
applies to the exchange-correlation potential

∑
i vxc,i(ri ),

which vanishes ∼T −1/2 according to the Debye-Hückel
limiting laws [17] in a real plasma. Within the PBE approx-
imation [56], which is used in our practical work, it reduces
to a constant energy shift according the local density approx-
imation [68,69] for a homogeneous electron gas at very high
T and, thus, does not influence the velocity matrix elements
either.

Electron-electron collisions, when taken into account ex-
plicitly in the theoretical description via kinetic theory [3]
or generalized linear response theory [21–23], reshape the
nonequilibrium momentum distribution of electrons [3].
Whether or not e-e collisions have a particular effect on the
electronic heat current that is separable from the reshaping of
the distribution function as suggested in Ref. [37] remains to
be shown.

For additional comparison, Fig. 5 contains results from
kinetic theory within the RTA from Sec. III. This model
describes a Lorentz plasma of noninteracting electrons scat-
tering randomly at ions with small momentum transfer (weak
collisions). It is not able to capture the important influences of
strong collisions, electronic correlations, and ionic structure
present in DFT, which explains the deviations to the DFT
conductivity. Because of the more difficult convergence of
DFT conductivities compared to thermopower and Lorenz
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FIG. 5. Electrical conductivity from DFT, RTA, and the virial
expansion with and without e-e collisions [39] as indicated in the
legend along the �8�7 = 1 line.

number, we cannot yet achieve an overlap between DFT and
RTA data toward the nondegenerate limit.

To illustrate the influence of e-e scattering on the electrical
conductivity, we also compare with results recently derived
from the virial expansion in terms of �/�, which holds for
�/� � 1 and � � 1, according to Ref. [39] (formulas are
given in the Appendix B). The virial expansion accounts for
dynamical screening effects and strong collisions and, prob-
ably due to the latter [70], approaches the DFT results better
than the RTA model. The virial expansion can be elaborated
for both Lorentz and Spitzer plasmas. In the latter case, the
conductivity of the hydrogen plasma is smaller by a factor of
0.58 in the large-� limit [3,39].

On the one hand, the lack of e-e collisions may be a reason
why DFT results have not yet been brought in accordance with
conductivity models for dense, partially ionized plasmas more
complex than fully ionized hydrogen [49]. On the other hand,
DFT has certainly achieved great success in describing the
electrical and thermal conductivity of liquid and solid metals
like lithium [71], molybdenum [29], aluminum [26,34], and,
with a caveat due to yet incomplete description of magnetism,
also iron [28,35]. In light of our present findings, this im-
plies that e-e scattering is of minor relevance at conditions
in materials at geophysically relevant temperatures of few
1000 degrees K. This must not be confused with correlations
between electrons, which certainly are important there and can
approximately be captured by DFT.

Note that combining DFT with dynamical mean-field the-
ory (DMFT) [72–75] allows for the introduction of additional
electronic correlation effects beyond that of DFT, which
also affect the electronic transport properties. However, these
correlations are introduced artificially via localized repul-
sive interactions of certain electronic orbitals as offered by
the Hubbard model and depend on external parameters that
require additional constraints. Whether the DFT + DMFT
method is potentially able to describe scattering between un-
correlated electrons via a proper Coulomb interaction ∼1/r is
doubtful and has yet to be examined by an effort similar to
ours, i.e., by benchmarking against the known limiting values
for Spitzer and Lorentz plasmas.

While it is not obvious how e-e collisions can consis-
tently be included into DFT approaches, a way to overcome
these difficulties has been discussed in Ref. [37]. Within the
generalized linear response theory [22,23,50,67], transport co-
efficients are expressed by higher-order correlation functions.
Evaluating these with perturbation theory leads to renormal-
ization factors that account for e-e collisions in relation to the
Lorentz plasma model and depend on the degeneracy of the
electron gas [36]. In the nondegenerate Spitzer limit [3], these
renormalization factors are 0.5816 for L0, 0.2727 for L1, and
0.1970 for L2. Directly related to them are the renormaliza-
tion factors 0.4689 for a and 0.4055 for L; see also Table I.
For strongly degenerate plasmas, all of these renormalization
factors converge to 1.

