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Effective temperature and Einstein relation for particles in active matter flows
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Active matter are a collection of units with intrinsic supply of energy that is utilized for self-propelled motion.
Recent studies have confirmed that these active systems can exist in exotic phases, such as swarming, laning,
jamming, and even turbulence, based on the size and density of the constituent units. An interesting question that
naturally arises is whether one can identify an effective temperature for particles advected by such an active flow
that is far from equilibrium. In this paper, we report using a continuum model of a dense bacterial suspension,
an exact expression of the effective temperature for a distribution of interacting particles that are immersed in
this suspension. We observe that this effective temperature is linear in particle diffusivity with the slope defining
the particle mobility that is higher when the background fluid exhibits global polar ordering and lower when
the fluid is in isotropic equilibrium. We believe our paper is a direct verification of the Einstein relation—the
simplest fluctuation dissipation relation for interacting particles advected in an active matter flow.
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I. INTRODUCTION

Active matter is a fascinating nonequilibrium system
whose constituent units have an intrinsic source of energy that
is capable of generating persistent motion. Familiar examples
for these systems are bacterial suspensions [1,2], microtubule
networks [3], artificial swimmers [4], and active liquid crys-
tals [5] to mention a few. It is well known that the inherent
activity of the constituent particles can lead to the formation
of beautiful patterns [6–9]. In particular, recent studies have
shown that bacterial suspensions can exist in a variety of
exotic phases, such as swarming, laning, jamming, and even
turbulence based on the size and density of the individual
units [10]. There is extensive literature on particle transport
in such active suspensions where activity was shown to en-
hance the diffusivity and mixing of particles[11–22]. It is,
therefore, natural to ask whether one can describe an effec-
tive temperature for particles are advected by such active
flows [23,24]. A related and important question is whether
these active fluids that are essentially far from equilibrium,
should satisfy fluctuation-dissipation relations (FDR) even
in the absence of detailed balance [25,26]. There are some
important works showing that FDRs can be derived without
detailed balance as long as some invariant measure exists in
the system [27,28]. In this paper, we address this fundamental
issue by analytically and numerically investigating the motion
of a distribution of interacting particles in a dense suspen-
sion of bacteria, the latter described by a recently developed
continuum model. Our simulations confirm that the invariant
measures of velocity distribution of both the background flow
as well as the particles obey Gaussian statistics directly sug-
gesting the existence of a FDR III. We also provide an exact
theoretical expression for the effective temperature by solving
the Fokker-Planck equations corresponding to the governing
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equations of the particles. Our prediction, that does not invoke
any free parameters, matches very well with the numerically
estimated variance of the velocity distribution. Quite inter-
estingly, this effective temperature is found to be linear in
particle diffusivity with the slope characterizing the particle
mobility, that is higher when the background fluid exhibits
global polar ordering, and lower when the fluid is in isotropic
equilibrium. Our paper is, therefore, a direct verification of the
celebrated Einstein relation—the simplest FDR, for interact-
ing particles advected in an active flow. The results reported
here are valid across four decades of variation in the damping
coefficient thereby putting a large number of active systems
within the ambit of our paper—from dense suspensions of
microswimmers that are traditionally overdamped [9,29,30]
to the lesser understood underdamped suspensions where in-
ertial effects are significant, notable examples being ciliates,
planktons, copepods, and other macroswimmers moving in
a background media of low viscosity [31]. Significance of
effective temperature in biologically relevant systems have
been known from the studies of active processes in hair bun-
dles [32], gene networks [33], and the stability of different
phases of motorized particle systems [34]. Earlier experiments
conducted to understand the motion of beads in suspensions
of bacteria have already suggested the possibility of an ef-
fective temperature which is several times larger than that
of a classical Brownian particle [35]. Our paper should also
find applications in the field of micrometer sized heat engines
where bacterial suspensions are used as temperature reservoirs
[36,37]. In what follows, we discuss the model and methods
in Sec. II, theoretical investigation in Sec. III, and a summary
of our results in Sec. IV.

