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Dispersion in porous media is of great importance in many areas of science and engineering. While dispersion
in porous media has been generally well discussed in the literature, little work has been done regarding a
generalization of Taylor dispersion in stratified media. In this work, we generalized the Taylor dispersion theory
and Stokes flow in porous media to derive a reduced-order model for tracer dispersion in stratified porous media.
Our findings revealed that for a simple case of two-layer porous media, the hydrodynamic coupling between
the two layers leads to the tensorial nature of dispersion and advection. The results showed that the obtained
dispersion tensor and advection are not symmetric unless both porous layers have similar thickness, porosity,
and molecular diffusion. We found that the main elements of the coefficient of the dispersion tensor remain
positive while the off-diagonal elements can take negative values. On the contrary, all elements of the advection
matrix may take negative values. On the basis of these observations, we report the manifestation of the dispersion
barrier, uphill dispersion and advection, and osmotic dispersion during tracer transport in stratified porous media.
In particular, the identified uphill advection reveals that the injected tracer in one layer could be transported
countercurrent to the adjacent layer. Furthermore, we have shown that in the limiting case of Darcy flow, the
Taylor dispersion is absent, and the tracer mixing between the two layers is restricted to the cross-diffusive flux
between them. The results revealed that the field scale mixing may not necessarily originate from the Taylor
dispersion and could be due to the modified advection terms and the cross-diffusive flux between the two layers.
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I. INTRODUCTION

The longitudinal dispersion coefficient of a tracer mat-
ter, or the so-called Taylor dispersion [1], in laminar flow
in various geometries is well studied. The Taylor dispersion
arises because of the combined effect of shear and transver-
sal diffusion. The transport processes of a chemical species,
where Taylor [1] dispersion plays an important role, manifest
in various pressure-driven flows, including geophysical flows
[2,3], rivers [4], microfluidic devices [5,6], and blood vessels
[7]. The tracer transport and dispersion in stratified porous
media (i.e., two or more parallel porous layers) find numerous
applications in science and engineering, such as enhanced
oil recovery [8], geothermal energy extraction [9], geological
storage of carbon dioxide [10,11] and hydrogen [12], ground-
water hydrology [13], spreading of contaminants in wetlands
[14], chemical separation of mixtures in membranes [15], and
drug delivery for medical treatments [16]. Taylor dispersion
theory has been widely used to obtain the dispersion coeffi-
cient of tracer matter for laminar flow in various geometries
in open fluids and porous media.

Using the method of moments, Aris [17] developed an
expression for dispersion during tracer transport in a gas-
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liquid flow within an annular space between two concentric
cylinders. This expression includes the effects of the diffusion
and advection in the gas, the transfer rate at the interface
between gas and liquid, and the diffusion and advection in the
liquid [17]. The problem studied by Aris [17] finds interesting
applications in transport phenomena. For example, Ng [18]
revised this problem using the averaging technique to evaluate
the tracer transport in a gas flow within a cylinder conditional
on mass transfer and reaction with an immobile liquid on the
wall of the cylinder [18].

Using an averaging technique, Wu and Chen [19] general-
ized the Taylor dispersion theory to obtain a formulation for
dispersion during tracer transport through a fully developed
flow in a long tube of two zones distinctively packed with
porous media. Later, Griffiths et al. [20] used asymptotic
analysis to derive the dispersion coefficient for solute trans-
port in a thin porous tube, where Stokes and Darcy equations
were coupled through the Beavers and Joseph condition at the
interface [21]. Thereafter, Ling et al. [22,23] focused on tracer
transport in a coupled system composed of a channel and a
permeable porous medium, where the flow in these two media
is governed by Stokes and Darcy-Brinkman equations, respec-
tively. Using the perturbation theory along with asymptotic
analysis [22] and integral transforms [23] led to an analytical
expression relating the dispersion coefficient with the poros-
ity and permeability of channel walls [22,23]. The authors
[22,23] compared their results with the proposed model by
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Dejam et al. [24] for tracer transport in a fracture surrounded
by an impermeable porous medium. Subsequently, Kou and
Dejam [25] extended the study performed by Ling et al. [22]
to address the dispersion due to combined pressure-driven and
electro-osmotic flows in a channel surrounded by a permeable
porous medium.

Recently, Dejam and Hassanzadeh [26] generalized Tay-
lor’s approach on the dispersion phenomenon to model tracer
transport in a two-phase laminar flow of immiscible fluids in a
slit using Reynolds decomposition and averaging techniques.
It is shown that the dispersion is tensorial due to the presence
of an interface between the two fluids [26]. Other efforts in
obtaining longitudinal and transverse dispersion in porous me-
dia have been reported by Emami Meybodi and Hassanzadeh
[11,27] where Taylor’s dispersion has been adopted to derive
analytical expressions for hydrodynamic dispersion in steady
and transient buoyancy-driven flows with applications for so-
lutal convection and geological storage of CO2 in deep saline
aquifers. However, the extension of this theory to stratified
porous media has remained a challenge.

In this study, we generalize the Taylor dispersion theory to
tracer transport in stratified porous media. First, we drive the
velocity distributions in a two-layer stratified porous medium
using the fully developed Stokes flow. This is achieved by
coupling the Darcy-Brinkman equations in the lower and up-
per porous media subject to the continuity of velocity and
shear stress at the interface between two porous media and
the no-slip condition at the top and bottom boundaries. Next,
we model the tracer transport in the stratified porous media by
coupling the advection-diffusion equations in the lower and
upper strata subject to the continuity of tracer concentration
and mass flux at the interface between two porous layers and
no-mass flux at the top and bottom boundaries. Then, the gen-
eralized reduced-order model of advection-dispersion tracer
transport in the stratified porous media is derived using the
Reynolds decomposition and averaging techniques, followed
by an evaluation of the resultant dispersion tensor. Finally, the
reduced-order model is solved numerically using a fully im-
plicit finite difference (FD) approach to study the dispersion
of tracer matter in stratified porous media. The analysis of the
dispersion and advection fluxes of an injected tracer along the
stratified porous media allowed us to identify unique transport
mechanisms.

The rest of this paper is organized as follows. First, the
physical model, assumptions, and mathematical formulation
are developed. The Results and Discussion are then presented,
followed by the Summary and Conclusions.

II. PHYSICAL MODEL, ASSUMPTIONS,
AND MATHEMATICAL FORMULATION

A. Physical model and assumptions

Figure 1 shows a schematic of the problem. The system
is composed of two infinitely long strata, where porous layer
1 is the lower stratum of thickness H1, and porous layer 2
is the upper stratum of thickness H2, and H1 + H2 = H . The
inlet of the porous layers and the interface between them
are the origins of the longitudinal and transversal directions
(or the x̂ and ẑ directions), respectively. Therefore, porous

FIG. 1. The physical model for tracer transport in the stratified
porous media.

medium 1 occupies the domain ẑ ∈ [−H1, 0], and porous
medium 2 occupies the domain ẑ ∈ [0, H2]. The physical
properties of both strata such as permeability and poros-
ity and the physical properties of fluid, such as density
and viscosity, remain constant. The permeability and poros-
ity of porous medium 1 are k1 and φ1, respectively, and
the permeability and porosity of porous medium 2 are k2

and φ2, respectively. We assume an incompressible single-
phase flow of a Newtonian fluid in the longitudinal direction.
The fluid flows slowly enough such that no instabilities de-
velop at the interface. The fluid flow in both layers is fully
developed laminar, and the velocity distributions are û1(z)
and û2(z), respectively. The fluid flow and tracer transport
occur in both strata, and they are affected by the momen-
tum and mass transfer across the interface between the
two strata.

B. Derivation of velocity distributions

The fully developed Stokes flow in the stratified porous
media can be described by coupling the Darcy-Brinkman
equations, which are the second-order linear ordinary differ-
ential equations, in the lower and upper strata in nondimen-
sional form as follows:

Da1
d2u1

dz2
− u1 + 1 = 0, z ∈ (−h1, 0), (1)

Da2
d2u2

dz2
− u2 + 1 = 0, z ∈ (0, h2), (2)

where u1 = û1/ − [(k1/μ)(d p̂/dx̂)], u2 = û2/ − [(k2/μ)
(d p̂/dx̂)], z = ẑ/H , Da1 = (μe1/μ)(k1/H2), Da2 =
(μe2/μ)(k2/H2), h1 = H1/H , h2 = H2/H , and h1 + h2 = 1,
in which û1 and û2 are the velocities in porous layers 1 and 2,
respectively, u1 and u2 are the nondimensional velocities in
porous layers 1 and 2, respectively, μ is the fluid viscosity, μe1

and μe2 are the effective viscosities in porous layers 1 and 2,
respectively, p̂ is the pressure, d p̂/dx̂ is the pressure gradient
(which is constant and drives the flow in the longitudinal
direction), z is the nondimensional transversal coordinate,
Da1 and Da2 are the Darcy numbers in porous layers 1
and 2, respectively, and h1 and h2 are the nondimensional
thicknesses of strata 1 and 2, respectively.

It is noted that the Darcy numbers in layers 1 and 2,
Da1 and Da2, are both defined based on the thickness
of stratified porous media, H = H1 + H2. We also define
Darcy numbers in strata 1 and 2 based on the thickness
of individual porous layers, H1 and H2. The relationships
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between the defined Darcy numbers in porous layers 1
and 2 based on H (Da1 and Da2) and those defined
based on the thickness of individual porous layers (Da∗

1
and Da∗

2) can be derived as Da1 = Da∗
1/[1 + (h2/h1)]2 and

Da2 = Da∗
2/[1 + (h1/h2)]2, where Da∗

1 = (μe1/μ)/(k1/H2
1 )

and Da∗
2 = (μe2/μ)/(k2/H2

2 ). Da∗
1/2 = Da∗

1/Da∗
2 is the ratio

of the Darcy number in porous layer 1 to porous layer 2 (or
simply the Darcy number ratio).

Equations (1) and (2) are subjected to the no-slip condition
at the bottom of the porous medium 1(z = –h1), the continu-
ity of velocity and shear stress at the interface between two
porous media (z = 0), and the no-slip condition at the top of
porous medium 1 (z = h2), as described by

u1|z=−h1 = 0, (3)

Da1/2u1|z=0 = u2|z=0 , (4)

Da1/2
du1

dz

∣∣∣∣z=0 = du2

dz

∣∣∣∣z=0, (5)

u2|z=h2 = 0. (6)

where Da1/2 = Da1/Da2 is the ratio of the Darcy number in
layer 1 based on H to the Darcy number in layer 2 based on H .
It is worth noting that Da1/2 = (k1/k2)(μe1/μe2) = k1/2μe1/2

where k1/2 is the ratio of the permeability in porous medium 1
to the permeability in porous medium 2 (or simply the perme-
ability ratio) and μe1/2 is the ratio of the effective viscosity in
porous medium 1 to the effective viscosity in porous medium
2 (or simply the viscosity ratio).