Time-dependent DFT [76] seems an unlikely candidate for
the introduction of e-e scattering because it is, like static DFT,
a description of independent quasiparticles in an effective
mean-field potential. It may, however, be able to describe ef-
fects from dynamical screening that are not included in static
DFT calculations.

An alternative approach beyond DFT may be future de-
velopment of quantum Monte Carlo techniques [77], which,
however, require much higher computational effort than DFT.
This applies especially to materials with multielectron atoms
in realistic stoichiometry that many practical applications of
WDM require, e.g., hydrogen-helium mixtures in Jupiter and
Saturn [5,7,8] or iron-silicon-oxygen mixtures in Earth [78].
So far, quantitative predictions of transport properties of such
systems can be made only with DFT-based methods.

VIII. CONCLUSION

In conclusion, we have resolved that electronic transport
properties derived from DFT do not account for e-e collision
effects. At present, DFT-MD simulations represent the most
efficient and an indispensable approach to describe various
properties of both condensed and warm dense matter. We have
outlined directions for future developments to consistently
include electron-electron collisions, including a promising
combination of DFT with generalized linear response the-
ory [21,22]. Our discussion indicates that such future efforts
to develop transport theory [10] further can greatly benefit
from systematic investigations of the Lorenz number and
thermopower. Likewise, advancing experimental methods to
determine thermopower and Lorenz number of warm dense
matter will provide additional constraints to the theoretical
methods aside from the Spitzer limiting values that the princi-
pal discussion of this article is tied to.
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APPENDIX A: PAIR CORRELATION FUNCTION

The pair correlation function illustrated in Fig. 6 shows that
protons are uncorrelated at 75 000 K and 0.6527 g/cm3 and
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FIG. 6. Protonic pair correlation function from a DFT-MD simu-
lation with 64 hydrogen atoms at 75 000 K and 0.6527 g/cm3 (black
line). Fit to a function g(r) = exp[−r0 exp(−κr)/r], where the fit
parameters were determined as r0 = 2.259 Å and κ = 3.77/Å (red
line).

are only subject to repulsive interactions at small distances r.
A quantitative check of this observation is possible by fitting
the pair correlation function to the expression [13]:

g(r) = exp [−V (r)/kBT ], (A1)

which applies for uncorrelated particles interacting via a radial
pair potential V (r). The red line in Fig. 6 is the result of
such a fit if a screened Coulomb potential for proton-proton
interaction is assumed:

V (r) ∼ exp(−κr)

r
. (A2)

Using the same configurations of uncorrelated ions also at
lower densities and higher temperatures by scaling the box

TABLE II. First and second virial coefficients for the conductiv-
ity of fully ionized hydrogen plasma with and without e-e scattering
from Ref. [39].

Coefficient Lorentz (e-i) Spitzer (e-i and e-e)

ρ1 (2π 3)1/2/16 0.846
ρ2 1.0 0.4917

size increases the distance between all ions further. This is
sufficient to bring our system closer to the physical situation
assumed in the derivation of the relevant high-T limiting cases
for the transport properties, i.e., resistivity through uncorre-
lated collision events of electrons at individual scatterers [3].

APPENDIX B: VIRIAL EXPANSION FOR
THE CONDUCTIVITY

Here we give the low-density limit of the electrical conduc-
tivity according to the virial expansion by Röpke et al. [39],
which reads

σ [S/m] = 32405.4 T 3/2
eV

ρ1 ln(�/�) + ρ2 + O[(�/�)1/2 ln (�/�)]
,

(B1)
with the virial coefficients as given in Table II. The virial
expansion is valid for �/� � 1 and � � 1. For the plasma
parameter � we have along the escape route 1/� = �7/8. The
temperature TeV = kBT/eV in units of eV follows as

TeV = 14.7761
1

�2�
. (B2)

Altogether, the virial expansion for σ along the escape route
is given by

σ [MS/m] = 1.84059 �9/8

15
8 ρ1 ln(�) + ρ2 + O(�−15/16 ln �)

. (B3)
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