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Dissipation-range fluid turbulence and thermal noise
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We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence and
estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works
more than six decades ago, this scale is about equal to the Kolmogorov length, even though that is several orders
of magnitude above the mean free path. This result implies that the deterministic version of the incompressible
Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids. Within
this range, the fluctuating hydrodynamics equation of Landau and Lifschitz is more appropriate. In particular,
our analysis implies that both the exponentially decaying energy spectrum and the far-dissipation-range inter-
mittency predicted by Kraichnan for deterministic Navier-Stokes will be generally replaced by Gaussian thermal
equipartition at scales just below the Kolmogorov length. Stochastic shell model simulations at high Reynolds
numbers verify our theoretical predictions and reveal furthermore that inertial-range intermittency can propagate
deep into the dissipation range, leading to large fluctuations in the equipartition length scale. We explain the
failure of previous scaling arguments for the validity of deterministic Navier-Stokes equations at any Reynolds
number and we provide a mathematical interpretation and physical justification of the fluctuating Navier-Stokes
equation as an “effective field theory” valid below some high-wave-number cutoff �, rather than as a continuum
stochastic partial differential equation. At Reynolds number around a million, comparable to that in Earth’s
atmospheric boundary layer, the strongest turbulent excitations observed in our simulation penetrate down to a
length scale of about eight microns, still two orders of magnitude greater than the mean free path of air. However,
for longer observation times or for higher Reynolds numbers, more extreme turbulent events could lead to a local
breakdown of fluctuating hydrodynamics.
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I. INTRODUCTION

The incompressible Navier-Stokes equation for the fluid
velocity field u(x, t ) as a function of space x and time t :

∂t u + (u · ∇)u = −∇p + ν�u, ∇ · u = 0, (1.1)

since their original introduction [1], have been accepted for
more than 100 years as the mathematical model of turbu-
lence in molecular fluids at low Mach numbers and arbitrarily
high Reynolds-numbers. These equations have been used as
the starting point for statistical theories of turbulence, such
as that of Reynolds [2]. In particular, these equations were
invoked by Kolmogorov in his celebrated 1941 theory of tur-
bulence (K41), which postulated a universal scaling behavior
in the dissipation range of turbulent flow [3] and yielded the
exact “4/5 law” [4]. There are rigorous derivations of the
Navier-Stokes equations at any fixed Reynolds number, no
matter how large, in the limit of small Mach number and
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small Knudsen number, starting from the Boltzmann equa-
tion for low-density gases [5,6] and from stochastic lattice-gas
models with no restriction on density [7]. In fact, by a well-
known argument of Corrsin using the K41 turbulence theory
[8] (see also Ref. [9], Sec. 7.5), the hydrodynamic approx-
imation which underlies the incompressible Navier-Stokes
equation becomes increasingly better the higher the Reynolds
number, because the Knudsen number decreases as an inverse
power of Reynolds number. Mathematically, Leray [10,11]
has shown that dissipative weak solutions of incompressible
Navier-Stokes equation exist globally in time for any initial
data of locally finite energy and also that these solutions
remain smooth and unique locally in time for smooth ini-
tial data. The global smoothness remains an open question
[12] and singularities might possibly appear in finite time for
certain initial data at sufficiently high Reynolds number, as
conjectured by Leray himself [10,11]. However, the existing
rigorous derivations [5–7] show that, even if singularities oc-
cur so that Leray solutions are nonunique, nevertheless the
empirical velocity field will satisfy some Leray solution of
incompressible Navier-Stokes equations. The physical and
mathematical foundations for basing a theory of turbulence
on these equations seems thus quite secure.

2470-0045/2022/105(6)/065113(33) 065113-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3520-6047
https://orcid.org/0000-0002-6322-0903
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.065113&domain=pdf&date_stamp=2022-06-29
https://doi.org/10.1103/PhysRevE.105.065113


BANDAK, GOLDENFELD, MAILYBAEV, AND EYINK PHYSICAL REVIEW E 105, 065113 (2022)

There are effects intrinsic to molecular fluids that are omit-
ted, however, by the incompressible Navier-Stokes equations,
most importantly thermal fluctuations [13,14]. These effects
are described instead by an extension of the usual deter-
ministic fluid equations known as fluctuating hydrodynamics,
originally due to Landau and Lifschitz [15], Ch. XVII. For an
incompressible fluid satisfying ∇ · u = 0 these equations have
the form [16–21]

∂t u + (u · ∇)u = −∇p + ν�u + ∇ · τ̃, (1.2)

with τ̃i j (x, t ) a fluctuating stress prescribed as a Gaussian
random field with mean zero and covariance

〈̃τi j (x, t )̃τkl (x′, t ′)〉 = 2νkBT

ρ

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)
× δ3(x − x′)δ(t − t ′), (1.3)

whose realizations are symmetric and traceless, and with
Boltzmann’s constant kB

.= 1.38 × 10−23 m2 kg/s2 K. These
equations can be phenomenologically derived by requiring
that the equations with the added stochastic terms have the
Gibbs measure

PG[u] = 1

Z
exp

(
− ρ

2kBT

∫
�

d3x |u(x)|2
)

(1.4)

as an invariant measure, in which case Eq. (1.3) is known
as the fluctuation-dissipation relation. It is very difficult to
give Eqs. (1.2) and (1.3), as written, precise mathematical
meaning as a stochastic partial differential equation and to
show that it has Eq. (1.4) as an invariant measure (e.g., see
Ref. [22]). One approach to make mathematical sense of this
equation is as an equivalent Onsager-Machlup action or large-
deviations rate function [23,24], and in this form it has been
rigorously derived for a stochastic lattice gas [7]. However,
the common approach of statistical physicists is to regard
Eqs. (1.2) and (1.3) as an effective, low-wave-number field
theory that should be truncated at some wave-number cutoff
� which is larger than an inverse gradient length 	−1

∇ of the
fluid but smaller than an inverse microscopic length λ−1

micr (in
a gas, the inverse mean free path λ−1

mfp). In fact, there are
formal physical derivations of fluctuating hydrodynamics in
this sense for compressible fluids starting from molecular dy-
namics [25–27] and taking the low Mach-number limit yields
precisely Eqs. (1.2) and (1.3). Incorporating such a cutoff �,

the fluctuating hydrodynamic equations become well-defined
stochastic ODE’s for a finite number of Fourier modes, and the
corresponding Fourier truncated measure Eq. (1.4) is easily
checked to be time-invariant; see Appendix A.

There have been, however, only a relatively few studies of
the effects of thermal fluctuations on turbulent flows and most
of these have focused on the role of weak noise in selecting
a unique invariant measure for deterministic Navier-Stokes
[28–30]. The presence of a new dimensional parameter in the
fluctuating hydrodynamics Eqs. (1.2) and (1.3), the thermal
energy kBT, vitiates the similarity analysis of Kolmogorov
[3,4], who postulated that the only relevant dimensional pa-
rameters in the dissipation range of a turbulent flow are the
kinematic viscosity ν and the mean energy dissipation-rate
per mass ε. This violation of Kolmogorov’s 1941 analysis
is in addition to the defect that he later noted himself [31],

which is that space-time intermittency introduces dependence
upon the outer length scale L of the flow. See Ref. [9] for an
extensive review. The interplay between these two additional
dimensional parameters, L and kBT, is one of the major issues
addressed in this work. For high Reynolds-number turbulent
flows this interplay raises new questions regarding the pre-
cise formulation of fluctuating hydrodynamics, even within
the “effective field theory” point of view. Arguing from K41
theory, the gradient length 	∇, or largest length below which
the velocity field is smooth, should be the Kolmogorov scale
η = ν3/4ε−1/4. However, space-time intermittency makes the
dissipative cutoff fluctuate [32] (or Ref. [9], Sec. 8.5.5) so that
at some points 	∇ � η. In that case, does a cutoff length �−1

exist which satisfies the necessary conditions 	∇ � �−1 �
λmicr? If so, how should � be chosen in practice? And, most
importantly, what significant effects, if any, does thermal
noise have on the dynamics and statistics of incompressible
turbulence?

We develop answers to all of these questions in this work
and, in particular, argue that thermal noise has profound ob-
servable consequences for turbulence. In a following work we
shall discuss the inertial range of scales, but here we deal with
the dissipation range at scales smaller than the Kolmogorov
length η. This range has been the subject of much theoretical
and rigorous mathematical work within the framework of
the incompressible Navier-Stokes equation for decades, for
example, on the rate of decay of the spectrum [33–38] and
on intermittency in the dissipation range [36,39,40]. There
have also been intensive recent efforts to study the dissipation-
range energy spectrum by direct numerical simulations (DNS)
of the incompressible Navier-Stokes equations [41–43]. This
is part of a larger program to determine the most extreme
events and most singular, smallest-scale structures in a turbu-
lent flow, at lengths far below the Kolmogorov scale [44–50].
The underlying science question which drives this work is
whether the hydrodynamic equations can remain valid during
such extreme turbulent events or whether strong singularities
can lead to breakdown of the macroscopic, hydrodynamic
description. We shall argue that much of this prior theory and
simulation work is called into question for turbulence in real
molecular fluids and may require substantial modifications,
because effects of thermal noise become significant already at
length scales right around the Kolmogorov scale. Laboratory
experiments are now attempting to probe these small length
scales [42,51,52], but as we shall discuss at length, all current
experimental methods lack both the space-time resolution and
the sensitivity to measure turbulent velocity fields accurately
at sub-Kolmogorov scales. We regard this state of affairs as a
crisis in turbulence research, which calls for the development
of completely novel experimental techniques.

After the work in this paper was completed, we became
aware of a series of remarkable papers published by Robert
Betchov starting in the late 1950’s [53–55], which anticipated
several of our key conclusions. Betchov not only recog-
nized the significant effects that thermal noise could have
on dissipation-range statistics and other phenomena in fluid
turbulence, such as transition and predictability, but he also
developed the framework of fluctuating hydrodynamics for in-
compressible fluids [54], independent of Landau and Lifschitz
[15]. Betchov carried out a novel experimental investigation
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with a multi-jet flow created by a perforated box [53], de-
signed to lower as much as possible the space resolution scale
of extant hot-wire methods, to test his ideas. Unfortunately,
despite improving upon the resolution and especially the accu-
racy of prior experiments by a couple of orders of magnitude,
Betchov’s experiments nevertheless lacked the sensitivity re-
quired to verify his predicted results. Because he employed
linearized equations for his theoretical analysis, Betchov’s
predictions mainly regarded second-order statistics, such as
energy spectra and one-dimensional dissipation, but he stud-
ied also experimentally the velocity-derivative skewness and
kurtosis. Our analysis goes well beyond that of Betchov, tak-
ing full account of the nonlinearity of the fluid equations of
motion and associated phenomena such as inertial-range in-
termittency, which were unappreciated in his day. However,
Betchov’s pioneering work should be more widely known and
many of his ideas are still highly relevant today. We shall
therefore compare his conclusions with our own results, which
serve to confirm and extend his early insights. In the conclu-
sion Sec. V of our paper we shall briefly review Betchov’s
experiments and place them in the context of current efforts.

We shall proceed in this paper by developing simple the-
oretical arguments which are then tested numerically in a
reduced dynamical model of turbulence, the Sabra shell model
[56,57]. Our numerical results for this model provide, to our
knowledge, the first empirical confirmation of Betchov’s es-
sential predictions anywhere in the literature. Furthermore,
based upon these simulations, we shall then formulate more
refined theoretical predictions for the dissipation range of real
fluid turbulence. A short report of our most essential physical
predictions has been given elsewhere [58], but we provide
here full details of our numerical study and, furthermore,
address the quite subtle and complex issues surrounding the
hydrodynamic description of turbulent flows.