The following analytical solutions for the nondimensional
velocity distributions in the stratified porous media can be
derived by solving Eqs. (1) and (2) subject to Eqs. (3)–(6):

u1(z) = A1 cosh(η1z) + B1 sinh(η1z) + 1, z ∈ [−h1, 0], (7)

u2(z) = A2 cosh(η2z) + B2 sinh(η2z) + 1, z ∈ [0, h2], (8)

where η1 = √
1/Da1, η2 = √

1/Da2, and the constants A1, A2,
B1, and B2 are defined, respectively, as follows:

A1 = B1 tanh λ1 − sechλ1, (9)

A2 = −B2 tanh λ2 − sechλ2, (10)

B1 = Da1/2[sechλ1 − 1] + 1 − sechλ2

Da1/2 tanh λ1 + √
Da1/2 tanh λ2

, (11)

B2 = √
Da1/2B1, (12)

where λ1 = η1h1 = H1/
√

k1 and λ2 = η2h2 = H2/
√

k2.

C. Governing equations for advection-diffusion tracer transport

The tracer transport in the stratified porous media can
be described by coupling the advection-diffusion equations,
which are the second-order linear partial differential equa-

tions, in the lower and upper strata in nondimensional form
as follows:

∂c1

∂t
+ Pe1u1

∂c1

∂x
= ∂2c1

∂x2
+ ∂2c1

∂z2
,

x ∈ (0,∞), z ∈ (−h1, 0), t > 0, (13)

D1/2
∂c2

∂t
+ Pe2u2

∂c2

∂x
= ∂2c2

∂x2
+ ∂2c2

∂z2
,

x ∈ (0,∞), z ∈ (0, h2), t > 0, (14)

where c1 = ĉ1/c∗, c2 = ĉ2/c∗, x = x̂/H , t = D1t̂/H2,
D1/2 = D1/D2, Pe1 = −[(k1/μ)(d p̂/dx̂)]H/D1φ1, and
Pe2 = −[(k2/μ)(d p̂/dx̂)]H/D2φ2, in which ĉ1 and ĉ2 are the
tracer concentrations in layers 1 and 2, respectively, c1 and
c2 are the nondimensional tracer concentrations in strata 1
and 2, respectively, c∗ is the reference tracer concentration, x
is the nondimensional longitudinal coordinate, t̂ is the time,
t is the nondimensional time, D1 and D2 are the effective
molecular diffusion coefficients in porous media 1 and 2,
respectively, D1/2 is the ratio of the effective molecular
diffusion coefficient in porous medium 1 to the effective
molecular diffusion coefficient in porous medium 2 (or
simply the diffusion coefficient ratio or the diffusivity ratio),
and Pe1 and Pe2 are the Péclet numbers for fluid flows in
layers 1 and 2, respectively.

Equations (13) and (14) are subjected to the instantaneous
injection of tracer at t = 0 (as a pulse) at the inlet of stratified
porous media (x = 0), zero tracer concentration at an infinite
distance from the inlet (x → ∞), no-mass flux at the bottom
of porous medium 1 (z = –h1), the continuity of tracer con-
centration and mass flux at the interface between two porous
media (z = 0), and no-mass flux at the top of porous medium
2 (z = h2), as described by

c1[x ∈ (0,∞), z ∈ (−h1, 0), t = 0]

= c2[x ∈ (0,∞), z ∈ (0, h2), t = 0] = δ(x), (15)

c1[x → ∞, z ∈ (−h1, 0), t > 0]

= c2[x → ∞, z ∈ (0, h2), t > 0] = 0, (16)

∂c1[x ∈ (0,∞), z = −h1, t > 0]

∂z
= 0, (17)

c1[x ∈ (0,∞), z = 0, t > 0] = c2[x ∈ (0,∞), z = 0, t > 0],
(18)

D1/2φ1/2
∂c1[x ∈ (0,∞), z = 0, t > 0]

∂z

= ∂c2[x ∈ (0,∞), z = 0, t > 0]

∂z
, (19)

∂c2[x ∈ (0,∞), z = h2, t > 0]

∂z
= 0, (20)

where δ(x) = 0 when x �= 0, and φ1/2 = φ1/φ2 is the ratio of
the porosity in porous medium 1 to the porosity in porous
medium 2 (or simply the porosity ratio).

Using the Reynolds decomposition and averaging meth-
ods, the reduced-order models for advection-dispersion tracer
transport in stratified porous media are derived. The detailed
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derivation of model reduction is presented in Appendix A for
the sake of brevity.

D. Dispersion tensor

The advection-dispersion tracer transport in stratified
porous media [Eqs. (A42) and (A43)] can be described in
matrix form as follows:[

1
D1/2

]
∂[c̄]

∂t
+ [v]

∂[c̄]

∂x
= [K]

∂2[c̄]

∂x2
+ (c̄2 − c̄1)[J], (21)

where [c̄]T = [c̄1, c̄2], [v] is the matrix of coefficients of
the advection term, [K] is the dispersion tensor, and [J]T =
[ 1

h1
J1,− 1

h2
J2]. The elements of [v] and [K] are listed, respec-

tively, as follows:

v11 =
(

ū1 − J1F1 + 1

h1
J1G1

)
Pe1, (22)

v12 = J1F1Pe1 − 1

h1
J1G2Pe2, (23)

v21 = − 1

h2
J2G1Pe1 − J2F2Pe2, (24)

v22 =
(

ū2 + J2F2 + 1

h2
J2G2

)
Pe2, (25)

K11 = 1 + (−E1 + J1F1G1)Pe2
1 = 1 + κ11Pe2

1, (26)

K12 = (−J1F1G2)Pe1Pe2 = κ12Pe1Pe2, (27)

K21 = (J2F2G1)Pe1Pe2 = κ21Pe1Pe2, (28)

K22 = 1 + (−E2 − J2F2G2)Pe2
2 = 1 + κ22Pe2

2, (29)

where v11 and v22 (which can take positive and negative
values) are the two main or principal diagonal elements of
[v] while v12 and v21 (which can take positive and negative
values) are the two off-diagonal elements of [v], and K11 and
K22 are the two main or principal diagonal elements of [K]
while K12 and K21 are the two off-diagonal elements of [K].

It is noted that κ11 and κ22 in Eqs. (26) and (29) are the
coefficients of the first and second main (or principal) diago-
nal elements of the dispersion tensor, and they always remain
positive. In addition, κ12 and κ21 in Eqs. (27) and (28) are the
coefficients of the first and second off-diagonal elements of
the dispersion tensor, and they can take positive and negative
values.

The developed mathematical model in this study can be
reduced to four special cases considering the magnitude of
the Darcy numbers in strata 1 and 2 based on the thickness
of individual porous layers, as shown in Fig. 2. These special
cases are listed and described in Appendix A.

III. RESULTS

A. Description of dispersion tensor

Equations (26)–(29) reveal that the elements of the dis-
persion tensor (K11, K12, K21, and K22) are functions of
Da∗

1, Da∗
1/2, the nondimensional thickness (h1 = 1 − h2), and

D1/2φ1/2, through the values of κ11, κ12, κ21, and κ22, re-
spectively. Hence, the elements of the dispersion tensor are

FIG. 2. Special cases I–IV for the developed mathematical
model based on the magnitude of Da∗

1 and Da∗
2.

evaluated through the values of κ11, κ12, κ21, and κ22. It is
noted that the effects of the D1/2 and φ1/2 on κi j values are
the same since they appear together in the dispersion tensor
equations. Therefore, only the role of the D1/2 is discussed.

Figure 3 shows the values of κ11, κ12, κ21, and κ22 versus
Da∗

1 for several h1 (including 0.1, 0.3, 0.5, 0.7, and 0.9) and
Da∗

1/2 (including 0.01, 0.1, 1, 10, and 100) at D1/2 = φ1/2 = 1.
As it is observed, the value of κ11 as a function of Da∗

1
demonstrates a monotonic behavior with respect to h1 for
Da∗

1/2 � 1. In other words, the value of κ11 against Da∗
1 will

decrease if the nondimensional thickness of layer 1 increases
for Da∗

1/2 � 1. However, the value of κ11 versus Da∗
1 behaves

nonmonotonically with respect to h1 for Da∗
1/2 > 1.

The results show that the values of κ12 and κ21 against Da∗
1

show a nonmonotonic behavior with respect to h1 for all Darcy
number ratios. The results revealed that only for the case of
h1 = h2 = 0.5 and D1/2 = φ1/2 = 1 are the values of κ12 and
κ21 versus Da∗

1 for all Darcy number ratios symmetric (where
κ12 = κ21). Otherwise, the κi j matrix is not symmetric (κ12 �=
κ21). At low Darcy number ratios, the off-diagonal elements,
κ12 and κ21, against Da∗

1 are negative for small values of h1

while they are negative for large values of h1. As shown in
Fig. 3, the value of κ22 as a function of Da∗

1 exhibits monotonic
behavior with respect to h1 for all Darcy number ratios.

To further demonstrate the behavior of the κi j matrix, Fig. 4
depicts the contour plots for the values of κi j versus Da∗

1 and
Da∗

1/2 for several h1 (including 0.1, 0.3, 0.5, 0.7, and 0.9) at
D1/2 = φ1/2 = 1, which confirms the results observed from
Fig. 3. The results reveal nonmonotonicity of κi j and the
fact that the off-diagonal elements of κi j could take negative
values. These observations are important as they may lead to
the manifestation of osmotic dispersion, uphill dispersion, and
dispersion barrier, which will be discussed in the next section.