II. MODEL AND METHODS

To mimic a generic active suspension, we use a minimal
continuum model [10,38] of an active fluid that is known
to predict velocity statistics and correlations observed in
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laboratory experiments on suspensions of bacteria Bacillus
subtilis with excellent accuracy [39]. In two dimensions, the
incompressible velocity field u(x, t ) in this model evolves
according to the following equations,

∂u
∂t

+ λ0(u · ∇)u = −∇P − �0∇2u − �2∇4u − μu,

∇ · u = 0, (1)

where the nondimensional parameter λ0 decides the type of
active unit, meaning they are either pusher (e.g., Bacillus
subtilis, E. coli) or a puller (e.g., C. reinhardtii), correspond-
ing, respectively, to the case λ0 > 0 or λ0 < 0. The model
was recently used to investigate pattern formation [40] and
transport coefficients in dense active fluids [22]. We set the
value of λ0 = 3.5 throughout our paper implying that we
have a pusher type of active units. We keep �0 > 0 to enable
energy injection into the active fluid via instabilities, driv-
ing a “turbulent” or high-dimensional chaotic flow, whereas
�2 > 0 stabilizes the flow at high wave numbers. The scalar
field μ = α + β|u|2 depends on the local velocity u and was
first introduced by Toner and Tu [41] and Toner et al. [7]
to model the “flocking” behavior in self-propelled rodlike
objects. The parameter α, henceforth, referred to as the Ekman
friction, acts at intermediate scales and can either lead to a
damping of energy when α > 0 or an injection of energy
when α < 0. Former leads the fluid to an isotropic equi-
librium and the latter yields a globally ordered polar state
with mean velocity

√|α|/β. To nondimensionalize Eq. (1),
we normalize all distances to a characteristic length σ0 =
5π

√
2�2/�0 and all times to t0 = 5π

√
2�2/�

2
0 . In terms of

these reduced units, we fix the values of the model parameters
as �0 = (5π

√
2)−1, �2 = (5π

√
2)−3, and β = 0.5, in order

to remain consistent with earlier works [22,42,43]. Following
Wensink et al. [10], we identify �2/�

2
0 as the timescale for

the growth of linear instabilities and 1/|α| as the timescale
for damping or acceleration effects. Equation (1) is then
numerically solved using a pseudo-spectral approach over a
square grid of 5122 points in a doubly periodic box of size
2π . We overcome the aliasing errors that arise due to the
implementation of discrete Fourier transforms by performing
2/3 and 1/2 dealiasing rules, respectively, for the quadratic
[(u · ∇)u] and cubic [(|u|2)u] terms [44]. Time marching of
u is performed using the Crank-Nicolson scheme with a time
step of 	t = 2 × 10−4 that is sufficient to maintain numerical
stability in the entire range of parameters explored here.

Into the active flow, we throw N particles that follow the
dynamics:

dri

dt
= vi,

dvi

dt
= −γ [vi − u(ri )] − ∇i�, (2)

where γ is the damping coefficient and (ri, vi ) correspond,
respectively, to position and velocity of an ith particle. We
realize u(ri ) as the active flow field projected at the location of
this particle which is obtained using cubic spline interpolation
[45] and −∇i� as the mass normalized force acting on it.
The limit γ −→ ∞ naturally corresponds to an overdamped
dynamics of passive tracers advected by a background flow.

FIG. 1. Distribution of Eulerian velocities projected on the par-
ticles fits well to a Gaussian (solid line) with parameters a = 1.13
and b = 4.75. Data shown here correspond to α = 3; results are
similar for other α’s. The inset: Temporal autocorrelation of u de-
cays exponentially with a relaxation time τ = 0.21t0. We can, thus,
visualize u as a Gaussian colored noise—a headway that will be used
to formulate an effective temperature for our particles.