The detailed contents of our paper are as follows: In
Sec. II we discuss the incompressible fluctuating hydrody-
namics model Eq. (2.1) and its physical and mathematical
foundations for describing turbulent fluid flow. This includes
the formulation of the basic equations (Sec. II A) and an
extended dimensional analysis of turbulence taking into ac-
count thermal effects (Sec. II B). In particular, we discuss how
thermal noise breaks the scaling symmetry of deterministic
incompressible Navier-Stokes Eq. (1.1) and why standard ar-
guments on its validity for molecular fluids thus fail in the
dissipation range of turbulent flows (Sec. II C). We make
also a preliminary evaluation of the effects of inertial-range
intermittency by a phenomenological multifractal approach,
to assess possible limitations to a hydrodynamic description
of high-Reynolds turbulence (Sec. II D). To test these theo-
retical ideas we develop in Sec. III a stochastic Sabra shell
model of fluctuating hydrodyamics. We justify carefully the
use of this “zero-dimensional” model despite some significant
differences from fluctuating hydrodynamics in three space
dimensions (Sec. III A), and we discuss its meaning and nu-
merical solution as an effective theory for low wave numbers
(Sec. III B). The main Sec. IV of our paper presents numer-
ical results on thermal noise effects in turbulence, obtained
by simulating the shell model, which confirm our theoreti-
cal predictions and motivate additional conjectures for fluid
turbulence. After describing the set-up of our turbulence sim-

ulations (Sec. IV A), we present results on thermal effects
in the statistics of modal energies (Sec. IV B), a comparison
of dissipation-range intermittency for the deterministic and
stochastic model (Sec. IV C), and a similar comparison of
shell-model structure function scaling in the inertial-range
as well as the dissipation range (Sec. IV D). Finally, Sec. V
summarizes our conclusions and outlines directions for future
work.

II. FLUCTUATING HYDRODYNAMICS
OF TURBULENT FLOW

A. Formulation of the equations

To keep things simple, we take as flow domain a peri-
odic box or 3 torus, � = LT 3, with volume V = |�| = L3.

Then, to discuss steady-state turbulent flow, we shall modify
Eq. (1.2) in two ways. First, we shall employ the standard
theoretical artifice of adding to the local momentum balance
an external body force ρf to drive the turbulent flow, assum-
ing that this force is supported in Fourier space at very low
wave numbers ∼1/L. Second, and very essentially, we shall
assume that the velocity field is comprised of Fourier modes
with wave numbers |k| < � only, a condition which may be
expressed in terms of a projection operator P�:

u(x) = P�u(x) := 1

V

∑
|k|<�

eik·xûk,

and then the fluctuating hydrodynamic Eq. (1.2) is modified
to

∂t u + P�(u · ∇)u = −∇p + ν�u +
(

2νkBT

ρ

)1/2

∇ · η� + f,

∇ · u = 0. (2.1)

Separating out the covariance of the thermal noise facilitates
our scaling analysis below. Thus η�(x, t ) is a tensor space-
time Gaussian field with mean zero and covariance

〈η�i j (x, t )η�kl (x′, t ′)〉

=
(

δikδ jl + δilδ jk − 2

3
δi jδkl

)
δ3
�(x − x′)δ(t − t ′), (2.2)

for

δ3
�(x − x′) = P�δ3(x − x′) = 1

V

∑
|k|<�

eik·x. (2.3)

The kinematic pressure p in Eq. (2.1) is determined by the
requirement that u be solenoidal and obviously satisfies the
condition p = P� p. In contrast to the original Eq. (1.2) with
no UV cutoff �, which is mathematically ill-defined a priori,
the Eq. (2.1) is equivalent to a system of Itō stochastic dif-
ferential equations for the Fourier modes û(k) of the velocity
field and its solutions are stochastically well-posed. For exam-
ple, see the lectures of Flandoli [59]. As usual in discussions
of fluctuating hydrodynamics [16–19,25–27], it is assumed
that � can be chosen to satisfy 1/	∇ � � � 1/λmicr. For a
liquid, λmicr is the mean interparticle distance 	intp ≡ n−1/3

defined in terms of particle number density n. The condi-
tion �	intp � 1 is a minimal requirement that coarse-graining
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cells of size 1/� should contain many molecules. For a low-
density gas, the mean-free-path (mfp) length λmfp � 	intp and
the condition �λmfp � 1 guarantees that terms higher than
second-order in gradients can be neglected. We thus take
λmicr = max{	intp, λmfp}. For a high Reynolds-number turbu-
lent flow where intermittency effects may cause the gradient
length 	∇ to be much smaller than the traditional Kolmogorov
length η, it is not trivial that the crucial condition 	∇ � λmicr

should be satisfied. Even if so, one must determine how to
choose � in this range so that predictions are independent of
the choice.

The latter problem is highly nontrivial and currently lacks
an analytical solution, even at the physical level of rigor [60].
It is expected that the “bare viscosity” must be chosen to
have a cutoff-dependent form ν� so that predictions of the
model are independent of �. This is due physically to the
fact that the effective viscosity is renormalized by hydrody-
namic fluctuations from eliminated modes at wave numbers
> �. A renormalization group analysis of the fluid in the
thermal equilibrium state Eq. (1.4) shows that the dynamics
becomes asymptotically free in the infrared for space dimen-
sions d � 2 and described by a linear Langevin dynamics
(the Onsager regression hypothesis for long-wavelength, low-
frequency velocity fluctuations) [16,17]. This result can be
easily understood by estimating the root-mean-square (r.m.s.)
velocity u	 at length scale 	 in an equilibrium fluid with tem-
perature T and mass density ρ by the central limit theorem (cf.
Ref. [29]) as u	 ∼ (kBT/ρ	d )1/2. It follows that the “thermal
Reynolds numbers” of such equilibrium velocity fluctuations
at length scale 	

Reth
	 := 	uth

	

ν
=
(

kBT

ρν2	d−2

)1/2

, (2.4)

is small at sufficiently large lengths 	 in space dimensions
d > 2, which implies that the nonlinear coupling is weak. In
principle, the nonlinear coupling becomes large at sufficiently
small distances for d > 2, but we shall argue later that this
length scale is so small that it lies outside the regime of valid-
ity of a hydrodynamic description. Current numerical practice
in fluctuating hydrodynamics [19] evaluates wave-number-
dependent viscosity ν(k) by fitting molecular dynamics results
for velocity-velocity correlations at low frequency and at wave
number k to the Lorentzian form predicted by nonlinear fluc-
tuating hydrodynamics (e.g., see Eq. (3.37) in Ref. [17]). The
viscosity of a hard-disk fluid with 1/k near scales of order the
mean free path is found to be well-predicted by the Enskog
kinetic theory for dense fluids and scale-dependence due to
renormalization by thermal fluctuations is weak; see Ref. [19],
Fig. 8.

We remark finally that setting ν = 0 in Eq. (2.1) recov-
ers the truncated Euler dynamics, which has been previously
much studied. This ideal system was shown to satisfy a Liou-
ville theorem by Burgers [61] and much later independently
by Lee [62]. Quadratic invariants of the ideal incompressible
Euler equations such as kinetic energy and helicity are also
conserved in detail for individual wave-vector triads, as noted
by Onsager [63] and Kraichnan [35], so that these remain
invariants of the truncated Euler system. It follows that a
Gibbs measure of the form Eq. (1.4) is an invariant measure

of the truncated Euler system, as observed by both Lee [62]
and Hopf [64]. Furthermore, restoring a positive viscosity
ν > 0, the fluctuating hydrodynamics equation preserves that
Gibbsian invariant measure, as shown in detail in Appendix A.
It is worth remarking that the truncated Euler dynamics pos-
sesses other Gibbs-type invariant measures associated to fixed
values of helicity in addition to kinetic energy [65], but these
measures are no longer invariant in the presence of thermal
noise.

B. Dimensional analysis

For our study of the turbulent dissipation range, it is ap-
propriate to nondimensionalize Eq. (2.1) with Kolmogorov
dissipation length and velocity scales

η = ν3/4ε−1/4, uη = (εν)1/4, (2.5)

by setting

û = u/uη, x̂ = x/η, t̂ = (uη/η)t,
(2.6)

p̂ = p/u2
η, f̂ = f/F, �̂ = �η,

where F is the typical magnitude of the force per mass (e.g.,
an r.m.s. value). The equations of motion in dimensionless
form become

∂t̂ û + P�̂(û · ∇̂)û = −∇̂ p̂ + �̂û + (2θη )1/2∇̂ · η̂�̂ + �η f̂,

(2.7)

with dimensionless temperature and force magnitude:

θη = kBT

ρu2
ηη

3
, �η = Fη

u2
η

, (2.8)

However, it is more natural to nondimensionalize the large-
scale force with inertial-range units of length L and velocity
U = (εL)1/3 [66], so that �η = �L/Re1/4 with

�L = FL

U 2
= F

(ε2/L)1/3
, Re = UL

ν
= ε1/3L4/3

ν
, (2.9)

the dimensionless force magnitude at the integral scale and
the Reynolds number, respectively. Scaled in this manner and
with hats omitted, the fluctuating hydrodynamic Eq. (2.1)
becomes

∂t u + P�(u · ∇)u = −∇p + �u + (2θη )1/2∇ · η� + �L

Re1/4 f .

(2.10)

The Reynolds-dependence of the final term just reflects the
expectation that the direct effect of large-scale forcing will be
negligible in the dissipation range for Re � 1.

The thermal noise term is also expected to be small at the
Kolmogorov scale. The crucial parameter θη is the ratio of
the thermal energy to the energy of the Kolmogorov-scale
velocity fluctuations uη in a spatial region of diameter ∼η.

It is interesting to consider concrete numbers corresponding
to typical values of physical constants for the turbulent at-
mospheric boundary layer (ABL), taken from the monograph
[67]

ε = 400 cm2/s3, ν = 0.15 cm2/s,

ρ = 1.2 × 10−3 g/cm3, T = 300◦K, (2.11)
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which gives

η = 0.54 mm, uη = 2.78 cm/s, θη = 2.83 × 10−8.

(2.12)

The very small value of θη arises from the small value
of Boltzmann’s constant in centimeter-gram-second units,
kB = 1.38 × 10−16 erg/K.

Although this number is very small, it however rises
rapidly at length scales 	 < η. It can be estimated very crudely
by assuming an exponential decay for 	 < η, so that the fluid
velocity fluctuation level becomes

u	 ∼ uη exp(−η/	). (2.13)

Thus,

θ	 = kBT

ρu2
		

3
∼ θη

(
η

	

)3

exp(η/	). (2.14)

Because θ	 increases so rapidly for decreasing 	, one can see
that θ	 ∼ 1 already for 	eq ∼ η/11. In the ABL, this length is
of the order of 49 μm. For comparison, the mean-free-path
length of air at room temperature and standard atmospheric
pressure is λmfp = 68 nm. Thus, thermal noise becomes of
the same order as nonlinear terms already at sufficiently large
scales where a hydrodynamic description remains valid. Sim-
ilar estimates hold for other natural turbulent flows, such as
the upper ocean mixing layer, and in laboratory experiments
performed with a variety of fluids. For example, in the water
experiment of Debue et al. [51] at Re = 3 × 105 and 20◦C,
the Kolmogorov scale is η = 0.016 mm and θη = 2.5 × 10−7,

so that thermal fluctuations become relevant around length
scale 	eq ∼ η/11 = 1.5 μm which is still much larger than
the mean-free-path length of water λmfp = 0.25 nm. These
cases are typical. We therefore argue that theories of the “far
dissipation range” of turbulence which omit thermal noise are
of questionable relevance to molecular fluids in Nature.