Figure 5 depicts the plots of κ11, κ12, κ21, and κ22 versus
Da∗

1 for several D1/2 (including 0.01, 0.1, 1, 10, and 100) and
h1 (including 0.1, 0.3, 0.5, 0.7, and 0.9) at Da∗

1/2 = 0.01 and
φ1/2 = 1. It is generally observed that κ11 as a function of Da∗

1
becomes larger when the diffusion coefficient ratio increases.
This implies a monotonic behavior of κ11 against Da∗

1 with
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FIG. 3. The values of κ11, κ12, κ21, and κ22 versus Da∗
1 for several h1 (including 0.1, 0.3, 0.5, 0.7, and 0.9) and Da∗

1/2 (including 0.01, 0.1,
1, 10, and 100) at D1/2 = φ1/2 = 1. The light green shaded area shows the Da∗

1 in which κ12 and κ21 are negative.

respect to D1/2. It is worth noting that κ11 against Da∗
1 remains

almost constant by changing the diffusivity ratio.
It is demonstrated in Fig. 5 that κ12 and κ21 versus Da∗

1
behave nonmonotonically with respect to the diffusion coeffi-
cient ratio for h1 = 0.1, where they can take negative values.
However, κ12 and κ21 against Da∗

1 exhibit monotonic behavior
with respect to D1/2 for h1 > 0.1. The results show that κ12

and κ21 versus Da∗
1 behave differently for h1 > 0.1 such that

κ12 decreases by increasing D1/2 while κ21 increases. Again,
only for the case of h1 = h2 = 0.5 and D1/2 = φ1/2 = 1, the
values of κ12 and κ21 versus Da∗

1 are symmetric (where κ12 =
κ21). Otherwise, the coefficients of the first and second off-
diagonal elements of the dispersion tensor with respect to Da∗

1
are not symmetric (where κ12 �= κ21).

The dispersive fluxes of the injected tracer in layers 1 and 2
can be written as �dis

1 = −κ11Pe2
1∂ c̄1/∂x − κ12Pe1Pe2∂ c̄2/∂x

and �dis
2 = −κ21Pe1Pe2∂ c̄1/∂x − κ22Pe2

2∂ c̄2/∂x, respectively.
Based on Fick’s first law, the diffusional mass transfer is nor-
mal when the flux of a chemical species and its concentration
gradient have opposite signs. However, when the dispersion
tensor has a tensorial form, concentration gradient and flux
may have similar signs leading to non-normal dispersion. Fur-
thermore, advective fluxes in the first and second layers can be
expressed by �adv

1 = v11c̄1 + v12c̄2 and �adv
2 = v21c̄1 + v22c̄2,

respectively. Normally, the advection flux is positive. How-
ever, v11, v12, v21, and v22 may take negative values resulting
in countercurrent advective flux of a chemical species in one
of the layers.

The results in Figs. 3–5 revealed that the value of κ12 can be
nonzero (κ12 �= 0).This observation indicates when the tracer
concentration gradient in layer 1 is absent (∂ c̄1/∂x = 0), the
tracer concentration gradient in layer 2 may lead to a disper-
sive flux of a tracer in layer 1 (�dis

1 = −κ12Pe1Pe2∂ c̄2/∂x �=
0 when ∂ c̄1/∂x = 0). This implies the appearance of trans-
port phenomenon called the osmotic dispersion, which is
analogous to the osmotic diffusion encountered in the mul-
ticomponent molecular diffusion [28–30] and in the binary
mixture adsorption in nanoporous media [31]. It will be shown
that the osmotic dispersion flux can be positive (�dis

1 > 0 for
positive osmotic dispersion) or negative (�dis

1 < 0 for negative
osmotic dispersion). Similar to κ12, the results in Figs. 3–5
revealed that the value of κ21 can be nonzero (κ21 �= 0), sug-
gesting that if the tracer concentration gradient in the upper
layer is absent (∂ c̄2/∂x = 0), the tracer concentration gradient
in the lower layer will cause a dispersive flux of a tracer
in the upper layer (�dis

2 = −κ21Pe1Pe2∂ c̄1/∂x �= 0 when
∂ c̄2/∂x = 0).

As mentioned above and evident from Figs. 3–5, κ12 ver-
sus Da∗

1 can take negative values, which is more obvious at
small values of D1/2. This may result in a dispersive flux
of a tracer in a direction opposite to that which is governed
by its own concentration gradient in the lower stratum such
that �dis

1 = −κ11Pe2
1∂ c̄1/∂x − κ12Pe1Pe2∂ c̄2/∂x > 0 while

∂ c̄1/∂x > 0 or �dis
1 = −κ11Pe2

1∂ c̄1/∂x − κ12Pe1Pe2∂ c̄2/∂x <

0 while ∂ c̄1/∂x < 0. This suggests a transport phenomenon
called the uphill dispersion, analogous to the uphill

065115-5



MORTEZA DEJAM AND HASSAN HASSANZADEH PHYSICAL REVIEW E 105, 065115 (2022)

5 × 10-3

1 × 10-2

2 × 10-2

3 × 10-2

-1 × 10-3

-8 × 10-4

-4 × 10-4

-1.2 × 10-4

-2 × 10-4

-8.0 × 10-5

-6.0 × 10-5

1.5 × 10-3

2 × 10-3

0.0001

1 × 10-3
0.0

4 × 10-3

5 × 10-3

0.00020

2 × 10-3
0.0

2 × 10-2

2.5 × 10-2

3 × 10-2

1 × 10-2
0.0

-4 × 10-4

-4 × 10-5

-2 × 10-5

-8 × 10-4
-1 × 10-3

-8.0 × 10-5

-6.0 × 10-5

-4.0 × 10-5

0.0

-1.2 × 10-4

4.0 × 10-4

8.0 × 10-4

1.2 × 10-3

2.0 × 10-4

1.0 × 10-3

1.5 × 10-3

2.5 × 10-3

5.0 × 10-4

8 × 10-3

1.2 × 10-2

1.6 × 10-2

6 × 10-3
0.00.0

1 × 10-3

1.2 × 10-3

4 × 10-4

6 × 10-4

2.0 × 10-3

6.0 × 10-3

1.0 × 10-2

1.6 × 10-2

1 × 10-3

2 × 10-3

4 × 10-3

6 × 10-3

FIG. 4. The contour plots for the values of κ11, κ12, κ21, and κ22 versus Da∗
1 and Da∗

1/2 for several h1 (including 0.1, 0.3, 0.5, 0.7, and 0.9)
at D1/2 = φ1/2 = 1.

diffusion encountered in the multicomponent molecular dif-
fusion [28–30] and in the binary mixture adsorption in
nanoporous media [31]. It will be shown that the uphill
dispersion flux can be positive (�dis

1 > 0 for positive up-
hill dispersion) or negative (�dis

1 < 0 for negative uphill
dispersion).

Similar to κ12, the results in Figs. 3–5 revealed that
κ21 as a function of Da∗

1 may take a negative value,
which is more noticeable at large values of D1/2. This
may cause a dispersive flux of a tracer in a direction
opposite to its concentration gradient in layer 2 such
that �dis

2 = −κ21Pe1Pe2∂ c̄1/∂x − κ22Pe2
2∂ c̄2/∂x > 0 while

∂ c̄2/∂x > 0 or �dis
2 = −κ21Pe1Pe2∂ c̄1/∂x − κ22Pe2

2∂ c̄2/∂x <

0 while ∂ c̄2/∂x < 0, leading to uphill dispersion.
The results shown in Figs. 3–5 also suggest the pos-

sibility of a zero flux of tracer in both layers. A zero
dispersion flux of a tracer in layer 1 implies κ11Pe2

1∂ c̄1/∂x =
−κ12Pe1Pe2∂ c̄2/∂x (�dis

1 = 0). Similarly, the results suggest
the likelihood of zero dispersion flux of the tracer in the

second layer, or κ22Pe2
2∂ c̄2/∂x = −κ21Pe1Pe2∂ c̄1/∂x (�dis

2 =
0). The possibility of zero dispersion flux suggests a dis-
persion barrier, which is equivalent to a diffusion barrier in
multicomponent molecular diffusion [28–30] and in the bi-
nary mixture adsorption in nanoporous media [31].

B. Numerical simulation of tracer transport in stratified
porous media

The results discussed in the previous section indicated
the possibility of dispersion barrier, uphill dispersion, and
osmotic dispersion. To examine the manifestation of these
unique transport processes, we conducted numerical simu-
lations of an instantaneous tracer injection into a stratified
porous medium based on the developed reduced-order model.
A fully implicit finite difference (FD) method is implemented
to numerically solve Eqs. (A42) and (A43) subject to the
initial and boundary conditions in Eqs. (A44) and (A45). The
FD discretization gives a heptadiagonal sparse matrix, and
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FIG. 5. The plots of κ11, κ12, κ21, and κ22 versus Da∗
1 for several D1/2 (including 0.01, 0.1, 1, 10, and 100) and h1 (including 0.1, 0.3, 0.5,

0.7, and 0.9) at Da∗
1/2 = 0.01 and φ1/2 = 1. The light green shaded area shows the Da∗

1 in which κ12 and κ21 are negative.

the GBAND solver is utilized to solve the resultant system of
equations [32].

Figures 6(a) and 6(d) show the nondimensional average
tracer concentrations in layers 1 and 2 versus the distance
from the inlet of stratified porous media at t = 12 for scenario
1, where the coefficients of the two off-diagonal elements of
the dispersion tensor are negative while all elements of the
matrix of coefficients of the advection term are positive. The
dimensionless time necessary for the transverse variation of
the tracer concentration to die down to 1/e of its initial value
is t ≈ 1/π2 [1]. Therefore, a dimensionless time of t = 12
is used to ensure the validity of the major assumption of
Taylor dispersion theory for Péclet numbers of Pe1 = 100
and Pe2 = 1000 [33,34]. It is noted that the yellow circle
denotes the inlet of stratified porous media and the black
circle indicates the downstream region of stratified porous
media, where the tracer concentration gradient vanishes. In
the absence of the interface between the two layers, the tracer
concentrations in both layers follow a well-known Gaussian
profile. However, the strong coupling between the two layers
through the interface and their property contrast leads to in-
teresting transport processes, which are analogous to the ones
during the multicomponent molecular diffusion [28–30] and
the binary mixture adsorption in nanoporous media [31].