In this limit, the tracers can exhibit an intervening anoma-
lous diffusive regime [46] as the Ekman friction is pushed
to negatively larger values, say α < −6. The limit γ −→ 0
on the other hand, corresponds to the Newtonian dynamics of
particles without any background fluid. At intermediate values
of γ , both inertial and damping effects coexist thereby render-
ing generality to the particle dynamics. We set the interaction
between particles as the repulsive Weeks-Chandler-Andersen
potential energy � = ∑

j<k φ(|r j − rk|) where the potential,

φ(r) =
{

4ε
[(σ0

r

)12
−

(σ0

r

)6]
+ ε, r < 21/6σ0,

0, r > 21/6σ0,
(3)

with σ0 as the characteristic length (defined above) and ε is
a scale with dimension energy per unit mass that sets the
particle interactions. All measurements on the particles as well
as the active fluid are carried out only after the latter attains
a steady state. To improve our statistics, we average these
measurements over 100 independently prepared realizations
of the initial state. Below we show that the statistics of the
Eulerian velocity u is indeed profitable to the prediction of an
effective temperature of our particles.

III. THEORY

A. Statistics of u

We start with a measurement of the Eulerian flow field
projected at the particle positions, i.e., u(ri ). In Fig. 1, we
show the distribution of a component of this velocity in the
steady state and realize that it is well approximated by a
Gaussian. These numerical observations strongly suggest the
existence of a FDR as the Gaussian statistics can be used to
invoke a generalized time reversal transformation that may
restore detailed balance [47,48]. In the Fig. 1 inset, we show
that the temporal autocorrelation of u is clearly an exponential
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with a relaxation time τ . We combine the foregoing facts to
assert that the fluid velocity projected at particle locations
is essentially a Gaussian colored noise of zero mean and
variance given as

〈uiχ (t )u jψ (t ′)〉 = (1/2)δi jδχψu2
rmsexp(−|t − t ′|/τ ), (4)

where urms is a velocity scale that sets the kinetic energy of
the background fluid in the steady state. The relaxation time
τ can also be obtained from the fluid properties directly as
�∗/urms where �∗ is the mean vortex size [22]. We use the
Latin symbols i, j to denote particle labels and the Greek
symbols χ,ψ to denote spatial indices. In light of all these ar-
guments, we realize that the stochastic dynamics in Eq. (2) is
essentially non-Markovian and its corresponding steady state
Fokker-Planck equation must be carefully solved (see next)
to derive an exact expression of the stationary probability
distribution. Factorization of this distribution into position and
momentum parts will yield an exact expression of the effective
temperature of our particles. This is performed next.

B. Theoretical prediction of Teff

To systematically derive an expression for the effective
temperature Teff in terms of the fluid properties, we will now
set up a Fokker-Planck equation for the governing dynamics
of the interacting particles and solve it to get a stationary
velocity distribution. As stated earlier, the dynamics shown

in Eq. (2) is essentially non-Markovian due to the Gaus-
sian colored noise u. An exact solution of the corresponding
Fokker-Planck equation with the exception of harmonic inter-
actions is intractable in the general case, and approximations
are always required [49]. To circumvent this difficulty, we
reduce the original non-Markovian dynamics in Eq. (2) to
an equivalent Markovian dynamics by an appropriate enlarge-
ment of the phase space [50,51]. In the component form, this
simply reads

driχ

dt
= viχ ,

dviχ

dt
= −γ (viχ − uiχ ) − ∇iχ�,

duiχ

dt
= − 1

τ
uiχ +

√
u2

rms

τ
ξiχ , (5)

where ξi is a Gaussian white noise with zero mean and correla-
tion 〈ξiχ (t )ξ jψ (t ′)〉 = δi jδχψδ(t − t ′). The reader should note
that the dynamics in Eq. (6) is consistent with the expected
correlation properties of u that we already know from Eq. (4).
The Fokker-Planck equation for the probability distribution
P (rχ , vχ , t ) corresponding to the dynamics in (6) can be writ-
ten using a decoupling approximation as [52]

∂

∂t
P (rχ , vχ , t ) = LP (rχ , vχ , t ), (6)

where the operator L is defined as

L =

⎡
⎢⎢⎢⎣−vχ

∂

∂rχ

+ ∂

∂vχ

(
γ vχ + ∂�

∂rχ

)
+ γ 2u2

rmsτ

2

(
1 + γ τ + τ 2

〈
∂2�

∂r2
χ

〉) ∂2

∂v2
χ

+ γ 2u2
rmsτ

2

2

(
1 + γ τ + τ 2

〈
∂2�

∂r2
χ

〉) ∂2

∂rχ∂vχ

⎤
⎥⎥⎥⎦, (7)