The example of the ABL and others are reassuring that a
cutoff � should exist satisfying the fundamental requirement
	∇ � �−1 � 	micr for validity of fluctuating hydrodynamics.
Since the nonlinearity at length scales 	 � η is weak com-
pared with the thermal noise and the viscous damping, one
expects that the velocity fluctuations at those scales should
reach thermal equilibrium with a Maxwell-Boltzmann distri-
bution and an equipartition energy spectrum,

E (k) ∼ kBT

ρ

4πk2

(2π )3
(2.15)

(see Appendix A). Since this spectrum is growing in k, it
must always exceed the spectrum of the turbulent velocity
fluctuations at sufficiently high wave number. The physical
origin of these large velocity fluctuations is the high speeds of
the constituent molecules of the fluid, which are of the order
of magnitude of the sound speed cth, or about 343 m/s in air
and 1481 m/s in water. While these large velocities almost
completely cancel in macroscopic spatial averages by the law
of large numbers, the central limit theorem fluctuations grow
∼	−d/2 in space dimension d as the resolved length scale 	

decreases toward molecular scales. The crossover wave num-
ber to see thermal effects can again be crudely estimated by

equating the dissipation-range turbulence spectrum with the
thermal spectrum

u2
ηη exp(−kη) ∼ kBT

ρ
k2, (2.16)

which implies θη(kη)2 exp(kη) ∼ 1 and yields an estimate of
the crossover length 	eq ∼ 1/keq ∼ η/12 consistent with that
found earlier.

At much larger wave numbers than this, the velocity
fluctuations should be close to Gaussian, with statistical inde-
pendence of modes instantaneously in nonoverlapping wave
number bands. We therefore propose that the UV truncation
wave number � of the fluctuating hydrodynamic Eq. (2.1)
may be chosen anywhere in the range of k where the equipar-
tition spectrum is achieved and where the high-pass filtered
velocity u>k (x, t ) is a Gaussian random field. Assuming that
such a range of wave numbers exists, we expect that the
cutoff � may be selected arbitrarily in this range and the
predictions of the model will be insensitive to the particular
choice, as long as the bare viscosity ν� is chosen appro-
priately. No analytical prescription currently exists for this
choice but the prescription will be the same as that for the fluid
in thermal equilibrium with the given temperature T, mass
density ρ and cutoff wave number �. Thus, it should suffice
to choose ν� by matching with equilibrium velocity-velocity
correlations from molecular dynamics simulations, as in cur-
rent practice [19]. Note that the equipartition range which we
predict slightly beyond the Kolmogorov wave number will
be in the “low-wave-number” weak-coupling range of the
thermal equilibrium fluid. One can verify this by substituting
the definition Eq. (2.8) of θη into Eq. (2.4) for Reth

η , giving

Reth
η = θ1/2

η . (2.17)

We see that for θη with realistic values, Reth
η � 1 and thus the

nonlinear coupling in the thermal equipartition range should
remain negligible for several decades of wave number above
1/η.

The predicted energy spectrum which emerges from our
arguments is illustrated in Fig. 1 with a model spectrum pro-
posed by von Kármán [68]

E (k) = CK (εL)2/3 L5k4

[1 + (kL)2]17/6
exp(−bkη) + Ak2, (2.18)

which has been supplemented with an exponential factor
exp(−bkη) to represent decay in the traditional “far dissipa-
tion range” and with also an additive contribution from the
thermal equipartition spectrum Eq. (2.15) for A = kBT

ρ
4π

(2π )3 .

In the plot we have used the parameters Eq. (2.11) and also a
typical Reynolds number Re = 107 for the ABL taken from
Ref. [67]. The exponential-decay factor is consistent with
asymptotic predictions [35,38] and rigorous upper bounds
[36,37] for deterministic Navier-Stokes dynamics, with the
coefficient b = 7 chosen consistent with numerical observa-
tions [41] and with a conventional value CK = 1.6 of the
Kolmogorov constant [69]. Plotted as well with a dashed
line is the energy spectrum without thermal noise, obtained
by formally setting T = 0 in Eq. (2.18). Consistent with our
earlier estimates, the two spectra agree up to a wave num-
ber keq

.= 10/η where the equipartition spectrum begins to
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FIG. 1. Plot of the model turbulent energy spectrum Eq. (2.18)
for the parameters Eq. (2.11) of the atmospheric boundary layer and
for a typical Reynolds number Re = 107, as a solid line. The dashed
line is the spectrum with no thermal noise.

dominate. Below keq lies only about half a decade of wave
numbers where the traditional exponential decay is mani-
fested. The k2 energy spectrum that appears at keq will extend
at least up to wave numbers k where the rms velocity u1/k

approaches the sound speed cth. The incompressibilty assump-
tion for the model Eq. (2.1) then breaks down and density
fluctuations become significant, so that fluctuating compress-
ible equations [25–27] must be employed.

We may observe at this point that our picture of the tur-
bulent energy spectrum was almost entirely anticipated by
Betchov in his first paper on the subject [53]. Assuming that
the hydrodynamic modes at small scales would reach energy
equipartition, he arrived at an expression for the thermal spec-
trum Enoise(k) identical to our Eq. (2.15), except for an extra
overall factor of 3/2. As previously noted by Hosokawa [28],
Betchov did not take into account incompressibility and thus
counted 3 degrees of freedom for each independent wave
number mode rather than 2. By an argument essentially identi-
cal to ours, Betchov then determined the wave number we call
keq by matching Enoise(k) with the turbulent energy spectrum
E (k) in the dissipation range. For the latter, he assumed a
power-law form E (k) ∼ k−n, with n = 7 predicted by the
theory of Heisenberg [33] but with n = 6 more consistent with
Betchov’s own experimental results. Although he did not state
a quantitative estimate of keq, Betchov plotted his theoretical
result for Enoise(k) together with his experimental data for
E (k) and, extrapolating the latter, they can be observed to
cross at a wave number around 10 μm. In the final sentence
of his paper, Betchov concluded that “the gap between tur-
bulence and molecular agitation may not be as wide as is
generally appreciated.” In his later work [55], he arrived at the
more quantitative estimate that keqη

.= 1 by assuming that the
turbulent spectrum drops essentially to zero for kη > 1. His
schematic plot of the atmospheric spectrum, entirely analo-
gous to our Fig. 1, indicated an equilibration scale there of
order 1 mm. Betchov ended the paper [55] by noting that,
because η � λmfp, his conclusions differ from those of von

Neumann [70], who had argued that thermal noise becomes
relevant only for length scales of order the mean free path and
that separation of scales is thus “unambiguous” in turbulent
flows.

It should be emphasized that these conclusions are very
robust and do not depend upon any particular model of the
energy spectrum in the turbulent dissipation range, as long as
that spectrum decays rapidly in wave number. We made our
estimate of the equilibration scale using the model spectrum
Eq. (2.18) with exponential decay, but Betchov [53] reached
the same conclusion assuming a rapid power-law decay. In the
Supplemental Material [71] we show similarly that the “inter-
mediate dissipation range” predicted by Frisch and Vergassola
[40] using multifractal phenomenological models [31,72,73]
implies also that the equipartition scale is only about an order
of magnitude below the Kolmogorov scale. The stretched
exponential decay predicted for the dissipation-range spec-
trum by functional renormalization group arguments [74] will
likewise lead to the same result. Of course, all of these argu-
ments are phenomenological and the intuitive superposition of
spectra for turbulent and thermal fluctuations depends upon
the hypothesis that small scales will achieve the same equi-
librium distribution in a turbulent flow as in a laminar one.
This hypothesis is supported by the standard presumption of
weak turbulent fluctuations in the dissipation range, but it
must be tested empirically and could even be false due to rare,
intermittent bursts of turbulence that penetrate to very small
scales [32].

The physical arguments of Betchov and ourselves which
lead to our proposed picture of the turbulent energy spectrum
will be corroborated in Sec. III by shell-model simulations.
Furthermore, the direct effects of thermal noise will be found
to exist in those simulations at length scales much larger than
1/keq in more refined statistical measures, such as negative-
order structure functions or “inverse structure functions” [75],
which are more sensitive than the energy spectrum to rare
low-amplitude events. Equipartition spectra similar to those
predicted here have been observed in superfluid turbulence via
numerical simulations of the Gross-Pitaevskii equation [76],
where they correspond to a thermal bath of phonons at
high wave numbers created by the forward energy cascade.
Since superfluids have strictly zero viscosity, there is no ex-
act analog in these simulations of a dissipation range and
equipartition spectra there join directly with the Kolmogorov
cascade spectra. The same is true for equipartition spectra
observed in numerical simulations of decaying turbulence for
the truncated Euler system [77,78] where the k2 spectrum cor-
responds to thermalized wave-number modes near the spectral
cutoff � of the model. In contrast to the fluctuating hydrody-
namic Eqs. (1.2), which model molecular fluids at mesoscopic
scales, the truncated Euler system does not correspond di-
rectly to any physical system in nature or in the laboratory.
For a more detailed comparison of truncated Euler and related
systems with our results in this paper, see Sec. V A.

C. Violation of scale-symmetry of Navier-Stokes

A possible objection can be raised to our claim that the “far
dissipation range” of deterministic Navier-Stokes turbulence
is physically unachievable, based upon the well-known space-
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time scaling symmetry (see Ref. [9], Sec. 2.2; and Ref. [79],
Sec. 1.2):

u → u′ = λu, x → x′ = λ−1x, t → t ′ = λ−2t, (2.19)

which maps an incompressible Navier-Stokes solution u(x, t )
to another solution u′(x′, t ′) with the same Reynolds number
Re′ = Re and with molecular viscosity ν also unchanged.
This scale symmetry is equivalent to the familiar principle of
hydrodynamic similarity. In the presence of an external body
force f , one must also take

f → f ′ = λ3f . (2.20)

This symmetry of incompressible Navier-Stokes equation is
the basis of its rigorous derivation from the Boltzmann equa-
tion [5,6] or from lattice gas models [7] through a scaling
limit with λ → 0. Based on such mathematical treatments,
one might conclude that the deterministic Navier-Stokes equa-
tion should hold in a turbulent flow to any desired accuracy by
simply taking the outer length of the flow large enough and the
r.m.s. velocity small enough, at whatever Reynolds number
desired.

If, however, a solution of the fluctuating Navier-Stokes
Eq. (1.2) in 3D is subjected to the same rescaling Eq. (2.19),
then

kBT

ρ
→ kBT ′

ρ ′ = λ3 kBT

ρ
. (2.21)

Thus, thermal noise breaks the scaling symmetry of the de-
terministic Navier-Stokes equation, unless temperature can be
decreased as T → T ′ = λaT and density increased as ρ →
ρ ′ = λ−bρ, so that thermal noise satisfies Eq. (2.21) with kine-
matic viscosity held fixed ν(ρ ′, T ′) = ν(ρ, T ). (For example,
for an ideal gas ν ∝ T 1/2/ρ and one must take a = 2, b = 1).
The presumed relation Eq. (2.21) is the reason that deriva-
tion of the incompressible Navier-Stokes equation through a
hydrodynamic scaling limit corresponds to weak noise and
leads to a large-deviations framework [7]. However, even this
extended scaling symmetry of the fluctuating Eq. (1.2) is
physically limited, since at low enough temperature and/or
high enough density the fluid will undergo a phase transi-
tion to a binary gas-liquid mixture or to a solid state. If
one instead keeps the temperature and density fixed, then the
thermal noise does not become weaker and remains given
by the fluctuation-dissipation relation Eq. (1.3) for both the
solutions u and u′, which are no longer statistically similar
to each other. This violation of scale-symmetry is generally
not observed in fluids because Boltzmann’s constant kB is so
small in macroscopic units (centimeter-gram-second or meter-
kilogram-second). However, the breaking of hydrodynamic
similarity due to thermal noise can be observed in microflu-
idics, for example in the mixing at fluid interfaces [80].