As noted earlier, according to the first Fick’s law, the
diffusion or dispersion flux of a chemical species is called
normal when ∂ c̄/∂x and flux are opposite in sign. Figure 6(b)
shows the trajectory for the dispersive flux, �dis

1 , versus

−∂ c̄1/∂x in layer 1, where several dispersion regimes are
recognized. It is noted that the colored circles in Fig. 6(b)
refer to those demonstrated in Fig. 6(a). As the tracer moves
along porous medium 1, the dispersive flux trajectory first re-
veals the normal dispersion, where �dis

1 < 0 and −∂ c̄1/∂x < 0
(blue curve). This continues until the dispersive flux becomes
zero, which identifies the dispersion barrier, κ11Pe2

1∂ c̄1/∂x =
−κ12Pe1Pe2∂ c̄2/∂x (�dis

1 = 0) while −∂ c̄1/∂x < 0, as shown
by the red circle in Fig. 6(b). Thereafter, the dispersive flux
trajectory for the tracer in layer 1 is positive, �dis

1 > 0, while
−∂ c̄1/∂x < 0, suggesting that the dispersive flux and the con-
centration gradient of the tracer in layer 1 are against each
other. This regime is called the positive uphill dispersion
since �dis

1 > 0, as illustrated by the pink curve in Fig. 6(b),
and continues until the dispersive flux of the tracer reaches
∂ c̄1/∂x = 0. This gives a nonzero positive dispersive flux
(�dis

1 = −κ12Pe1Pe2∂ c̄2/∂x �= 0) when the concentration gra-
dient of the tracer in layer 1 is absent (∂ c̄1/∂x = 0). This
regime is called the positive osmotic dispersion since �dis

1 >

0, as shown by the green circle in Fig. 6(b). Subsequently, the
dispersive flux trajectory reveals the normal dispersion, where
�dis

1 > 0 and −∂ c̄1/∂x > 0 (blue curve). This continues until
the dispersive flux becomes zero, which identifies the disper-
sion barrier, κ11Pe2

1∂ c̄1/∂x = −κ12Pe1Pe2∂ c̄2/∂x (�dis
1 = 0)

while −∂ c̄1/∂x > 0, as shown by the red circle in Fig. 6(b).
Finally, the dispersive flux trajectory for the tracer in layer
1 is negative, �dis

1 < 0, while −∂ c̄1/∂x < 0, suggesting that
the dispersive flux and the concentration gradient of the tracer
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FIG. 6. Results for scenario 1 with Pe1 = 100, Pe2 = 1000, h1 = 0.75, Da∗
1 = 0.1, Da∗

12 = 10, D1/2 = 0.1, φ1/2 = 50, vi j = [ 45.33 25.30
380.12 909.27],

and κi j = [ 3.92 × 10−4 −3.89 × 10−5

−5.83 × 10−4 4.33 × 10−3 ] (where i, j = 1, 2). (a), (d) The nondimensional average tracer concentrations in layers 1 and 2, c̄1 and

c̄2, versus the distance from the inlet of stratified porous media, x, at t = 12. (b), (e) The dispersive fluxes, �dis
1 and �dis

2 , versus −∂ c̄1/∂x and
−∂ c̄2/∂x in layers 1 and 2, respectively. (c), (f) The advective fluxes, �adv

1 and �adv
2 , versus the nondimensional average tracer concentrations,

c̄1 and c̄2, in layers 1 and 2, respectively. Colored circles in (b), (c) refer to those in (a) and colored circles in (e), (f) refer to those in (d). The
blue and pink curves in (b), (e) denote the normal dispersion and the uphill dispersion, respectively, and the arrows show the direction of tracer
transport.

in layer 1 are against each other. This regime is called the
negative uphill dispersion since �dis

1 < 0, as illustrated by the
pink curve in Fig. 6(b). The dispersive flux for the tracer in
layer 2, which is shown in Fig. 6(e), remains normal (�dis

2 > 0
when −∂ c̄2/∂x > 0 or �dis

2 < 0 when −∂ c̄2/∂x < 0).
Figures 6(c) and 6(f) illustrate the trajectories for the

advective fluxes, �adv
1 and �adv

2 , versus the nondimensional
average tracer concentrations, c̄1 and c̄2, in layers 1 and
2, respectively. The results reveal that the advective fluxes
in both strata remain normal (�adv

1 = v11c̄1 + v12c̄2 > 0 and
�adv

2 = v21c̄1 + v22c̄2 > 0), but the advective flux in layer 2 is
larger than the advective flux in stratum 1 (�adv

2 > �adv
1 ).

Figure 7 presents the results of scenario 2, where the
coefficients of the two off-diagonal elements of the disper-
sion tensor are negative while all elements of the matrix
of coefficients of the advection term are positive. Similar
to the former scenario, the tracer concentrations in both
layers follow a well-known Gaussian profile, as shown by
c̄1 and c̄2 profiles in Figs. 7(a) and 7(d). For this sce-
nario, as depicted in Fig. 7(b), the dispersion regimes in
layer 1 evolve in the order of the positive uphill disper-
sion (�dis

1 > 0 when −∂ c̄1/∂x < 0), the positive osmotic
dispersion (�dis

1 �= 0 when ∂ c̄1/∂x = 0), the normal dispersion
(�dis

1 > 0 when −∂ c̄1/∂x > 0), the dispersion barrier (�dis
1 =

0 when −∂ c̄1/∂x > 0), and the negative uphill dispersion
(�dis

1 < 0 when −∂ c̄1/∂x > 0). The sequence of the disper-
sion regimes along layer 1 in the former scenario, Fig. 6(b),

was the normal dispersion (�dis
1 < 0 when −∂ c̄1/∂x < 0), the

dispersion barrier (�dis
1 = 0 when −∂ c̄1/∂x < 0), the positive

uphill dispersion (�dis
1 > 0 when −∂ c̄1/∂x < 0), the positive

osmotic dispersion (�dis
1 �= 0 when ∂ c̄1/∂x = 0), the normal

dispersion (�dis
1 > 0 when −∂ c̄1/∂x > 0), the dispersion bar-

rier (�dis
1 = 0 when −∂ c̄1/∂x > 0), and the negative uphill

dispersion (�dis
1 < 0 when −∂ c̄1/∂x > 0). The dispersive flux

for the tracer in layer 2, which is shown in Fig. 7(e), re-
mains normal (�dis

2 > 0 when −∂ c̄2/∂x > 0 or �dis
2 < 0 when

−∂ c̄2/∂x < 0). It is revealed from Figs. 7(c) and 7(f) that the
advective fluxes in both layers remain normal (�adv

1 > 0 and
�adv

2 > 0), but the advective flux in layer 2 is larger than the
advective flux in layer 1 (�adv

2 > �adv
1 ).

In the last simulated scenario (scenario 3), the coeffi-
cients of the two off-diagonal elements of the dispersion
tensor and the two off-diagonal elements of the matrix of
coefficients of the advection term are negative. Similar to
scenarios 1 and 2, the tracer concentrations in both lay-
ers follow a well-known Gaussian profile, as shown by
the c̄1 and c̄2 profiles in Figs. 8(a) and 8(d). The results
presented in Fig. 8(b) demonstrate that the dispersive flux
for the tracer in layer 1 remains normal (�dis

1 > 0 when
−∂ c̄1/∂x > 0 or �dis

1 < 0 when −∂ c̄1/∂x < 0). It is observed
from Fig. 8(e) that the dispersive flux for the tracer in
layer 2 indicates the negative (�dis

2 < 0 when −∂ c̄2/∂x >

0) and positive (�dis
2 > 0 when −∂ c̄2/∂x < 0) uphill disper-

sions for the whole trajectory. Figure 8(c) illustrates that the
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FIG. 7. Results for scenario 2 with Pe1 = 100, Pe2 = 1000, h1 = 0.85, Da∗
1 = 0.1, Da∗

12 = 10, D1/2 = 0.1, φ1/2 = 50, vi j = [ 44.82 18.80
533.40 1346.15],

and κi j = [ 4.79 × 10−4 −6.37 × 10−5

−1.80 × 10−3 7.21 × 10−3 ] (where i, j = 1, 2). (a), (d) The nondimensional average tracer concentrations in layers 1 and 2, c̄1 and

c̄2, versus the distance from the inlet of stratified porous media, x, at t = 12. (b), (e) The dispersive fluxes, �dis
1 and �dis

2 , versus −∂ c̄1/∂x and
−∂ c̄2/∂x in layers 1 and 2, respectively. (c), (f) The advective fluxes, �adv

1 and �adv
2 , versus the nondimensional average tracer concentrations,

c̄1 and c̄2, in layers 1 and 2, respectively. Colored circles in (b), (c) refer to those in (a) and colored circles in (e), (f) refer to those in (d). The
blue and pink curves in (b), (e) denote the normal dispersion and the uphill dispersion, respectively, and the arrows show the direction of tracer
transport.

advective flux in layer 1 remains normal (�adv
1 > 0). In con-

trast, the advective flux in layer 2, as shown in Fig. 8(f),
exhibits the uphill advection (�adv

2 = v21c̄1 + v22c̄2 < 0), in-
dicating that the tracer is advecting upstream of the flow or
countercurrent.

IV. DISCUSSION

The cross-advective and cross-dispersive terms [see
Eq. (21)] originate from the continuity of velocity and the
corresponding advective flux and the interface. The continuity
of velocity and advective flux at the interface, in turn, results
in a macroscale velocity profile in the composite two-layer
system, where the velocities in layer 1 and layer 2 are not
equal at a particular x. In other words, the macroscale velocity
profile becomes a function of longitudinal (x) and transverse
(z) directions. The nonsymmetrical macroscale velocity com-
bined with the nonzero diffusion flux at the interface between
the two porous layers leads to cross-advective and cross-
dispersion transport in both layers.

The cross-diffusion terms, J1 and J2, [see Eq. (21)] orig-
inate from the concentration and diffusion flux continuity at
the interface between the two layers. For instance, for the
special case I, where individual layer velocity profiles are
independent of the transverse direction (u1 = 1 and u2 = 1),
the macroscale velocity profile is only a function of the

longitudinal (x) direction. Hence, the cross-advective and
cross-dispersion terms are absent, and only the cross-diffusion
terms J1 and J2 are present.

From a physical point of view, porous media hetero-
geneities in the form of layering lead to fully developed
macroscale velocity profiles that are, in fact, nonsymmetrical.
Consequently, tracer transport coupled with a macroscale ve-
locity field can manifest dispersion barrier, uphill dispersion
and advection, and osmotic dispersion during tracer transport
in stratified porous media, as demonstrated in this work.

For normal dispersion, flux and concentration gradient are
opposite in sign implying that if �dis

1 > 0 then ∂ c̄1/∂x < 0.
However, for instance, when �dis

1 > 0 while ∂ c̄1/∂x > 0 the
dispersive transport is not normal. This work shows that a
nonsymmetrical macroscale velocity distribution leads to a
tensorial dispersion resulting in uphill dispersion.