The steady state solution of the above Fokker-Planck equa-
tion readily factorizes into position and velocity parts
as

Ps(rχ , vχ ) = 1

Z exp

(
− v2

χ

2σ 2
χ

)
exp

[
− �

σ 2
χ (1 + γ τ )

]
, (8)

with the velocity variance realized as

σ 2
χ = u2

rmsγ τ

2

(
1 + γ τ + τ 2

〈
∂2�

∂r2
χ

〉) ≡ Teff , (9)

the effective temperature of our inertial particles with χ be-
ing x or y. We take a moment of pause to appreciate the
beauty of this exact expression. There are no fitting param-
eters here, and we are able to completely predict the effective
temperature of particles once the background fluid properties
(urms, τ, γ ) and particle interactions (�) are specified. The
predicted Teff is in excellent agreement with the numerically
estimated value that is obtained by fitting the velocity distri-
bution to a Gaussian. This is shown in Fig. 2 where we plot
Teff vs D, the particle diffusivity. For each γ , we calculate
the diffusivity as D = limt→∞〈	r2〉/(4t ) and its variation

Dmin → Dmax comes from varying the fluid friction α in the
range of 4.0 to − 4.0. It is evident from each panel of this
figure that Teff is linear in D with a slope yielding the inverse
of particle mobility μ. This is a direct verification of Einstein’s
relation, the simplest formulation of FDR. We also observe
that the particle mobility is higher when the background fluid
is in a globally ordered polar state, i.e., α < 0, and lower
when the fluid is in isotropic equilibrium or α > 0. Our results
are valid across four decades of variation in the damping co-
efficient effectively covering the entire range 1 < γτ < 104,
where the lower and upper limits corresponding, respectively,
to the inertial and overdamped regimes. This puts a large
number of active systems within the purview of our paper—
from overdamped suspensions of microswimmers [35,53] to
the underdamped suspensions of macroswimmers, such as
ciliates, planktons, and copepods moving in low viscosity
media [31]. We would like to mention the range of densi-
ties explored ρ = 0.6–0.8 correspond to a physical range of
6 × 104–8 × 104/cm2 that is typically encountered in labo-
ratory experiments, such as Ref. [35]. At higher densities,
we observe that the particle velocity exhibit deviation from
Gaussian behavior putting that range outside the ambit of our
paper.
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FIG. 2. Evidence of the linear relationship between effective temperature Teff and particle diffusivity D is presented here at various value of
damping coefficient γ . The numerical value of Teff is extracted by fitting the distribution of v to a Gaussian (empty circles:◦) and the theoretical
value is predicted by Eq. (9) (filled circles: ). The error bars represent one standard deviation in the numerical estimate. The dashed line is a
linear fit to our numerical data and has a slope that indicates the inverse of particle mobility μ. This is a direct verification of Einstein’s relation,
the simplest FDR. Particle diffusivity D = limt→∞〈	r2〉/(4t ) is varied by varying the fluid friction α. For each panel that corresponds to a
specific γ , the mobility of particles is higher when the background fluid is in a globally ordered polar state (α < 0), and lower when it is in
isotropic equilibrium (α > 0). The former corresponds to energy injection by the friction term in Eq. (1), and the latter corresponds to the
damping of energy. These two regimes have been shown in different shades to clearly demonstrate the change in the mobility of the particles.

IV. SUMMARY

We have demonstrated that a distribution of interacting
particles immersed in an active fluid can be described by an
effective temperature. To achieve this, we solved the steady
state Fokker-Planck equation corresponding to the stochastic
governing equations of the particles. The result is an ex-
act relation between the effective temperature, properties of
the background flow, and particle interactions. Finally we
show this effective temperature is linear in particle diffu-
sivity with the slope characterizing particle mobility. This
is a direct verification of the Einstein’s relation—the sim-
plest FDR, for particles advected by a dense bacterial flow.
The mobility is observed to be higher when the back-
ground fluid is in a globally ordered polar phase and lower

when the fluid is in isotropic equilibrium. The results re-
ported here apply to active fluids prepared under a broad
spectrum of particle damping and are, therefore, general in
nature.
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