Specializing these general considerations for the fluctuat-
ing hydrodynamic Eq. (1.2) to the case of forced turbulent
flow with time-average power input per mass ε = 〈u · f〉, the
scalings Eqs. (2.19) and (2.20) imply that

ε → ε′ = λ4ε. (2.22)

In decaying turbulence, the same result holds by Taylor’s
relation ε ∼ U 3/L [81]. The result Eq. (2.22) then implies that

the Kolmogorov velocity and length transform as

uη = (νε)1/4 → u′
η = λuη,

(2.23)
η = ν3/4ε−1/4 → η′ = λ−1η,

consistent with the scaling Eq. (2.19). It is easy to check that
along with the Reynolds number Re, also the dimensionless
force amplitudes �η and �L defined in Eqs. (2.8) and (2.9)
are invariant under the rescaling Eq. (2.19), but that

θη → θ ′
η = λθη (2.24)

when keeping ρ and kBT fixed. This result holds because
the kinetic energy of Kolmogorov-scale turbulent fluid ed-
dies increases as λ−1. It is thus possible, in principle, to
observe deterministic Navier-Stokes predictions in the dissi-
pation range by taking u → u′ = λu and x → x′ = λ−1x with
λ � 1. However, in practice, λ must be chosen exponentially
small, since the relations Eqs. (2.14) and (2.16) show that
deterministic Navier-Stokes predictions for the far dissipation
range will hold only up to a wave number kη ∼ ln(1/θ ′

η )
growing as ln(1/λ). For example, in the case of the ABL
we argued below Eq. (2.14) that noise would be relevant
already at a length scale 	 ∼ η/12. To make the deterministic
predictions valid down to 	 ∼ η/22 would require that the
integral length be made 4e11 = 240 000 times larger and r.m.s.
velocities 240 000 times weaker [82]!

Based on these considerations, we argue that an extended
far-dissipation-range spectrum described by deterministic
Navier-Stokes will be practically unobservable both in nat-
ural flows and in laboratory experiments. The best hope of
achieving a sizable exponential-decay range is probably with
a highly viscous fluid at relatively low Reynolds numbers,
so that both η and uη are made as large as possible. In such
a moderate Reynolds number turbulent flow, the dimension-
less noise parameter θη will be as small as possible. This
strategy should work best in liquids where viscosity can be
increased by lowering temperature, whereas in gases large
kinematic viscosity requires either high temperatures or low
densities. In any case, there will be a fundamental difficulty
in then, say, doubling the wave-number extent of such a
far-dissipation-range spectrum, because this would require a
further exponential decrease in θη, which will be unachiev-
able.

D. Intermittency and validity of fluctuating hydrodynamics

The previous considerations have ignored the phenomenon
of small-scale turbulence intermittency, which leads to en-
hanced fluctuations in the inertial-range that may be described
phenomenologically by the Parisi-Frisch multifractal model
[9,83]. This model postulates a dimension spectrum D(h) of
velocity Hölder exponents h and suggests the existence of
viscous cutoff lengths

ηh ∼ LRe−1/(1+h), (2.25)

depending upon h which can be much smaller than the clas-
sical Kolmogorov length η, which corresponds to h = 1/3
[32]. This model has been invoked to predict an “intermediate
dissipation range” (IDR) of scales [40], as an intermedi-
ate asymptotics at high-Re between the inertial range where
viscosity effects are negligible and the far dissipation range
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where viscosity dominates to produce exponential decay of
velocity fluctations. The far dissipation range is itself pre-
dicted to suffer extremely large fluctuations, because the
intermittency at lower wave numbers is intensely magnified
by the exponential drop-off in the spectrum [39]. We should
therefore discuss how such intermittency might modify the
conclusions in the previous section about the choice of �

and indeed about the validity of a fluctuating hydrodynamic
description of turbulent flow.

We shall exploit here the Parisi-Frisch multifractal model
to address these questions. We note that the multifractal con-
cept of an IDR predicts a collapse of spectra at different Re
with a certain scaling [40], and this “multiscaling” has been
verified in the GOY shell model [84] and to some degree
in direct numerical simulations (DNS) of the Navier-Stokes
equations; see Ref. [41], Fig. 4. However, there are alterna-
tive theoretical ideas about the “near dissipation range” of
turbulent flows, for example, from functional renormalization
group (FRG) analyses [74,85]. Some recent experimental and
DNS studies have given stronger support to the FRG predic-
tions than to the multifractal IDR prediction [42,43,51]. We
therefore invoke the multifractal model only as a heuristic to
draw qualitative conclusions. We note, however, that several
of the results we obtain below can be confirmed independently
by rigorous mathematical arguments.

The considerations of Corrsin [8] on the validity of a hy-
drodynamic description within the K41 theory of turbulence
can be easily extended to the multifractal model; see Ref. [86],
Sec. III(e). The essential point of Corrsin’s analysis is that
viscosity ν and microscopic length λmicr are not independent
quantities but are instead linked by the standard estimate from
kinetic theory

ν ∼ λmicrcth, (2.26)

where cth is the thermal velocity/sound speed. Combining
Eq. (2.26) with Eq. (2.25) then easily yields

Knh := λmicr/ηh ∼ Ma Re−h/(1+h) (2.27)

as an estimate of the “local Knudsen number” at a point with
Hölder exponent h, where Ma = U/cth is the Mach number
based on the large-scale flow velocity U . We see that the scale
separation required for validity of a hydrodynamic descrip-
tion, as quantified by the fundamental condition Knh � 1,

will become progressively better with increasing Re for h > 0
and Knh � 1 will hold marginally even for h = 0 if Ma � 1.

There is some evidence that the smallest Hölder exponent
in incompressible fluid turbulence is hmin = 0 [87] (although
this conclusion requires the assumption that negative h can-
not occur, e.g., Ref. [9], Sec. 8.3, which can be called into
question; see Sec. V C). If so, then there is a range of possible
wave-number cutoffs � satisfying

1/ηh � � � 1/λmicr, for all h, (2.28)

as long as Ma � 1. Taking into account the thermal noise, we
can expect for each h that its effects will be manifested in the
length scales just slightly below ηh, where the local energy
spectrum (defined, e.g., by a wavelet transform) experiences
exponential drop-off. In that case, we may further expect that
Gaussian, thermal-equilibrium statistics will hold locally at

any length scale 	 � ηh. More precisely, we may consider a
locally coarse-grained velocity

ū	(x) =
∑

n

vnG	(x − xn)
/∑

n

G	(xn), (2.29)

where G	(r) = 	−3G(r/	) is a smooth, well-localized kernel
function and where the sum

∑
n is over molecules of the fluid

with positions xn and velocities vn. Because the microscopic
velocity distributions are close to Maxwellian and because of
the central limit theorem [29], we expect to observe nearly
Gaussian statistics [88]

P(ū	) ∝ exp

(
−C

ρ	3|ū	 − v|2
kBT

)
, 	intp � 	 � ηh, (2.30)

with v = ūηh locally at each point in space and time, with
Hölder exponent h = h(x, t ). Thus, the primary effect of tur-
bulent intermittency should be a strong fluctuation in space
and time of the length scale ηh below which Gaussian thermal
equipartition sets in. Since the ratio ηh/λmicr grows with in-
creasing Re, as we have argued earlier, it should be possible
to choose a cutoff satisfying Eq. (2.28) without any restriction
on Re as long as Ma � 1.

Our tentative conclusion is that fluctuating Navier-Stokes
equation in the form Eq. (2.1) should be valid with a suit-
able choice of wave-number cutoff 1/ηη � � � 1/λmicr for
incompressible turbulent flows in the limit Kn � 1 and Ma �
1. We shall return to this important issue after presenting
and discussing our numerical results for the shell model in
the following section (see Sec. V C). Most importantly, we
have argued that this model predicts a strikingly different be-
havior than does the deterministic Navier-Stokes equation in
the far dissipation range of turbulent flow, at length scales
somewhat smaller than the Kolmogorov scale η. Whereas the
deterministic equations predict an exponential decay of the
energy spectrum [35–38] and consequent enhanced intermit-
tency [36,39], the fluctuating equations predict that the energy
spectrum about only an order of magnitude above 1/η should
rapidly bottom out and then rise again with increasing wave
number k in a thermal equipartition k2 spectral range with
Gaussian statistics.

III. SABRA SHELL MODEL OF FLUCTUATING
NAVIER-STOKES EQUATION

In the preceding section we have made two fundamental
claims: first, that turbulence in low Mach-number molecular
fluids is described by the incompressible FNS Eqs. (1.2) with
a suitable high-wave-number cutoff � and, second, that those
equations predict a thermal equipartition range a decade or
so below the Kolmogorov scale rather than a “far dissipa-
tion range” with exponentially decaying energy spectrum. To
check the first claim will require novel experimental inves-
tigations, which will be discussed later. The second claim is
based on physically plausible reasoning, but can be verified
by numerical simulations of the FNS equations. Such simula-
tions are possible using existing numerical schemes such as
the low Mach number FNS codes in Refs. [18–20], which
employ finite-volume spatial discretizations and explicit or
semi-implicit stochastic Runge-Kutta integrators in time. Mo-
tivated by the present study, such computations have been
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carried out and the results will be discussed briefly later. An
alternative numerical approach would be based on the lattice
Boltzmann method with thermal fluctuations incorporated at
the kinetic level [89,90]. Neither of these numerical schemes
even with the most powerful current computers can, however,
reach Reynolds numbers comparable to those in the atmo-
spheric boundary layer or even in many engineering flows.
Such high Reynolds numbers are particularly relevant to the
issue whether a hydrodynamic description is valid for the most
extreme turbulent events [44–50], since inertial-range inter-
mittency increases with Re. We shall therefore in this paper
validate our physical arguments by numerical simulations of a
simplified “shell model” of turbulence which can be solved at
much higher Reynolds numbers. These models long been used
as surrogates of incompressible Navier-Stokes equations, both
for physical investigation of high-Re turbulence [91–93] and
for comparative mathematical study [94]. Below we discuss
the model, introduce a suitable numerical scheme, and then
present numerical simulation results on the dissipation range
of the model in a statistical steady state of high-Reynolds
turbulence.

A. Introduction of the model

The stochastic model that we consider is based upon the de-
terministic Sabra shell model [56,57,95,96] which describes
the evolution of complex shell variables un for discrete wave
numbers kn = k02n, n = 0, 1, 2, . . . , N via the coupled set of
ODE’s

dun/dt = Bn[u] − νk2
nun + fn, (3.1)

with

Bn[u] = i[kn+1un+2u∗
n+1 − (1/2)knun+1u∗

n−1

+ (1/2)kn−1un−1un−2]. (3.2)

Here un represents the “velocity” of an eddy of size 1/kn,

the parameter ν is “kinematic viscosity,” and fn is an exter-
nal body force to stir the system. Shell models have long
been studied as convenient surrogates for the Navier-Stokes
equation in the numerical study of high-Reynolds-number
turbulence [93,97] but the Sabra model has been especially
popular because it enjoys symmetries most similar to those
of the incompressible fluid equations, roughly analogous to
translation-invariance and scale-invariance. There is no “po-
sition space” in the shell model on which a translation group
can act, but one can shift phases by defining

uφ
n (t ) = eiφn un(t ), (3.3)

and if the constraint φn−2 + φn−1 = φn is satisfied, then uφ is a
solution of the Sabra model whenever u is a solution. This re-
sult holds as well with a deterministic force, if the latter is also
transformed as f φ

n (t ) = eiφn fn(t ). This symmetry is analogous
to the action of space-translations by length displacement a,

acting on Fourier modes of the velocity field as

ûa(k, t ) = eik·aû(k, t ). (3.4)

Other basic symmetries of the inviscid Sabra model are in-
variance under continuous time scaling indexed by a real

parameter τ > 0,

u(τ )
n (t ) = τun(τ t ), (3.5)

which maps solutions over time interval [0, T ] to solutions
over the interval [0, τ−1T ] and also under discrete space scal-
ing indexed by natural number L,

u(L)
n (t ) = 2Lun+L(t ), (3.6)

where N (L) = N − L and likewise the lowest shell index is
shifted from M = 0 to M (L) = M − L. These are analogous
to the scale symmetries of incompressible Euler, according to
which for any λ, τ > 0 the transformation

u(λ,τ )(x, t ) = τ

λ
u(λx, τ t ) (3.7)

maps every Euler solution u in the space-time domain � ×
[0, T ] to another solution u(λ,τ ) in the space-time domain
λ−1� × [0, τ−1T ]; see Ref. [79], Sec. 1.2. Addition of vis-
cous damping in both shell models and real fluids leaves
only the restricted symmetry group with the constraint τ = λ2

and this remaining scaling symmetry is that which leaves the
Reynolds number invariant.