A concentration gradient is normally required for disper-
sive transport to occur. Dispersive transport of a chemical
species in the absence of concentration or the so-called os-
motic dispersion is observed when transport takes place in a
fully developed nonsymmetrical macroscale velocity field due
to heterogeneities in the form of layering a porous medium.
Also, it is shown that a zero-dispersion flux of a tracer (dis-
persion barrier) may be expected, which again has roots in
the coupling of nonsymmetrical macroscale velocity field and
tracer transport.
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FIG. 8. Results for scenario 3 with Pe1 = 1000, Pe2 = 100, h1 = 0.85, Da∗
1 = 0.045, Da∗

12 = 10, D1/2 = 0.1, φ1/2 = 50, vi j = [ 615.49 −8.84
−250.39 116.82],

and κi j = [ 7.67 × 10−4 −7.31 × 10−5

−2.07 × 10−3 4.22 × 10−3 ] (where i, j = 1, 2). (a), (d) The nondimensional average tracer concentrations in layers 1 and 2, c̄1 and

c̄2, versus the distance from the inlet of stratified porous media, x, at t = 12. (b), (e) The dispersive fluxes, �dis
1 and �dis

2 , versus −∂ c̄1/∂x and
−∂ c̄2/∂x in layers 1 and 2, respectively. (c), (f) The advective fluxes, �adv

1 and �adv
2 , versus the nondimensional average tracer concentrations,

c̄1 and c̄2, in layers 1 and 2, respectively. Colored circles in (b), (c) refer to those in (a) and colored circles in (e), (f) refer to those in (d). The
blue and pink curves in (b), (e) denote the normal dispersion and the uphill dispersion, respectively, and the arrows show the direction of tracer
transport.

The dispersion discussed in our work originates from the
velocity gradient (shear dispersion) as is in the Taylor dis-
persion theory [1]. It is well established that the dispersion
originated from shear scales is proportional to Pe2 [1]. How-
ever, the hydrodynamic dispersion in porous media discussed
by Gelhar and Axness [35] is the macroscopic consequence
of several physical and chemical processes [36], including
motion of a chemical species in tortuous flow paths in pore
space, velocity gradient in the pore level, porous media het-
erogeneity, molecular diffusion, variation in thermophysical
properties of the fluid, and solid-fluid interaction such as ad-
sorption and desorption [36].

V. SUMMARY AND CONCLUSIONS

We studied dispersion in stratified porous media using the
generalization of the Taylor dispersion theory. First, the fully
developed Stokes flow of a Newtonian and incompressible
fluid is described by coupling the Darcy-Brinkman equations
in the lower and upper porous media subject to the conti-
nuity of velocity and shear stress at the interface between
two porous layers to obtain the velocity distributions. Next,
the advection-diffusion equations in the lower and upper
strata are coupled using the continuity of tracer concentra-
tion and mass flux at the interface between two strata to
address the tracer transport. Then, the reduced-order models

for advection-dispersion tracer transport are derived using
the Reynolds decomposition and averaging techniques, which
give the matrix of coefficients of the advection term and the
dispersion tensor. The evaluation of the resultant dispersion
tensor, tracer concentrations, and dispersive and advective
fluxes reveal that several transport phenomena of uphill advec-
tion and dispersion, dispersion barrier, and osmotic dispersion
may be developed due to the presence of an interface between
the two porous media with different physical properties. We
found that the dispersion has a tensorial characteristic even
for a simple two-layer homogenous porous medium. The ten-
sorial nature of dispersion in a stratified porous medium was
found to originate from the coupling through the interface and
the Stokes flow in the two porous layers. Application of the
Taylor dispersion theory to a limiting case of Darcy flow in a
stratified porous medium suggests that only a cross-diffusive
flux between the two layers leads to mixing and proves the
absence of Taylor dispersion. The results suggest that the
mixing observed in field scale may not necessarily originate
from Taylor dispersion and could be due to the modified ad-
vection terms and cross-diffusive flux between the two layers.
It was demonstrated that the Taylor dispersion theory can be
generalized to obtain dispersion in stratified porous media.
The proposed model along with the findings of this study can
pave the way for the development of the dispersion tensor in
multilayered porous media.
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APPENDIX A: MODEL REDUCTION AND SPECIAL CASES

1. Reynolds decomposition and averaging methods

The Reynolds decomposition, which is a technique to split
the average and fluctuation components of a variable [33], can
be used to write the nondimensional velocities and tracer con-
centrations in porous layers 1 and 2, respectively, as follows:

u1(z) = ū1 + u′
1(z) = 1

h1

∫ 0

−h1

u1dz + u′
1(z), (A1)

u2(z) = ū2 + u′
2(z) = 1

h2

∫ h2

0
u2dz + u′

2(z), (A2)

c1(x, z, t ) = c̄1(x, t ) + c′
1(x, z, t )

= 1

h1

∫ 0

−h1

c1dz + c′
1(x, z, t ), (A3)

c2(x, z, t ) = c̄2(x, t ) + c′
2(x, z, t )

= 1

h2

∫ h2

0
c2dz + c′

2(x, z, t ), (A4)

where ū1, ū2, c̄1, and c̄2 are the nondimensional average ve-
locities and tracer concentrations in porous media 1 and 2,
respectively, and u′

1, u′
2, c′

1, and c′
2 are the fluctuation compo-

nents. The averages of the fluctuation components are zero,
based on the Reynolds decomposition [33]:

1

h1

∫ 0

−h1

u′
1dz = 1

h2

∫ h2

0
u′

2dz = 1

h1

∫ 0

−h1

c′
1dz

= 1

h2

∫ h2

0
c′

2dz = 0. (A5)

The following expressions can be derived for the nondi-
mensional average velocities in strata 1 and 2 using Eqs. (7),
(8), (A1), and (A2):

ū1 = A1

η1h1
sinh(η1h1) + B1

η1h1
[1 − cosh(η1h1)] + 1, (A6)

ū2 = A2

η2h2
sinh(η2h2) + B2

η2h2
[cosh(η2h2) − 1] + 1. (A7)

2. Derivation of reduced-order models for advection-dispersion
tracer transport

If c1 and c2 from Eqs. (A3) and (A4) are substituted into
Eqs. (13)–(20), the following equations can be derived:

∂ c̄1

∂t
+ ∂c′

1

∂t
+ Pe1u1

∂ c̄1

∂x
+ Pe1u1

∂c′
1

∂x

= ∂2c̄1

∂x2
+ ∂2c′

1

∂x2
+ ∂2c′

1

∂z2
, (A8)

D1/2
∂ c̄2

∂t
+ D1/2

∂c′
2

∂t
+ Pe2u2

∂ c̄2

∂x
+ Pe2u2

∂c′
2

∂x

= ∂2c̄2

∂x2
+ ∂2c′

2

∂x2
+ ∂2c′

2

∂z2
, (A9)

c̄1(x, t = 0) + c′
1(x, z, t = 0)

= c̄2(x, t = 0) + c′
2(x, z, t = 0) = δ(x), (A10)

c̄1(x → ∞, t ) + c′
1(x → ∞, z, t )

= c̄2(x → ∞, t ) + c′
2(x → ∞, z, t ) = 0, (A11)

∂c′
1(x, z = −h1, t )

∂z
= 0, (A12)

c̄1(x, t ) + c′
1(x, z = 0, t ) = c̄2(x, t ) + c′

2(x, z = 0, t ),
(A13)

D1/2φ1/2
∂c′

1(x, z = 0, t )

∂z
= ∂c′

2(x, z = 0, t )

∂z
, (A14)

∂c′
2(x, z = h2, t )

∂z
= 0. (A15)

Averaging Eqs. (A8) and (A9) with the aid of Eqs. (A5),
(A12), and (A15) results in

∂ c̄1

∂t
+ Pe1ū1

∂ c̄1

∂x
+ Pe1u1

∂c′
1

∂x
= ∂2c̄1

∂x2
+ 1

h1

∂c′
1(x, z = 0, t )

∂z
,

(A16)

D1/2
∂ c̄2

∂t
+ Pe2ū2

∂ c̄2

∂x
+ Pe2u2

∂c′
2

∂x

= ∂2c̄2

∂x2
− 1

h2

∂c′
2(x, z = 0, t )

∂z
. (A17)

Subtraction of Eqs. (A16) and (A17) from Eqs. (A8) and
(A9), respectively, leads to

∂c′
1

∂t
+ Pe1(u1 − ū1)

∂ c̄1

∂x
+ Pe1u1

∂c′
1

∂x
− Pe1u1

∂c′
1

∂x

= ∂2c′
1

∂x2
+ ∂2c′

1

∂z2
− 1

h1

∂c′
1(x, z = 0, t )

∂z
, (A18)

D1/2
∂c′

2

∂t
+ Pe2(u2 − ū2)

∂ c̄2

∂x
+ Pe2u2

∂c′
2

∂x
− Pe2u2

∂c′
2

∂x

= ∂2c′
2

∂x2
+ ∂2c′

2

∂z2
+ 1

h2

∂c′
2(x, z = 0, t )

∂z
. (A19)

The exact Eqs. (A18) and (A19) are now subjected to
the three following assumptions adopted by Taylor [1] and
Fischer et al. [4] on the tracer transport.

(i) ∂c′
1/∂t ≈ 0 and D1/2∂c′

2/∂t ≈ 0 indicate a quasisteady
state condition, which can be considered after passing suf-
ficient time from the tracer introduction at the inlet of the
stratified porous media if the fluctuation components in the
transversal direction in strata 1 and 2 are smoothed out by the
transversal diffusion. This infers that c̄1 
 c′

1 and c̄2 
 c′
2,

where the average tracer concentrations in layers 1 and 2
become much larger than the fluctuation components. There-
fore, the fluctuation components in the transversal direction
in porous layers 1 and 2 are negligible. For timescales in the
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order of magnitudes of the diffusion times across strata 1 and
2, which are H2

1 /D1 and H2
2 /D2, respectively, this assumption

can be taken into consideration.
(ii) c′

1 and c′
2, which are the fluctuation components in

layers 1 and 2, vary slowly. This infers that Pe1u1∂c′
1/∂x ≈

Pe1u1∂c′
1/∂x and Pe2u2∂c′

2/∂x ≈ Pe2u2∂c′
2/∂x.

(iii) Pe1(u1 − ū1)∂ c̄1/∂x 
 ∂2c′
1/∂x2 and Pe2(u2 −

ū2)∂ c̄2/∂x 
 ∂2c′
2/∂x2 show that the longitudinal diffusion

can be ignored compared to the longitudinal advection
in porous layers 1 and 2. Therefore, the impact of the
longitudinal diffusion is not considerable, and the tracer
transport in strata 1 and 2 is mainly controlled by the
longitudinal advection and the transversal diffusion.