Here we add to the deterministic model Eq. (3.1) also
thermal noise modeled by random Langevin forces

dun/dt = Bn[u] − νk2
nun +

(
2νkBT

�

)1/2

knηn(t ) + fn, (3.8)

where the complex white-noises ηn(t ) have covariance

〈ηn(t )η∗
n′ (t ′)〉 = 2δnn′δ(t − t ′), (3.9)

for n = 0, 1, . . . , N. Note that the “translation-invariance”
symmetry Eq. (3.3) still holds in the presence of thermal
noise, but the remaining viscous scaling symmetry Eq. (3.7)
with τ = λ2 is broken. This noisy Sabra model is motivated
as the shell-model caricature of the fluctuating Navier-Stokes
Eq. (2.1) at absolute temperature T and mass density �. Note
that the “density” � has units of mass, because the shell model
is zero-dimensional, describing a scale hierarchy of turbulent
eddies at a single point. As usual in statistical physics, we
do not attempt to define this stochastic model for infinitely
many shells N = ∞, but instead truncate at some finite N
whose choice is discussed further below. The resulting system
of stochastic ODE’s is then well-posed globally in time (see
Example 3.3 in Ref. [59]). The specific form of the noise term
can be justified as that required to make the equilibrium Gibbs
distribution

PG[u] = 1

Z
exp(−βE[u]) (3.10)

the unique invariant measure for zero-forcing ( f = 0), where
β = 1/kBT and

E[u] =
N∑

n=0

1

2
�|un|2 (3.11)

is the shell-model analog of fluid kinetic energy. In fact, this
measure is in detailed balance for the dynamics or time-
reversible; see Appendix A for the proof. It is not hard to
verify by a modification of this argument that the Langevin
forces in Eq. (3.8) are the only possible white-noise terms
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that make PG invariant, a result often called the “Einstein
relation” or “fluctuation-dissipation relation” in statistical
physics. These are well-known results in the literature on the
fluctuating Navier-Stokes equations, here simply extended to
the Sabra shell model.

We should note that the infinite-N limit of our model
Eqs. (3.8) and (3.9) in the unforced case with fn = 0 has
been been previously studied in Ref. [98]. There it was shown
that the stochastic dynamical equations with N � +∞ define
a time evolution which is strong in the probabilistic sense
(i.e., for individual realizations of the noise) and that the
corresponding probability measure Eq. (3.10) with N = +∞
is time-invariant. We do not have any need to consider such
an infinite-N limit in our study, although mathematical results
of this type do bear upon the N-independence of the statistical
predictions of our model, which will be discussed more below.
The paper [98] showed also that the unforced, deterministic,
inviscid model with ν = 0 makes sense in the limit N = +∞
with initial data chosen from the Gibbs measure Eq. (3.10),
which is again time-invariant. This result is likewise not of
direct physical interest. The turbulent flows studied here will
be described by (weak) solutions of the inviscid shell model
dynamics in the limit Re → ∞, N − M → ∞, as mathemat-
ically studied in Refs. [95,96], but these weak solutions will
dissipate kinetic energy and will not have PG as an invariant
measure. There are additional invariant measures of the de-
terministic inviscid dynamics, associated for example to the
“helicity” invariant H =∑n(−1)nkn|un|2 [93,97]. However,
these measures are not invariant in the presence of viscosity
and thermal noise, and are also not of any direct physical
interest.

To study our model in the dissipation range, we nondi-
mensionalize variables in analogy to Eq. (2.6), which brings
Eq. (3.8) to the form

dun/dt = Bn[u] − k2
nun + (2θη )1/2knηn(t ) + fn/Re1/4,

(3.12)

where

Re = U

νk0
, θη = kBT

�u2
η

, (3.13)

and the second parameter is the ratio of thermal energies to ki-
netic energies of Kolmogorov-scale fluid fluctuations. In these
units, the shell index now ranges over values n = M, . . . , R,
where M = −� 3

4 log2(Re)�, R = N − M, with �x� denoting
the integer part of x, and now n = 0 corresponds to the
Kolmogorov wave number. In a physically reasonable corre-
spondence to real fluid turbulence, the parameter θη should be
taken extremely small, but fixed independent of Re. In our nu-
merical studies in this work, we shall adopt the precise value
in Eq. (2.12) appropriate to the ABL and which has magnitude
θη ∼ 10−8, but our results do not depend qualitatively upon
the particular choice of this parameter.

The existence of the R → ∞ limit of the model Eq. (3.12),
demonstrated in Ref. [98] for fn = 0 and conjectured here
with fn �= 0, is consistent with its much more benign UV-
behavior than that of the 3D fluctuating Navier-Stokes model
Eq. (2.1). These differences in the two models arise both
from the strictly local-in-wave-number couplings of the shell

model and also from its lower dimensionality, correspond-
ing to a fluid in space dimension d = 0. If the RG analysis
of Refs. [16,17] is carried out for the unstirred shell model
Eq. (3.8) in thermal equilibrium, then it is found that that
the dynamics is UV asymptotically free for kn � uth/ν, with
uth := (2kBT/�)1/2. The general result Eq. (2.17) implies that
Reth

η = θ1/2
η � 1 and thus the wave numbers knη � 1 are deep

in the UV asymptotic-free regime of the thermal Gibbs state.
In other words, the modes of the model Eq. (3.12) with shell
numbers n � 0 have dynamics given nearly by uncoupled
linear Langevin equations and thus variables un, un′ in that
range with n �= n′ are statistically independent not only instan-
taneously but also very nearly independent at unequal times.
This statistical independence will be verified to hold in our
numerical solutions to very good accuracy. It is therefore pos-
sible to increase R → R + 1 while keeping the bare-viscosity
as a fixed constant νL = ν and any resultant change in the
stochastic dynamics is unobservable (see Sec. III B 3). As an
aside, we remark that, conversely, the IR dynamics of the
noisy shell model Eq. (3.8) in the unstirred, thermal equi-
librium state at wave numbers kn � uth/ν will be strongly
coupled and the time-correlations should exhibit nontrivial
scaling analogous to that in the d = 1 KPZ model [17,99].

It must be emphasized that, as a consequence, our shell
model Eq. (3.12) will underestimate the effects of thermal
noise at high wave numbers. This is due not only to the
decrease of thermal noise effects for Sabra compared with
increase for Navier-Stokes, but also due to the faster decay of
the turbulent energy spectrum in Navier-Stokes without noise.
As to the latter, the decay of the energy spectrum in the far
dissipation range of deterministic Navier-Stokes turbulence
is expected to be exponential (up to a power-law prefactor),
based upon physical theory [35,38], rigorous mathematical
arguments [36,37], and numerical simulations [41]. In the
shell model, on the contrary, physical arguments [100,101],
rigorous bounds [95] and numerical simulations [102] support
instead a stretched exponential decay:

〈|un|2〉 ∼ exp[−c(knη)γ ], γ = log2

(
1 + √

5

2

)
. (3.14)

This slower decay in the shell-model means that determinis-
tic nonlinear effects will persist to higher wave numbers. In
addition, the Gibbs measure Eq. (3.10) for the shell model
corresponds to an energy spectrum

En := 〈|un|2〉
2kn

= A/kn, (3.15)

with A = kBT/�. In contrast to the spectrum Eq. (2.15) for
FNS in d = 3, which is growing ∼k2 at high-k, the cor-
responding equipartition spectrum Eq. (3.15) for the noisy
shell model is decaying ∼1/kn. Because of these important
differences of our model from reality, any thermal effects
that we observe in our shell-model simulations should have
appreciably greater analogues in real fluids.

B. Numerical integration method

We now discuss the method for numerical solution of the
noisy Sabra model Eq. (3.12) which we shall use for our study
of the steady-state statistics in this paper.
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1. Slaved Itō-Taylor scheme

We employ here a slaved 3/2-strong-order Itō-Taylor
scheme which was proposed by Lord and Rougemont for
parabolic stochastic PDE’s (see Ref. [103], Sec. 6). Because
of the extreme stiffness of the shell model dynamics, it is
desirable to use a scheme which explicitly solves the fast
viscous dynamics by an integrating factor. The method we
employ is a close analog for stochastic equations of the slaved
second-order Adams-Bashforth method widely used for nu-
merical simulation of deterministic shell models [104]. The
method in Ref. [103] is based on stochastic Itō-Taylor expan-
sions and is a slaved version of the 3/2-strong-order method
of Platen and Wagner [105]; see Ref. [106], Sec. 10.4 for a
detailed discussion. The method of Lord-Rougemont [103]
used a Fourier-Galerkin method for spatial discretization that
kept Fourier modes |n| � N, which brings it very close to
the formulation of the shell models. It must be emphasized

once again however that our view of the noisy Sabra model
as an “effective low-wave-number theory,” although standard
in the statistical physics literature, is quite different from the
framework of stochastic PDE’s, which requires a limit N →
∞. This difference will inform our discussion of convergence
issues further below.

To state the numerical scheme explicitly, we write the noisy
Sabra model Eq. (3.8) in the form

dun = andt + bndWn, n = 0, 1, . . . , N, (3.16)

with

an := Bn[u] − νk2
nun + fn, bn :=

(
2kBT

�

)1/2

kn. (3.17)

The method of Ref. [103] solves this system approximately
for a discrete set of times tk, k = 0, 1, 2, . . . by the iteration

un(tk+1) = e−νk2
n�t

{
un(tk ) + �t[Bn(tk, u(tk )) + fn(tk )] + 1

2
(�t )2(νk2

n [Bn(tk, u(tk )) + fn(tk )] + ḟn(tk )
)

+ i

2
(�t )2[kn+1(an+2u∗

n+1 + un+2a∗
n+1) − (1/2)kn(an+1u∗

n−1 + un+1a∗
n−1)

+ (1/2)kn−1(an−1un−2 + un−1an−2)] + bn
[
(1 + νk2

n�t )�Wn(tk ) − �Zn(tk )
]

+ i[kn+1(bn+2�Zn+2(tk )u∗
n+1 + un+2bn+1�Z∗

n+1(tk )) − (1/2)kn(bn+1�Zn+1(tk )u∗
n−1 + un+1bn−1�Z∗

n−1(tk ))

+ (1/2)kn−1(bn−1�Zn−1(tk )un−2 + un−1bn−2�Zn−2(tk ))]

}
, (3.18)

for n = 0, 1, . . . , N, where

�Wn(tk ) :=
∫ tk+1

tk

dWn(t ) = Wn(tk+1) − Wn(tk ), (3.19)

�Zn(tk ) :=
∫ tk+1

tk

dt [Wn(t ) − Wn(tk )]. (3.20)

The derivation of this scheme is sketched briefly in Ap-
pendix B, for completeness. In a practical implementation
the pairs of complex random variables �Wm(tk ), �Zm(tk )
have real and imaginary parts which can be generated from
independent N (0, 1) random variables by the method in
Ref. [106], Sec. 10.4, Eq. (4.3). For all of our tests of con-
vergence of this scheme we used the same model parameters
employed in the long-time steady-state simulation, discussed
in detail in the next Sec. IV A.

The convergence proofs in the mathematical literature for
this method and related ones [103,107,108] employ a joint
limit �t → 0 and N → ∞ and require a noise spectrum
rapidly converging bn → 0 as n → ∞. By contrast, the spec-
trum defined in Eq. (3.17) that corresponds to thermal noise
has in fact diverging bn, with bn → ∞ as n → ∞. However,
we do not take the limit N → ∞ but consider instead a
fixed large N, which makes our model a system of stochastic
ODE’s, for which standard convergence proofs in the limit
�t → 0 apply [106]. Our selection criterion for N is that it
must lie in the range of shell numbers n where the statistics

are Gibbsian thermal equilibrium at temperature T, with en-
ergy equipartition and independent Gaussian distributions of
the shell variables un. We shall show in Sec. IV C for fixed
individual realizations of the shell model state vector u which
are chosen from the long-time, turbulent steady state that such
an equipartition range in fact appears for all n � Ne, with
some Ne, when these data u are evolved under the stochastic
dynamics Eq. (3.8) for a very short time τe ∼ 1/kNe uNe . Here
Ne = Ne(u) depends upon the state vector u which is selected.
We shall show furthermore that, for the range of integration
times considered (300 large-eddy turnover times), there is
a maximum value N�

e = maxt Ne[u(t )] over all times t . In
our convergence tests below we shall select as initial data
u a particular realization u� such that N�

e = Ne(u�), which
corresponds to one of these most intense “bursts” which we
encountered in our long numerical run. See Sec. IV C where
this state u� is more completely described and, also, Sup-
plemental Material [71]. We only note here that this state
u� was found to have N�

e = Ne(u�) = nη + 6, with nη the
Kolmogorov shell number, in a simulation with shell number
cutoff N = nη + 7 = 22. Thus, only the two highest wave-
number shells remained in thermal equilibrium for this intense
bursting event u�. This is presumably the most stringent
test case for convergence of our numerical scheme, which
should require the smallest time step �t and largest trunca-
tion shell number N . However, we have tested convergence
of our numerical scheme as well for other initial data u(0)
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selected from the turbulent steady state and found very similar
results.

2. Strong convergence in �t

To check strong (pathwise) convergence in the time step
�t in the model with N = 22 shells, we must compare nu-
merical solutions with different time steps �t for the same
realization of the complex Brownian motions Wn(t ). This re-
quires a statistically consistent choice of the random variables
�Wn(tk ), �Zn(tk ) for the different step sizes �t . We create
such a consistent set by first constructing these pairs by the
method of Ref. [106], Sec. 10.4, for the smallest time step
�t = δt . We then construct consistent values for �t = 2 δt,
by the combinations

�W (1)
n

(
t (1)
k

) = �W (t2k+1) + �W (t2k ), (3.21)

�Z (1)
n

(
t (1)
k

) = �Z (t2k+1) + �Z (t2k ) + �t �W (t2k ), (3.22)

where tk = k(δt ) and t (1)
k = k(2δt ), for k = 0, 1, 2, . . . Equa-

tions (3.21) and (3.22) follow easily from the definition
Eqs. (3.19) and (3.20). This procedure may be iterated
p times to produce consistent sets of random increments
�W (p)

n (t (p)
k ),�Z (p)

n (t (p)
k ) for any time step of the form �t =

2p δt, with t (p)
k = k(2p δt ) for k = 0, 1, 2, . . . .

As discussed in the previous section, we use as initial
condition for our pathwise convergence study the state u� from
the strong “burst” which propagated to the highest shell. We
define error as the expectation over noise realizations E of the
norm ‖ · ‖ of the difference u�t (t ) − uδt (t ), where u�t (t ) is the
numerical solution starting from u� using time step �t and
uδt (t ) is the reference state obtained by integration with the
finest time step δt , which we take as the “exact solution.” To
make our convergence criterion most sensitive to the largest
wave numbers, we used the enstrophy norm associated to the
space h1

2, or

‖u‖ens :=
√√√√ N∑

n=0

k2
n |un|2. (3.23)

However, we obtained similar results with norms for other
spaces such as energy norm for the space l2 and sup-norm
for the space l∞ and also for individual shells n. We took
t = 10−3tη, where tη = η/uη is the Kolmogorov time, since
this choice of time t was large enough to obtain appreciable
evolution at the highest shells. The results which are plotted
in Figure 2 show convincingly that the strong order of conver-
gence of the method is 2.

This is consistent with the mathematical theory [103],
which establishes at least 3

2 -order (see also Appendix B), but
better than we had initially expected. We furthermore found
the method to be strong order 2 for all other initial data that
we considered. To illuminate this unexpectedly large conver-
gence rate, we estimated the local truncation error T (�t )
by calculating the error in the method with a single step
E[‖u�t (�t ) − uδt (�t )‖h1

2
], for each stepsize �t . The results,

plotted in Fig. 3 show the scaling T (�t ) ∝ (�t )5/2 that was
expected. This would produce a global error scaling as (�t )3/2

in a number of steps Nsteps ∝ 1
�t , if these errors accumulated

FIG. 2. Test of order of convergence of the numerical scheme,
starting with a strong burst as the initial conditions. Solid orange dots
( ) correspond to expectation values of the enstrophy norm Eq. (3.23)
of the error; solid cyan line ( ) corresponds to least-squares fit of a
function c�t2, where c was determined to be 7.434.

without cancellation. The observed scaling of global error is
explained if the errors at each step are in fact uncorrelated and
of different signs, so that, by the central limit theorem, the
total error then scales as (�t )5/2

√
Nsteps ∝ (�t )2.

In conclusion, our numerical scheme Eq. (3.18) converges
pathwise with order at least 3/2 (and effectively 2) as �t → 0
for a choice of the cutoff N > N�

e .

3. Independence of wave-number truncation N

We next verify that the statistical evolution of the shell
modes un for n � N�

e is independent of the choice of cutoff
N � N�

e . More precisely, we study the transition probability
density

PN [u, t |u(0), 0] = E(δ{u − UN [t ; u(0),W ]}), (3.24)

where UN [t ; u(0),W ] is the (strong) solution of our stochastic
shell model Eq. (3.8) for number of shells N � Ne[u(0)] with

FIG. 3. Scaling (�t )
5
2 for the local truncation error T (�t ). Solid

orange dots ( ) correspond to expectation values of the enstrophy
norm Eq. (3.23) of the error; solid cyan line ( ) corresponds to
least-squares fit of a function c�t5/2, where c was determined to be
6.710.
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initial data u(0) and with the particular realization W = (Wn :
n = 0, 1, . . . , N ) of the random Brownian motions over the
time-interval [0, t], and E[·] again denotes expectation over
those random Brownian motions. We present evidence that
this transition probability for the set of modes [un(0) = u�

n :
n = 0, 1, . . . , N�

e ] is independent of the choice of cutoff N �
N�

e and also independent of the initial data [un(0) : n = N�
e +

1, . . . , N] of the modes with n > N�
e when those are selected

at random from the thermal Gibbs distribution for those shells.
If this result holds, then we have a well-defined stochastic
Markov evolution for the modes [un(0) : n = 0, 1, . . . , N�

e ],
which is independent of the cutoff N. This gives a precise
mathematical meaning to the stochastic shell-model Eq. (3.8)
as a “low-wave-number effective theory.”

The transition probability density Eq. (3.24) of the entire
state vector (un : n = 0, 1, . . . , N�

e ) is obviously too unwieldy
to investigate in its entirety, so we consider instead reduced
or marginal PDF’s of un for specific shell numbers n � N�

e .

We focus our attention on the shell modes with n near to N�
e ,

since those must be most affected by the change in truncation
N. Here we present results for n = N�

e itself, but comparable
results are found also for n < N�

e . For the time lapse t in the
transition PDF Eq. (3.24) we chose t = tη, one Kolmogorov
time. This time should be sufficient for the influence of trun-
cation N to propagate through the entire dissipation range.
Once the transition PDF Eq. (3.24) has been verified to be
independent of N for times t � tη, then this independence of
course extends to the transition PDF’s for all times t > 0 by
the Chapman-Kolmogorov equation. Here we presume that
N-independence of the transition probability for the most
singular event, u(0) = u∗, implies independence for any other
choices of u(0).

For the study of effects of truncation, we used the same
model parameters and time step �t that were employed in
the long-time steady-state simulation, discussed in detail in
the next Sec. IV A. Increasing N from its original value N =
N�

e + 1 would require a smaller time step and this would have
been numerically expensive. We therefore chose to make the
much more demanding test of reducing the cutoff N to the
value N = N�

e , taking uN�
e +1 = 0 as boundary condition, and

then comparing the transition PDF for the reduced value N =
N�

e with that for the original value N = N�
e + 1. We emphasize

that for the intense burst event u�, only the highest two modes
with n = N�

e , N�
e + 1 remained in thermal equilibrium, so that

our reduction to N = N�
e leaves only a single mode in equipar-

tition. Plotted in Fig. 4 are the reduced transition PDF’s for the
real part xN�

e
= Re(uN�

e
) with both N = N�

e and N = N�
e + 1,

calculated by averaging over 8 × 104 independent samples
of the Brownian motions W = (Wn : n = 0, 1, . . . , N�

e + 1).
The two PDF’s are identical within Monte Carlo error, a strong
evidence for statistical decoupling of mode uN�

e +1 from the dy-
namics of the modes un with n � N�

e . We obtained analogous
results (not shown here) for the marginal transition PDF of
the imaginary part yN�

e
= Im(uN�

e
) and for the similar variables

xn, yn with n < N�
e .

These independence results support the claim that we have
a well-defined stochastic dynamics whenever the cutoff N is
selected larger than N�

e , in agreement with the idea that the
shell modes in thermal equilibrium are UV asymptotically

FIG. 4. Comparison of the two marginal transition PDFs
PN (xN�

e
, t |u�, 0) for the variable xN�

e
= Re(uN�

e
) with the truncation

wave numbers N = N�
e and N = N�

e + 1.

free. These results in fact suggest that a convergence result
should hold for the idealized mathematical limit N → ∞.

This is hinted also by the rigorous results in Ref. [98] for
the unforced, thermal equilibrium dynamics. Of course, even
if such a limit result could be proved for the forced model,
it would still not suffice to justify it physically, unless it
could be shown even further that convergence is practically
attained for a value of N�

e = log2(�/k0) corresponding to a
length scale �−1 still much greater than λmfp. Our results for
the Sabra model are thus encouraging, because N�

e = nη + 6
corresponds to a length scale only 64 times smaller than η. In
the case of the ABL with η = 0.54 mm these events of most
extreme intermittency would correspond to a length about
8.4 μm, which is still 124 times greater than the mean-free-
path length of air, λmfp = 68 nm.

IV. NUMERICAL SIMULATION RESULTS

A. Setup of the simulations

We undertook to perform our simulations of the noisy
Sabra model in dimensionless form with the dissipation scal-
ing Eq. (3.12), so that ε = ν = 1 and the Kolmogorov shell
number is set to n = 0. We wanted dimensionless parame-
ters in correspondence with the atmospheric boundary layer
(ABL), and thus the dimensionless temperature was taken to
have the value θη = 2.83 × 10−8 in Eq. (2.12). The range of
shell numbers in our simulation was chosen as n = M, M +
1, . . . , R with M = −15 and R = 7 and with constant stirring
forces applied at the first two shells, M and M + 1. We aimed
to achieve a Reynolds number Re = urms2M comparable to
the value Re ∼ 107 cited as typical in the ABL [67]. How-
ever, with our choice of forcing, neither of the statistical
quantities

u2
rms =

R∑
n=M

〈|un|2〉, ε =
R∑

n=M

k2
n〈|un|2〉 (4.1)

was under our precise control. We therefore adjusted the forc-
ing until we obtained urms ∼ O(102) and ε ∼ O(1), which
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was satisfied with the stirring forces

fM = −0.008900918232183095 − 0.0305497603210104 i,

fM+1 = 0.005116337459331228 − 0.018175040700335127 i,

(4.2)

which gave the precise value ε
.= 1.478, close to our tar-

get value of unity. We then rescaled all quantities to correct
dissipation-scale units by taking

un → un/ε
1/4, kn → kn/ε

1/4, fn → fn/ε
3/4, (4.3)

which yielded urms = 56.48, Re = 2.04 × 106 and θη =
2.328 × 10−8. All results presented below are in these
Kolmogorov units.

The time step of our simulation was chosen (in original
units) to be equal to �t = 10−5 which was about an order
of magnitude smaller than the viscous time at the highest
wave number, tvis = 1/k2

R
.= 6.1 × 10−5. Since one large-

eddy turnover-time of the simulation was T = 1/kMurms
.=

640 dimensionless time units, it was too time-consuming
to calculate time-averages over many such times T in a
single run of the model on one computer. We therefore
took advantage of parallel computing by using a strategy rst
computing a long run of the model for Nsamp = 300 large-
eddy turnover times with increased time step �t = 10−3 and
then creating Nsamp independent initial-data by sampling that
under-resolved solution in intervals of one turnover time.
These 300 independent initial data were then distributed over
the nodes of a computer cluster and each integrated again for
time T with the time step �t = 10−5. To avoid possible early
time artefacts from under-resolution, we discarded the first
100 steps of these well-resolved simulations in calculating all
long-time averages (and, in fact, the statistics were checked to
change negligibly also by including those initial time steps).