If assumptions (i)–(iii) are used, Eqs. (A18) and (A19) will
reduce to

Pe1(u1 − ū1)
∂ c̄1

∂x
+ 1

h1

∂c′
1(x, z = 0, t )

∂z
= ∂2c′

1

∂z2
, (A20)

Pe2(u2 − ū2)
∂ c̄2

∂x
− 1

h2

∂c′
2(x, z = 0, t )

∂z
= ∂2c′

2

∂z2
. (A21)

If Eqs. (A20) and (A21) are integrated twice with respect
to z and the resulting expressions are subjected to Eqs. (A5),
(A12), and (A15) to find the constants of integrations, c′

1 and
c′

2 will be derived as follows:

c′
1 =

[(
z2

2
− h2

1

6
+ 1

η2
1

)
(1 − ū1) −

(
h1

2
+ z

)
B1

η1
+ u1 − 1

η2
1

]
Pe1

∂ c̄1

∂x
+

(
z2

2h1
+ z + h1

3

)
∂c′

1(x, z = 0, t )

∂z
, (A22)

c′
2 =

[(
z2

2
− h2

2

6
+ 1

η2
2

)
(1 − ū2) +

(
h2

2
− z

)
B2

η2
+ u2 − 1

η2
2

]
Pe2

∂ c̄2

∂x
+

(
− z2

2h2
+ z − h2

3

)
∂c′

2(x, z = 0, t )

∂z
. (A23)

To determine u1∂c′
1/∂x and u2∂c′

2/∂x in Eqs. (A16) and (A17) and close the mathematical formulation, Eqs. (A22) and (A23)
are differentiated with respect to x to obtain ∂c′

1/∂x and ∂c′
2/∂x:

∂c′
1

∂x
=

[(
z2

2
− h2

1

6
+ 1

η2
1

)
(1 − ū1) −

(
h1

2
+ z

)
B1

η1
+ u1 − 1

η2
1

]
Pe1

∂2c̄1

∂x2
+

(
z2

2h1
+ z + h1

3

)
∂2c′

1(x, z = 0, t )

∂z∂x
, (A24)

∂c′
2

∂x
=

[(
z2

2
− h2

2

6
+ 1

η2
2

)
(1 − ū2) +

(
h2

2
− z

)
B2

η2
+ u2 − 1

η2
2

]
Pe2

∂2c̄2

∂x2
+

(
− z2

2h2
+ z − h2

3

)
∂2c′

2(x, z = 0, t )

∂z∂x
. (A25)

Combination of Eqs. (7) and (8) with Eqs. (A24) and (A25) produces u1∂c′
1/∂x and u2∂c′

2/∂x:

u1
∂c′

1

∂x
= 1

h1

∫ 0

−h1

(
u1

∂c′
1

∂x

)
dz = E1Pe1

∂2c̄1

∂x2
+ F1

∂2c′
1(x, z = 0, t )

∂z∂x
, (A26)

u2
∂c′

2

∂x
= 1

h2

∫ h2

0

(
u2

∂c′
2

∂x

)
dz = E2Pe2

∂2c̄2

∂x2
+ F2

∂2c′
2(x, z = 0, t )

∂z∂x
, (A27)

where the constants E1, F1, E2, and F2 are defined, respectively, as follows:

E1 = − (ū1 − 1)

6η3
1h1

[
(2[ū1 − 1]η1h1 − 3B1)η2

1h2
1 + 12η1h1ū1

] + B1

2η3
1h1

[
η2

1h2
1(ū1 − 1) + 2(1 + A1 − B1η1h1)

]

+ 1

2η3
1h1

[
(ū1 − 1)η1h1 + (

A2
1 − B2

1

)
η1h1 + A1B1 + B1

]
(A28)

F1 = − 1

6η2
1h1

[([ū1 − 1]η1h1 − 3B1)η1h1 + 6(A1 − [ū1 − 1])], (A29)

E2 = − (ū2 − 1)

6η3
2h2

[
(2[ū2 − 1]η2h2 + 3B2)η2

2h2
2 + 12η2h2ū2

] − B2

2η3
2h2

[
η2

2h2
2(ū2 − 1) + 2(1 + A2 + B2η2h2)

]

+ 1

2η3
2h2

[
(ū2 − 1)η2h2 + (

A2
2 − B2

2

)
η2h2 − A2B2 − B2

]
, (A30)

F2 = 1

6η2
2h2

[([ū2 − 1]η2h2 + 3B2)η2h2 + 6(A2 − [ū2 − 1])]. (A31)

Substitution of Eqs. (A26) and (A27) into Eqs. (A16) and (A17) gives

∂ c̄1

∂t
+ Pe1ū1

∂ c̄1

∂x
= (

1 − E1Pe2
1

)∂2c̄1

∂x2
+ 1

h1

∂c′
1(x, z = 0, t )

∂z
− F1Pe1

∂2c′
1(x, z = 0, t )

∂z∂x
, (A32)

D1/2
∂ c̄2

∂t
+ Pe2ū2

∂ c̄2

∂x
= (

1 − E2Pe2
2

)∂2c̄2

∂x2
− 1

h2

∂c′
2(x, z = 0, t )

∂z
− F2Pe2

∂2c′
2(x, z = 0, t )

∂z∂x
. (A33)
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The last two terms on the right-hand side of Eqs. (A32) and (A33) represent the interface between the two strata and produce
tensorial dispersion and advection. If both layers have the same permeability (k1/2 = 1), these terms will disappear. As a result,
the tracer transport due to an incompressible single-phase flow of a Newtonian fluid in a porous medium with the nondimensional
dispersion coefficient of K = 1−E Pe2 will be achieved. The detailed derivation of the dispersion coefficient in a porous medium
can be found in Appendix B.

It is noted that the mathematical formulation developed in this study is valid for k1/2 �= 1, where the last two terms on
the right-hand side of Eqs. (A32) and (A33) are not zero but should be replaced by the appropriate expressions in terms of
c̄1, c̄2, and their first and second derivatives with respect to x. To replace ∂c′

1(x, z = 0, t )/∂z and ∂c′
2(x, z = 0, t )/∂z in Eqs.

(A32) and ((A33) by the appropriate expressions, first, Eqs. (A22) and (A23) are calculated at z = 0 (where u1(0) = A1 + 1 and
u2(0) = A2 + 1) and then they are combined with Eqs. (A13) and (A14):

∂c′
1(x, z = 0, t )

∂z
= J1c̄2 − J1c̄1 + J1G2Pe2

∂ c̄2

∂x
− J1G1Pe1

∂ c̄1

∂x
, (A34)

∂c′
2(x, z = 0, t )

∂z
= J2c̄2 − J2c̄1 + J2G2Pe2

∂ c̄2

∂x
− J2G1Pe1

∂ c̄1

∂x
, (A35)

where the constants G1, J1, G2, and J2 are defined, respectively, as follows:

G1 =
(

−h2
1

6
+ 1

η2
1

)
(1 − ū1) − h1

2

B1

η1
+ A1

η2
1

, (A36)

J1 = 3

h1 + h2D1/2φ1/2
, (A37)

G2 =
(

−h2
2

6
+ 1

η2
2

)
(1 − ū2) + h2

2

B2

η2
+ A2

η2
2

, (A38)

J2 = 3D1/2φ1/2

h1 + h2D1/2φ1/2
. (A39)

To replace ∂2c′
1(x, z = 0, t )/∂z∂x and ∂2c′

2(x, z = 0, t )/∂z∂x in Eqs. (A32) and (A33) by the appropriate expressions,
Eqs. (A34) and (A35) need to be differentiated with respect to x:

∂2c′
1(x, z = 0, t )

∂z∂x
= J1

∂ c̄2

∂x
− J1

∂ c̄1

∂x
+ J1G2Pe2

∂2c̄2

∂x2
− J1G1Pe1

∂2c̄1

∂x2
, (A40)

∂2c′
2(x, z = 0, t )

∂z∂x
= J2

∂ c̄2

∂x
− J2

∂ c̄1

∂x
+ J2G2Pe2

∂2c̄2

∂x2
− J2G1Pe1

∂2c̄1

∂x2
. (A41)

Substitution of Eqs. (A34), (A35), (A40), and (A41) into Eqs. (A32) and (A33) leads to the reduced-order models for
advection-dispersion tracer transport in stratified porous media (Fig. 1):

∂ c̄1

∂t
+

(
ū1 − J1F1 + 1

h1
J1G1

)
Pe1

∂ c̄1

∂x
+

(
J1F1Pe1 − 1

h1
J1G2Pe2

)
∂ c̄2

∂x

= (
1 − E1Pe2

1 + J1F1G1Pe2
1

)∂2c̄1

∂x2
− J1F1G2Pe1Pe2

∂2c̄2

∂x2
+ 1

h1
J1(c̄2 − c̄1), (A42)

D1/2
∂ c̄2

∂t
+

(
ū2 + J2F2 + 1

h2
J2G2

)
Pe2

∂ c̄2

∂x
+

(
− 1

h2
J2G1Pe1 − J2F2Pe2

)
∂ c̄1

∂x

= (
1 − E2Pe2

2 − J2F2G2Pe2
2

)∂2c̄2

∂x2
+ J2F2G1Pe1Pe2

∂2c̄1

∂x2
− 1

h2
J2(c̄2 − c̄1.) (A43)

Equations (A42) and (A43) are subjected to the following initial and boundary conditions, which are obtained by averaging
Eqs. (A10) and (A11), can be solved to result in c̄1 and c̄2:

c̄1(x, t = 0) = c̄2(x, t = 0) = δ(x), (A44)

c̄1(x → ∞, t ) = c̄2(x → ∞, t ) = 0. (A45)
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3. Special cases

It is valuable to list results for the special cases where the
Darcy numbers in porous layers 1 and 2 are either very small
or very large.

a. Case I: Da∗
1 � 1, Da∗

2 � 1

Suppose the permeabilities of strata 1 and 2 or the
ratios of the effective viscosities to the fluid viscosity are
very small or the thicknesses of the layers are very large.
In that case, the Darcy numbers 1 and 2 will be much
smaller than unity (Da∗

1 � 1, Da∗
2 � 1). In this special case,

the first terms on the left-hand sides of Eqs. (1) and (2),
Da1 d2u1/dz2 and Da2 d2u2/dz2, become negligible and
Eqs. (1) and (2) reduce to −u1 + 1 = 0 and −u2 + 1 = 0,
respectively, or in other words, the nondimensional velocities
in porous media 1 and 2 are unity, u1 = 1 and u2 = 1. This
implies that the velocities in both layers are constant and
equal to û1 = −(k1/μ)(d p̂/dx̂) and û2 = −(k2/μ)(d p̂/dx̂),
respectively, which are known as the Darcy equation.
Therefore, the third terms on the left-hand sides of
Eqs. (A16) and (A17) become zero, u1∂c′

1/∂x = ∂c′
1/∂x =

∂c′
1/∂x = 0 and u2∂c′

2/∂x = ∂c′
2/∂x = ∂c′

2/∂x = 0; the
nondimensional average velocities in strata 1 and 2 become
unity, ū1 = 1 and ū2 = 1; and the constants E1, F1, G1, E2, F2,
and G2 are all zero. As a result, Eqs. (A42) and (A43) reduce
to

∂ c̄1

∂t
+ Pe1

∂ c̄1

∂x
= ∂2c̄1

∂x2
+ 1

h1
J1(c̄2 − c̄1), (A46)

D1/2
∂ c̄2

∂t
+ Pe2

∂ c̄2

∂x
= ∂2c̄2

∂x2
− 1

h2
J2(c̄2 − c̄1). (A47)

For this special case, the Taylor or shear dispersion is zero,
and the cross-diffusive flux between layers occurs through
the source or sink term [which is the last term on the right-
hand side of Eqs. (A46) and (A47)]. Therefore, for such a
limiting case of Darcy flow in both porous layers, the Taylor
dispersion is nonexistent, and the mixing of the injected solute
between the two layers is limited to the cross-diffusive flux
between layers. The observation suggests that the field scale
mixing between layers may not essentially originate from the
Taylor dispersion and could be due to the cross-diffusive flux
between the layers.

b. Case II: Da∗
1 � 1, Da∗

2 � 1

Suppose the permeability of stratum 1 or the ratio of the
effective viscosity in porous layer 1 to the fluid viscosity is
very large or the thickness of layer 1 is very small. In that
case, the Darcy number in stratum 1 will be much larger
than unity (Da∗

1 
 1). In this special case, the second term
on the left-hand side of Eq. (1), u1, becomes negligible and
Eq. (1) reduces to Da1 d2u1/dz2 + 1 = 0, subject to boundary
conditions u1|z=−h1 = 0 and u1|z=0 = 1/Da1/2. This leads to
u1(z) = −z2/2Da1 + (1/h1Da1/2 − h1/2Da1)z + 1/Da1/2 as
the analytical solution for the nondimensional velocity dis-
tribution in porous layer 1. Therefore, the nondimensional
average velocity in layer 1 using Eq. (A1) becomes ū1 =
h2

1/12Da1 + 1/2Da1/2.

Suppose the permeability of stratum 2 or the ratio of the
effective viscosity in layer 2 to the fluid viscosity is very
small or the thickness of layer 2 is very large. In that case,
the Darcy number in stratum 2 will be much smaller than
unity (Da∗

2 � 1). In this special case, the first term on the
left-hand side of Eq. (2), Da2 d2u2/dz2, becomes negligible
and Eq. (2) reduces to −u2 + 1 = 0 or, in other words, the
nondimensional velocity in porous medium 2 is unity, u2 =
1. This implies that the velocity in layer 2 is constant and
equal to û2 = −(k2/μ)(d p̂/dx̂), which is known as the Darcy
equation. Therefore, the third term on the left-hand side of
Eq. (A17) turns to zero, u2∂c′

2/∂x = ∂c′
2/∂x = ∂c′

2/∂x = 0,
the nondimensional average velocity in stratum 2 becomes
unity, ū2 = 1, and the constants E2, F2, and G2 are zero.

If the generalized approach introduced in Sec. II is used,
Eqs. (A42) and (A43) become

∂ c̄1

∂t
+

(
ū1 − J1F1 + 1

h1
J1G1

)
Pe1

∂ c̄1

∂x
+ J1F1Pe1

∂ c̄2

∂x

= (
1 − E1Pe2

1 + J1F1G1Pe2
1

)∂2c̄1

∂x2
+ 1

h1
J1(c̄2 − c̄1),

(A48)

D1/2
∂ c̄2

∂t
+ Pe2

∂ c̄2

∂x
+

(
− 1

h2
J2G1Pe1

)
∂ c̄1

∂x

= ∂2c̄2

∂x2
− 1

h2
J2(c̄2 − c̄1), (A49)

where the constants J1 and J2 are defined by Eqs. (A37)
and (A39), respectively, and the constants E1, F1, and G1 are
defined, respectively, as follows:

E1 = − h6
1

30240Da2
1

− h2
1

120Da2
1/2

, (A50)

F1 = h1

24Da1/2
− h3

1

720Da1
, (A51)

G1 = h4
1

720Da1
− h2

1

24Da1/2
. (A52)

c. Case III: Da∗
1 � 1, Da∗

2 � 1

If the permeability of layer 1 or the ratio of the effective
viscosity in layer 1 to the fluid viscosity is very small or the
thickness of layer 1 is very large, it results in Da∗

1 � 1. In this
special case, the first term on the left-hand side of Eq. (1),
Da1 d2u1/dz2, becomes negligible and Eq. (1) reduces to
−u1 + 1 = 0 or, in other words, the nondimensional velocity
in layer 1 is unity, u1 = 1. This implies that the velocity in
layer 1 is constant and equal to û1 = −(k1/μ)(d p̂/dx̂). There-
fore, the third term on the left-hand side of Eq. (A16) turns to
zero, u1∂c′

1/∂x = ∂c′
1/∂x = ∂c′

1/∂x = 0; the nondimensional
average velocity in layer 1 becomes unity, ū1 = 1; and the
constants E1, F1, and G1 are zero.

If the permeability of layer 2 or the ratio of the effective
viscosity in layer 2 to the fluid viscosity is very large or the
thickness of layer 2 is very small, it results in Da∗

2 
 1. In this
special case, the second term on the left-hand side of Eq. (2),
u2, can be ignored and Eq. (2) reduces to Da2 d2u2/dz2 +
1 = 0. Subject to boundary conditions u2|z=0 = Da1/2 and
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u2|z=h2 = 0, it will lead to u2(z) = −z2/2Da2 + (h2/2Da2 −
Da1/2/h2)z + Da1/2. Therefore, the nondimensional average

velocity in layer 2 using Eq. (A2) becomes ū2 = h2
2/12Da2 +

Da1/2/2.

If the generalized approach introduced in Sec. II is followed, Eqs. (A42) and (A43) will become

∂ c̄1

∂t
+ Pe1

∂ c̄1

∂x
+

(
− 1

h1
J1G2Pe2

)
∂ c̄2

∂x
= ∂2c̄1

∂x2
+ 1

h1
J1(c̄2 − c̄1), (A53)

D1/2
∂ c̄2

∂t
+

(
ū2 + J2F2 + 1

h2
J2G2

)
Pe2

∂ c̄2

∂x
− J2F2Pe2

∂ c̄1

∂x
= (

1 − E2Pe2
2 − J2F2G2Pe2

2

)∂2c̄2

∂x2
− 1

h2
J2(c̄2 − c̄1), (A54)

where the constants J1 and J2 are defined by Eqs. (A37) and (A39), respectively, and the constants E2, F2, and G2 are defined,
respectively, as follows:

E2 = − h6
2

30240Da2
2

− Da2
1/2h2

2

120
, (A55)

F2 = h3
2

720Da2
− Da1/2h2

24
, (A56)

G2 = h4
2

720Da2
− Da1/2h2

2

24
. (A57)

d. Case IV: Da∗
1 � 1, Da∗

2 � 1

If the permeabilities or the ratios of the effective viscosities of both layers are very large or the thicknesses of layers are
very small, it results in Da∗

1 
 1, Da∗
2 
 1. In this special case, the second terms on the left-hand sides of Eqs. (1) and (2),

u1 and u2, become negligible and Eqs. (1) and (2) reduce to Da1 d2u1/dz2 + 1 = 0 and Da2 d2u2/dz2 + 1 = 0, respectively.
Subject to Eqs. (3)–(6), they will lead to u1(z) = −z2/2Da1 + (h2 − h1)z/2Da1 + h1h2/2Da1 and u2(z) = −z2/2Da2 + (h2 −
h1)z/2Da2 + h1h2/2Da2 as the analytical solutions for the nondimensional velocity distributions. Therefore, the nondimen-
sional average velocities using Eqs. (A1) and (A2) become ū1 = h2

1/12Da1 + h1h2/4Da1 and ū2 = h2
2/12Da2 + h1h2/4Da2,

respectively. Following the generalized approach introduced in Sec. II, Eqs. (A42) and (A43) will become

∂ c̄1

∂t
+

(
ū1 − J1F1 + 1

h1
J1G1

)
Pe1

∂ c̄1

∂x
+

(
J1F1Pe1 − 1

h1
J1G2Pe2

)
∂ c̄2

∂x

= (
1 − E1Pe2

1 + J1F1G1Pe2
1

)∂2c̄1

∂x2
− J1F1G2Pe1Pe2

∂2c̄2

∂x2
+ 1

h1
J1(c̄2 − c̄1), (A58)

D1/2
∂ c̄2

∂t
+

(
ū2 + J2F2 + 1

h2
J2G2

)
Pe2

∂ c̄2

∂x
+

(
− 1

h2
J2G1Pe1 − J2F2Pe2

)
∂ c̄1

∂x

= (
1 − E2Pe2

2 − J2F2G2Pe2
2

)∂2c̄2

∂x2
+ J2F2G1Pe1Pe2

∂2c̄1

∂x2
− 1

h2
J2(c̄2 − c̄1), (A59)

where the constants J1 and J2 are defined by Eqs. (A37) and (A39), respectively, and the constants E1, F1, G1, E2, F2, and G2 are
defined, respectively, as follows:

E1 = − h3
1

720Da2
1

(
3h3

1

28
− h2

1h2 − 9

4
h1h2

2 − Da1ū1h1 + 15Da1ū1h2

)
, (A60)

F1 = − h2
1

720Da1
(h1 − 15h2), (A61)

G1 = − h2
1

Da1

(
− 7

240
h2

1 − 1

16
h1h2 + 1

3
ū1Da1

)
, (A62)

E2 = − h3
2

720Da2
2

(
3h3

2

28
− h1h2

2 − 9

4
h2

1h2 − Da2ū2h2 + 15Da2ū2h1

)
, (A63)

F2 = − h2
2

720Da2
(15h1 − h2), (A64)

G2 = − h2
2

Da2

(
− 7

240
h2

2 − 1

16
h1h2 + 1

3
ū2Da2

)
. (A65)
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FIG. 9. The physical model for tracer transport in the porous
medium.

APPENDIX B: DISPERSION COEFFICIENT IN A
SINGLE-LAYER POROUS MEDIUM AND SPECIAL CASES

1. Physical model and assumptions

Figure 9 shows the tracer transport in a porous medium
of thickness H and length �. The porous medium’s inlet and
center are the origins of the longitudinal and transversal direc-
tions (or the x̂ and ẑ directions), respectively. Therefore, the
porous medium occupies the domain ẑ ∈ [−H/2, H/2]. The
physical properties of the porous medium such as permeabil-
ity and porosity, and the physical properties of fluid, such as
density and viscosity, remain constant. The permeability and
porosity of the porous medium are k and φ, respectively. The
fluid is Newtonian incompressible single-phase and flows in
the porous medium under a fully developed laminar condition
with the velocity distribution û(z).