Both the noisy model Eq. (3.8) and the deterministic model
Eq. (3.1) were solved with the same numerical Taylor-Itō
scheme Eq. (3.18), the latter simply by setting θη = 0. The
calculations were performed in double-precision arithmetic
and only for the deterministic model at the highest wave num-
bers did we approach the underflow level of double precision.
In fact, it is one of the numerical advantages of stochastic
models that the requirements on arithmetic precision are con-
siderably reduced, a fact which has been previously stressed
for climate modeling [109]. The time step �t and the total
number Nsamp of large-eddy times used to calculate averages
were the same for both noisy and deterministic cases. We
discuss in Appendix C the various tests that we have made
that those parameter choices were adequate to yield well-
converged statistics.

B. Energy spectra with thermal noise

We first present numerical results on the simplest statistical
quantity of interest, the energy spectrum. To make thermal
energy equipartition as evident as possible, we shall show the
average ε̄n of the kinetic energy per mass in the mode with
shell number n

εn = 1
2 |un|2, (4.4)

FIG. 5. The energy spectrum of the deterministic model (heavy
blue line, ) and noisy model (heavy red line, ). The dashed red
line ( ) shows the thermal equipartition value in Eq. (4.5). Inset:
The local stretching exponents Eq. (4.6) for the deterministic model
spectrum (blue solid circles, ) and theoretical value in Eq. (3.14)
(dashed blue line, ).

plotted versus wave number kn. This differs slightly from the
standard energy spectrum for the shell model which is conven-
tionally defined by En = ε̄n/kn, as in Eq. (3.15). The quantity
Eq. (4.4) is more convenient because thermal equipartition
gives a constant value independent of n,

eeq
n = θη, (4.5)

in Kolmogorov dissipation units. In Fig. 5 we plot the energy
in mode n given by Eq. (4.4) for both the deterministic and
noisy Sabra models.

The two spectra are indistinguishable in the inertial range,
where both exhibit a power-law decay ∝ k−α

n with exponent a
bit larger than the K41 value α = 2/3. The increase of α above
the K41 value is due to standard inertial-range intermittency
effects, which do not differ for the deterministic and noisy
models. The behavior of the spectrum in the dissipation range
is, however, drastically different for the two models, with
the spectrum of the deterministic model exhibiting a very
rapid exponential-type decay and the spectrum of the noisy
model saturating at the equipartition value Eq. (4.5). Alto-
gether, the results are very close to our predicted spectrum for
3D incompressible fluid turbulence pictured in Fig. 1, except
that the equipartition wave number is slightly larger, keqη

.=
15, rather than keqη

.= 10 for 3D. The somewhat smaller
equipartition wave number in 3D is due in part to the rising
equipartition spectrum there and also to the faster exponential
decay in the absence of thermal noise. By contrast, the en-
ergy spectrum Eq. (4.4) of the shell model becomes flat in
thermal equipartition and exhibits the stretched-exponential
decay Eq. (3.14) without thermal noise. We have verified this
stretched-exponential form of the spectrum from our numeri-
cal results, by calculating a local stretching exponent

γn = log2

∣∣ln〈|un+1|2〉
∣∣− log2

∣∣ln〈|un|2〉
∣∣ (4.6)

at dissipation-range shell numbers n > 0 in the deterministic
model, with the results plotted in the inset of Fig. 5. The local
exponents indeed agree well with the theoretically expected
value γ = log2( 1+√

5
2 ) at n � 4.
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FIG. 6. PDFs of the normalized modal energy εn/〈εn〉 for shells
n = 4, 5, 6, 7 and an exponential distribution with rate parameter 1.
The error bars depict standard error of the mean from the long-time
average.

With thermal noise present, the modes at the highest
wave number not only have energy spectrum in thermal
equilibrium, but in fact have all statistics quite accurately
described by the Gaussian Gibbs measure Eq. (3.10). Plotted
in Fig. 6 are the PDF’s of the modal energies εn = 1

2 |un|2
for the four highest shells n = 4, 5, 6, 7 compared with the
exponential PDF p(ε) = βe−βε that follows from Eq. (3.10).
The energy for the lowest of these modes, n = 4, agrees well
with the exponential PDF out to about 7 standard deviations,
but has a distinctly broader tail past this point. The three
highest modes with n = 5, 6, 7 have energy PDF’s that are
indistinguishable from the thermal-equilibrium exponential
PDF to within numerical errors (which arise mostly from the
finite number of samples).

C. Dissipation-range intermittency

The dissipation range of 3D incompressible fluid turbu-
lence is widely expected to exhibit extreme spatiotemporal
intermittency because of the super-algebraic decay of the

energy spectrum at high wave numbers k. This was first
predicted by Kraichnan [39], who argued heuristically that
most of the contributions to moments of velocity-gradients at
high-k would come “from the few exceptional regions,” where
a large but still modest fluctuation around the Kolmogorov
scale had been exponentially magnified in relative magnitude
by the rapid fall-off in the spectrum. This argument was later
given in a more mathematically precise form related to singu-
lar solutions of the dynamics in the complex time plane and
extended also to temporal intermittency of simple nonlinear
dynamics without spatial structure [36]. This type of intermit-
tency in the “far dissipation range” is expected to occur even
in relatively low Reynolds number turbulent flows and has
been observed in numerical simulations of the Navier-Stokes
equation [110,111].

The deterministic Sabra model Eq. (3.1) possesses all of
the ingredients for such extreme intermittency in its far dis-
sipation range and our numerics give vivid confirmation of
the expected effects. For example, plotted in Fig. 7(a) are the
modal energies εn(t ) as a function of time t for the dissipation-
range shells n = −1, . . . , R in a simulation with M = −15
and R = 7. It can be seen there that mild fluctuations for
n = −1, 0 appear with a slight time delay at larger n but also
hugely enhanced, so that the energies at distinct instants differ
by hundreds of orders of magnitude. The fluctuations are so
severe that our computations are brought near to the underflow
level of the double-precision arithmetic. An average of εn(t )
over the pictured time interval for a dissipation-range mode
with n > 0 would thus be completely dominated by the single
exceptional event around t � 50. However, the same quanti-
ties plotted in Fig. 7(b) for the noisy Sabra model Eq. (3.8),
which includes physically realistic thermal noise, has these
extreme fluctuations replaced by Gaussian velocity fluctua-
tions at the level of energy equipartition. This thermal velocity
uth is small compared with the Kolmogorov-scale velocity
uη (by a factor of θ1/2

η ) but much larger than the extremely
tiny velocities attained in the deterministic theory. We expect
likewise for incompressible fluid turbulence occurring in the
laboratory or in Nature that the type of strong intermittency
predicted by Kraichnan [39] to appear in the far dissipation
range is, in fact, thoroughly erased by thermal noise.

FIG. 7. Plots of modal energies εn(t ) versus time t for shells in the dissipation range with n = −1 to n = 7. (a) The deterministic Sabra
model results, exhibiting the extreme intermittency predicted by Kraichnan [39], and (b) the stochastic model results, with the large intermittent
fluctuations completely washed out by Gaussian thermal fluctuations.

065113-15



BANDAK, GOLDENFELD, MAILYBAEV, AND EYINK PHYSICAL REVIEW E 105, 065113 (2022)

Sizable dissipation-range intermittency remains in the
stochastic shell model, as made clear by the results in
Fig. 7(b), but we argue that it is a high-Re effect of inertial-
range intermittency propagating into the dissipation range.
This “near-dissipation-range intermittency” is present also in
the deterministic Sabra model and, in a spatiotemporal form,
in turbulence modelled by the deterministic Navier-Stokes
equation. This is the type of near-singularity due to extreme
events intensively studied in recent works [44–50]. In fluid
turbulence such intermittency is known to lead to strong fluc-
tuations in the “local viscous/cutoff length” η(x, t ), which is
conventionally defined [32,112] by the condition that the local
Reynolds number at that scale be order unity:

ηδηu(x, t )

ν
� 1, (4.7)

where δηu(x, t ) = |u(x + η, t ) − u(x, t )|. While typically
η(x, t ) � η, much larger and much smaller cutoff lengths ap-
pear. As already discussed in Sec. II D, this fluctuating viscous
length has been represented phenomenologically [32] by ηh ∼
LRe−1/(1+h), where h = h(x, t ) is the local Hölder exponent
of the velocity in the Parisi-Frisch multifractal model [9,83].
Below the length scale η(x, t ) the velocity field is expected to
be smooth, with a local energy spectrum defined by a suitable
band-pass filter that is exponentially decaying. These are the
considerations that led Frisch and Vergassola to predict for ve-
locity structure functions an “intermediate dissipation range”
[40], bridging the inertial-range and the far dissipation range.
A definition of a “local viscous shell number” analogous to
Eq. (4.7) may be made also in shell models, both deterministic
and noisy, by setting

Nvis(u) := min

{
n :

|un|
νkn

� 1

}
. (4.8)

and the predictions of Ref. [40] concerning the intermediate
dissipation range were previously verified in a numerical sim-
ulation of the GOY shell model [84].

We expect that a similar physics lies behind the intermit-
tency displayed in Fig. 7(b) for our noisy shell model, but with
the rapid exponential decay of amplitudes below the viscous
cutoff replaced in the noisy model by a thermal equipartition,
like that exhibited by the average energy spectrum for shell
numbers n � 5 in Fig. 5. As a consequence of the inertial-
range intermittency, however, the shell number at which this
equipartition first sets in must fluctuate greatly from realiza-
tion to realization. It is actually a somewhat subtle issue how
to define precisely “energy equipartition” for an individual
realization, because equipartition is a statistical concept. Even
realizations selected from the thermal Gibbs state Eq. (3.10)
show considerable fluctuations in energy from the equiparti-
tion value and some averaging in time is typically required to
bring the modal energy close to the ensemble mean value even
for such an equilibrium realization. As one possible measure
of the “equilibration shell number” Ne(u) for an individual
realization u from our turbulent simulation, we can average
the modal energy εn = (1/2)|un|2 over one Kolmogorov time
tη = η/uη and we then identify Ne(u) as the smallest integer
such that this local time-average (1/2)〈|un|2〉η is below 2θη

for all n � Ne(u). For examples of such locally time averaged
realizations, see Figure 3 in Ref. [58]. We have plotted in

FIG. 8. PDF’s of Nvis(u) (blue) and Ne(u) (red), along with a
simple multifractal model for the PDF of Nvis(u) (pale blue) and
a fit by a discrete Gaussian distribution for the PDF of Ne(u) (pale
red). Inset: The PDF of the shift �N (u) in each realization. Standard
errors of the mean for Nvis(u) and Ne(u) are smaller than the marker
size.

Fig. 8 the PDF of the local equipartition shell number Ne(u)
obtained from our DNS with the above definition, together
with the PDF of the viscous cutoff shell number Nvis(u) de-
fined in Eq. (4.8).

Before examining the simulation results, we must first
acknowledge that our definition of the “equilibration shell
number” Ne(u) suffers from a good bit of arbitrariness. We
have therefore explored as well alternative definitions. For
example, if averaging over time tavg produces an equipar-
tition spectrum down to shell N (tavg), then averaging over
a longer time might extend that range. Since the natural
viscous timescale of the stochastic dynamics at one lower
shell increases by 4, we have considered another possible
definition by successively increasing the averaging time tavg

from tη by factors of 4 and by redefining Ne(u) = N (4tavg) as
long as N (4tavg) < N (tavg) [113]. This alternative definition
yielded slightly lower estimates of Ne(u) for some realiza-
tions u, but with the same qualitative features. A completely
different approach to defining Ne(u) would be to apply stan-
dard distribution tests from mathematical statistics, such as
p values [114], to the hypothesis that the shell variables
uη, uK+1, . . . , uN are drawn from the multivariate distribution
Eq. (3.10) and then define Ne(u) to be the smallest K � N
for which that hypothesis is accepted. However, since any
definition of the “equilibration shell number” seems to involve
various subjective choices and since all definitions that we
have considered exhibit qualitatively similar intermittency,
we shall only discuss here the quantity Ne(u) defined in the
previous paragraph.