2. Derivation of velocity distribution

The fully developed Stokes flow in the porous medium
can be described by the Darcy-Brinkman equation, which
is the second-order linear ordinary differential equation, in
nondimensional form as follows:

Da
d2u

dz2
− u + 1 = 0, z ∈ (−1/2, 1/2), (B1)

where u = û/ − [(k/μ)(d p̂/dx̂)], z = ẑ/H , and Da =
(μe/μ)(k/H2), in which û is the velocity in the porous
medium, u is the nondimensional velocity, μ is the fluid
viscosity, μe is the effective viscosity in the porous medium,
p̂ is the pressure, d p̂/dx̂ is the pressure gradient (which is
constant and drives the flow in the longitudinal direction), z
is the nondimensional transversal coordinate, and Da is the
Darcy number.

Equation (B1) is subject to the no-slip condition at the
bottom (z = –1/2) and top (z = 1/2):

u|z=−1/2 = 0, (B2)

u|z=1/2 = 0. (B3)

The following analytical solution for the nondimensional
velocity distribution in the porous medium can be derived by
solving Eq. (B1) subject to Eqs. (B2) and (B3):

u(z) = A cosh(ηz) + 1, z ∈ [−1/2, 1/2], (B4)

where the constant A is defined as follows:

A = −sechλ, (B5)

where λ = η/2 = H/2
√

k.

3. Governing equation for advection-diffusion tracer transport

The tracer transport in the porous medium can be de-
scribed by the advection-diffusion equation, which is the
second-order nonlinear partial differential equation, in nondi-
mensional form as follows:

∂c

∂t
+ Peu

∂c

∂x
= ∂2c

∂x2
+ ∂2c

∂z2
,

x ∈ (0,∞), z ∈ (−1/2, 1/2), t > 0, (B6)

where c = ĉ/c∗, x = x̂/H t = Dt̂/H2, and Pe =
−[(k/μ)(d p̂/dx̂)]H/Dφ, in which ĉ is the tracer
concentration, c is the nondimensional tracer concentration, c∗
is the reference tracer concentration, x is the nondimensional
longitudinal coordinate, t̂ is the time, t is the nondimensional
time, D is the molecular diffusion coefficient, and Pe is the
Péclet number for fluid flow in the porous medium.

Equation (B6) is subject to the instantaneous injection of
the tracer at t = 0 (as a pulse) at the inlet of the porous
medium (x = 0), zero tracer concentration at infinite distance
from the inlet (x → ∞), and no-mass flux at the bottom
(z = –1/2) and top (z = 1/2) of the porous medium:

c[x ∈ (0, ∞), z ∈ (−1/2, 1/2), t = 0] = δ(x), (B7)

c[x → ∞, z ∈ (−1/2, 1/2), t > 0] = 0, (B8)

∂c[x ∈ (0, ∞), z = −1/2, t > 0]

∂z
= 0, (B9)

∂c[x ∈ (0, ∞), z = 1/2, t > 0]

∂z
= 0. (B10)

4. Reynolds decomposition and averaging methods

The Reynolds decomposition, which is a technique to split
the average and fluctuation components of a variable [33],
can be used to write the nondimensional velocity and tracer
concentration, respectively, as follows:

u(z) = ū + u′(z) =
∫ 1/2

−1/2
udz + u′(z), (B11)

c(x, z, t ) = c̄(x, t ) + c′(x, z, t ) =
∫ 1/2

−1/2
cdz + c′(x, z, t ),

(B12)

where ū and c̄ are the nondimensional average velocity and
tracer concentration, respectively, and u′ and c′ are the fluctu-
ation components. The averages of the fluctuation components
are zero based on the Reynolds decomposition [33]:

∫ 1/2

−1/2
u′dz =

∫ 1/2

−1/2
c′dz = 0. (B13)

The following expression can be derived for the nondimen-
sional average velocity using Eqs. (B4) and (B11):

ū = 2A

η
sinh(η/2) + 1. (B14)
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5. Derivation of reduced-order model for advection-dispersion
tracer transport

If c from Eq. (B12) is substituted into Eqs. (B6)–(B10), the
following equations can be derived:

∂ c̄

∂t
+ ∂c′

∂t
+ Peu

∂ c̄

∂x
+ Peu

∂c′

∂x
= ∂2c̄

∂x2
+ ∂2c′

∂x2
+ ∂2c′

∂z2
, (B15)

c̄(x, t = 0) + c′(x, z, t = 0) = δ(x), (B16)

c̄(x → ∞, t ) + c′(x → ∞, z, t ) = 0, (B17)

∂c′(x, z = −1/2, t )

∂z
= 0, (B18)

∂c′(x, z = 1/2, t )

∂z
= 0. (B19)

Averaging Eq. (B15) with the aid of Eqs. (B13), (B18), and
(B19) results in

∂ c̄

∂t
+ Peū

∂ c̄

∂x
+ Peu

∂c′

∂x
= ∂2c̄

∂x2
. (B20)

Subtraction of Eq. (B20) from Eq. (B15) leads to

∂c′

∂t
+ Pe(u − ū)

∂ c̄

∂x
+ Peu

∂c′

∂x
− Peu

∂c′

∂x
= ∂2c′

∂x2
+ ∂2c′

∂z2
.

(B21)

The exact Eq. (B21) is now exposed to three following
assumptions adopted by Taylor [1] and Fischer et al. [4] on
the tracer transport.

(i) ∂c′/∂t ≈ 0 indicates a quasisteady state condition,
which can be considered after passing sufficient time from
the tracer introduction at the inlet of the porous medium if
the fluctuation component in the transversal direction in the
porous medium is smoothed out by the transversal diffusion.
This infers that c̄ 
 c′, where the average tracer concentration
in the porous medium becomes much larger than the fluctua-
tion component. Therefore, the fluctuation component in the
transversal direction in the porous medium is negligible. For
the timescale in the order of magnitudes of the diffusion time
across the porous medium, which is H2/D, this assumption
can be taken into consideration.

(ii) c′, which is the fluctuation component of the tracer
concentration, varies slowly. This infers that Peu∂c′/∂x ≈
Peu∂c′/∂x.

(iii) Pe(u−ū)∂ c̄/∂x 
 ∂2c′/∂x2 shows that the longitudi-
nal diffusion can be ignored compared to the longitudinal
advection. Therefore, the impact of the longitudinal diffu-
sion is not considerable, and the tracer transport is mainly
controlled by the longitudinal advection and the transversal
diffusion.

If assumptions (i)–(iii) are used, Eq. (B21) will reduce to

Pe(u − ū)
∂ c̄

∂x
= ∂2c′

∂z2
. (B22)

If Eq. (B22) is integrated twice with respect to z and the
resulting expression is subject to Eqs. (B13), (B18), and (B19)
to find the constants of integrations, c′ will be derived as

follows:

c′ =
[

(1 − ū)
z2

2
− 1 − u

η2
−

(
1

24
− 1

η2

)
(1 − ū)

]
Pe

∂ c̄

∂x
.

(B23)

To determine u∂c′/∂x in Eq. (B20) and finalize the math-
ematical formulation, Eq. (B23) is differentiated with respect
to x to obtain ∂c′/∂x:

∂c′

∂x
=

[
(1 − ū)

z2

2
− 1 − u

η2
−

(
1

24
− 1

η2

)
(1 − ū)

]
Pe

∂2c̄

∂x2
.

(B24)

Combination of Eq. (B4) with Eq. (B24) produces u∂c′/∂x:

u
∂c′

∂x
=

∫ 1/2

−1/2

(
u
∂c′

∂x

)
dz = EPe

∂2c̄

∂x2
, (B25)

where the constant E is defined as follows:

E = − A2

3η4

[
(η2 + 24)cosh2

(
η

2

)

− 9η cosh

(
η

2

)
sinh

(
η

2

)
− 5η2

2
− 24

]

= − A2

3η4

[
(η2 + 24)

A2
+ 9η2

2A2
(ū − 1) − 5η2

2
− 24

]
. (B26)

Substitution of Eq. (B25) into Eq. (B20) leads to the
reduced-order model for advection-dispersion tracer transport
in the porous medium (Fig. 9):

∂ c̄

∂t
+ Peū

∂ c̄

∂x
= (1 − EPe2)

∂2c̄

∂x2
, (B27)

where K = 1−EPe2 is the nondimensional dispersion coeffi-
cient in the porous medium.

Equation (B27) subject to the following initial and bound-
ary conditions, which are obtained by averaging Eqs. (B16)
and (B17), can be solved to result in c:

c̄(x, t = 0) = δ(x), (B28)

c̄(x → ∞, t ) = 0. (B29)

6. Special cases

It is useful to list special results for the cases of very small
and very large Darcy numbers.

Suppose the permeability of the porous medium or the
ratio of the effective viscosity in the porous medium to the
fluid viscosity is very small or the thickness of the porous
medium is very large. In that case, the Darcy number in the
porous medium will be much smaller than unity (Da � 1).
In this special case, the first term on the left-hand side of
Eq. (B1), Dad2u/dz2, becomes negligible and Eq. (B1) re-
duces to −u + 1 = 0 or, in other words, the nondimensional
velocity in the porous medium is unity, u = 1. This implies
that the velocity in the porous medium is constant and equal to
û = −(k/μ)(d p̂/dx̂), which is known as the Darcy equation.
Therefore, the third term on the left-hand side of Eq. (B20)
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becomes zero, u∂c′/∂x = ∂c′/∂x = ∂c′/∂x = 0; the nondi-
mensional average velocity in the porous medium becomes
unity, ū = 1; and the constant E is zero. As a result, Eq. (B27)
reduces to ∂ c̄/∂t + Pe∂ c̄/∂x = ∂2c̄/∂x2, which indicates that
the Taylor [1] or shear dispersion is zero and K = 1.

If the permeability of the porous medium or the ratio of the
effective viscosity in the porous medium to the fluid viscosity
is very large or the thickness of the porous medium is very
small, the Darcy number in porous medium will be much
larger than unity (Da 
 1). In this special case, the second

term on the left-hand side of Eq. (B1), u, becomes ignor-
able and Eq. (B1) reduces to Dad2u/dz2 + 1 = 0. Subject
to Eqs. (B2) and (B3), it will lead to u(z) = (1/2Da)(1/4 −
z2) as the analytical solution for the nondimensional ve-
locity distribution in the porous medium. Therefore, the
nondimensional average velocity in the porous medium us-
ing Eq. (B11) becomes ū = 1/12Da. If the mathematical
approach applied in this study is used, the nondimensional dis-
persion coefficient of K = 1 + (1/144Da2)(Pe2/210) will be
derived.
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