We first observe in Fig. 8 that the equilibration shell
number Ne(u) does fluctuate substantially from realization to
realization, with nonvanishing probability to take values from
−2 to 6 in our ensemble of events gathered from a simulation
of 300 large-eddy turnover times. We have no theoretical
prediction for the PDF of Neq(u), but we observe that it is fit
fairly well in this core range by a standard discrete Gaussian
PDF [115] of the form p(n) = e−(n−2)2/2/�, plotted as well
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in Fig. 8. Most interestingly, the PDF’s of Nvis(u) and Ne(u)
are roughly similar in form, but that for Ne(u) is shifted to
the right by 2 − 3 shells. This observation suggests that the
same dynamics is responsible for the fluctuations in both
Nvis(u) and Ne(u). This supports the picture we have proposed
that inertial-range intermittency leads to a fluctuating viscous
cutoff shell number, above which the amplitude of un drops
drastically in n with the stretched-exponential decay (3.14)
which is the same for all realizations. In that case, within a
small number of shells which is nearly independent of u the
amplitude of the shell velocity drops to the level uth where
thermal equipartition is achieved. As a further test of this
explanation, we have also calculated with our DNS the PDF
of the shift �N (u) = Ne(u) − Nth(u) in each realization, with
the result plotted in the inset of Fig. 8. This data shows a prob-
ability of about 2/3 for �N = 3, and considerably smaller
probabilities

.= 2/9 for �N = 2 and
.= 1/9 for �N = 4. We

conclude that the shell velocity amplitude indeed drops to the
equipartition level uth about 3 shells above the viscous cutoff
shell number Ne(u) in every realization. The intermittency
that appears in the dissipation range of the noisy model thus
appears to be imprinted by small- and large-amplitude events
that propagate down from the inertial range. The few events
observed with Ne(u) = −2 may be described as very low-
intensity “lulls” and the handful of events with Ne(u) = 6 as
extreme amplitude “bursts.”

The burst event u that we considered in our convergence
studies in Secs. III B 2 and III B 3 is the only realization
with Ne(u) = 6 that we encountered in our long numerical
simulation over 300 large-eddy turnover times. As discussed
there, even this largest value Ne(u) = 6 would correspond in
the ABL to an “equilibration length” about 124 times larger
than the mean free path of air. Such a significant separation
in scales suffices to justify the validity of a hydrodynamic
description even for such extreme events. Of course, we can-
not rule out that running our shell model dynamics for much
longer times would produce much more intense events still,
with Ne(u) > 6. To properly identify the most extreme event
at our given Reynolds number Re and dimensionless temper-
ature θη which achieves the largest value N�

e (possibly =∞)
would require specialized tools of rare-event sampling beyond
the scope of the current work. However, more systematic
investigation of such extreme behaviors is important work for
the future.

The results of the present section demonstrate that sizable
intermittency remains in the dissipation range of our stochas-
tic shell model with thermal noise. Our numerical results are
consistent with the hypothesis that these strong fluctuations
are due to intermittent events, ranging from “lulls” to “bursts,”
that propagate in from the inertial-range. However, a quantita-
tive relationship remains to be established with inertial-range
scaling. Furthermore, it remains to be understood how such
intermittency manifests in standard statistical averages and at
what wave-number scale. All of these issues are addressed in
the following section.

D. Structure functions

To study intermittency effects across both inertial and dis-
sipation ranges in our simulations, we use p-th-order structure

functions, which we define here as statistical “p norms”

‖un‖p = 〈|un|p〉1/p (4.9)

of the shell node un. The additional pth root in Eq. (4.9) com-
pared with the standard definition makes comparing results
for different choices of p more transparent. Although these
are norms literally only for p � 1, we consider all real values
of p > −1, because negative p values give information about
rare events which are smoother or more regular than typical.
Similar information could be obtained also from so-called
“inverse structure functions” [116] but we confine ourselves
here to the more traditional direct structure functions. Note
that the shell-model quantities Eq. (4.9) correspond only in the
inertial-range to the standard structure functions defined by
moments of velocity-increments in Navier-Stokes turbulence,
but more generally they correspond to structure functions of
a suitably band-passed velocity field un(x, t ) at wave-number
magnitudes kn ∼ 2nk0. This distinction is crucial in the turbu-
lent dissipation range, where first-order velocity-increments
are completely dominated by the linear term in their Taylor
series and are an inadequate tool to probe the energy spectrum
and intermittency effects. An empirical study of incompress-
ible fluid turbulence which aimed to investigate the same
physics issues that we do here for shell models would need to
employ a band-pass filter kernel fn(k) with very rapid decay
for |k| < kn, optimally vanishing identically for |k| < ckn

with some constant c > 0.
In Fig. 9 we plot the structure functions ‖un‖p/uth versus

n for the deterministic and noisy models, both normalized
by the thermal velocity uth = (2θη )1/2 in Kolmogorov units.
With this normalization, the thermal equipartition value of the
pth-order function is [�(1 + p

2 )]1/p in terms of the Euler �

function. We plot the structure functions for six representa-
tive values of p, both positive and negative, over the entire
range of n. The first important observation is that the structure
functions for the deterministic and noisy models are identical
in the inertial-range, within numerical accuracy. This is not
unexpected, because the thermal noise is extremely weak in
the inertial range and the direct effect on the dynamics should
be negligible. The pth-order functions here exhibit power-law
scaling ∝ k

−σp
n , which is indicated by the straight-line fits in

the log-log plots in Fig. 9. These exponents are related by
σp = ζp/p to the standard structure-function scaling expo-
nents ζp, and the values obtained from our linear fits agree
for p > 0 with those previously appearing in the literature;
see Fig. 10, where we plot our values together with those
reported in Ref. [56], showing agreement within our error bars
[117]. The decrease of σp with the order p is a reflection of
temporal intermittency in the shell model dynamics, which
has been long understood to be associated with strong “bursts”
that propagate from low to high wave numbers [104,118,119].
This inertial-range dynamics is essentially unaltered by the
presence of weak thermal noise.

In the dissipation range, however, the pth-order structure
functions of the deterministic and noisy models are entirely
different. Analogous to what is observed in the pair of energy
spectra (p = 2) plotted in Fig. 5, the structure functions for
the noisy model approach thermal equipartition at high wave
numbers, whereas the same functions for the deterministic
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FIG. 9. Structure functions Eq. (4.9) for the deterministic model (heavy blue lines, ) and for the noisy model (heavy red lines, ). The
predicted equipartition levels [�(1 + p/2)]1/p are indicated by the horizontal dashed red lines ( ) and power-law fits in the inertial range
are plotted as black dashed lines ( ). The left panels show negative values (a) p = −0.3, (c) p = −0.6, (e) p = −0.9, and the right panels
show positive values (b) p = 1, (d) p = 3, (f) p = 6. Standard errors of the mean for structure functions are smaller than the marker size. The
insets show with heavy blue line ( ) the local stretching exponent Eq. (4.10) and with horizontal dashed blue line ( ) theoretical prediction

γ = log2( 1+√
5

2 ).

model exhibit a super-algebraic decay. In fact, the pth-order
structure functions of the deterministic model for all p values
exhibit the same stretched-exponential decay Eq. (3.14) as
does the energy spectrum. This is verified in the insets of

Fig. 9, which plot the local stretching exponents:

γ (p)
n = log2 |ln ‖un+1‖p| − log2 |ln ‖un‖p| (4.10)
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FIG. 10. The scaling exponents σp = ζp/p of structure functions
‖un‖p for 210 values of p between p = −1 and p = 8, from our DNS
(solid black line, ). The values for σp from Ref. [56] for p = 1–7
are plotted as solid red circles ( ). The errors are calculated as a sum
of two sources, presumed independent. The first source of error is
calculated by restricting the range of the linear fit from 10 to 6 shells,
shifting it within the original 10 shells, and taking the standard devi-
ation of all the obtained slope values as the dominant source of the
error. The second source of error is calculated by sub-sampling the
data set into 10 parts, calculating the scaling exponents separately for
each, and finding the standard deviation of the obtained exponents.
The systematically smaller results obtained in Ref. [56] compared
with our mean values are presumably due to extremely rare, intense
events missed in our sample of 300 large-eddy turnover times but
encountered in the longer runs of Ref. [56].

and the theoretical prediction γ = log2( 1+√
5

2 ). Especially the
negative p values and p = 1 exhibit the predicted stretched
exponential, whereas p = 3 and p = 6 only approach this
behavior for large n. The plausible explanation is that the
intense “bursts” which dominate the structure functions for
p = 3 and 6 penetrate to very high wave numbers, so that
for our deterministic simulation the cutoff R = 7 is too small
to capture well the stretched-exponential. For −0.9 < p < 1,

however, the “lulls” or low-intensity events which dominate
those p values end at relatively low wave numbers, so that
the stretched-exponential above that wave number is well-
resolved. The wave numbers where the asymptotic behaviors
first appear, equipartition or stretched-exponential, likewise
strongly depend on the order p and, from Fig. 9, clearly
increase with p. This is directly associated with the strong
fluctuations in the equipartition shell number Ne(u), observed
in the statistics in Fig. 8. In consequence, the negative-order
structure functions which get dominant contributions from
“lulls” with Ne(u) � 0 show direct effects of thermal noise at
the Kolmogorov wave number and even lower wave numbers.
This should be true also for three-dimensional hydrodynamic
turbulence, but obtaining those structure functions from a
laboratory experiment would require extremely accurate ve-
locity measurements, since the thermal velocity uth which sets
the floor will be 3–4 orders of magnitude smaller than the
Kolmogorov velocity.

To establish a quantitative connection with inertial-range
scaling, we have made also a very simple multifractal model

of the PDF of the viscous cutoff shell number Nvis(h), with
the ansatz (in Kolmogorov units)

Nvis(h) = Round

[
log2(Re)

(
1

1 + h
− 3

4

)]
, (4.11)

where “Round” denotes rounding to the nearest integer, and
where the PDF of the Hölder exponent h is taken to be P(h) ∝
ReD(h)/(1+h) for multifractal dimension spectrum D(h). Using
the Legendre transform relation D(h) = inf p{ph − ζp}, we
have determined the dimension spectrum from our numerical
results for ζp, with the resulting model PDF of Nvis also
plotted in Fig. 8. Although our model is less sophisticated than
the corresponding multifractal model developed for the PDF
of η(x, t ) in 3D fluid turbulence [120], it matches reasonably
well the PDF of Nvis(u) from our DNS. This is consistent
with an earlier study [84] verifying in the GOY shell model
the predictions of the multifractal model for an “intermediate
dissipation range” [40], since those predictions are based on
the same assumption Eq. (4.11). We conclude that the fluc-
tuating viscous cutoff Nvis(u) in our noisy Sabra model has
statistics plausibly associated to inertial-range intermittency
of “lulls” and “bursts,” and the equipartition shell number
Neq(u) follows suit, occurring generally about just three shells
higher.

V. DISCUSSION AND CONCLUSIONS

The main claim of this paper is that thermal noise fun-
damentally modifies the far dissipation range of turbulent
flow, leading to a thermal equipartition range in the turbu-
lent energy spectrum at length scales about η/10, one-tenth
of the Kolmogorov length η, or even larger. If so, then the
correct equation to describe low-Mach-number fluid turbu-
lence down to sub-Kolmogorov scales is not incompressible
Navier-Stokes, but is instead the fluctuating hydrodynamics
of Landau-Lifschitz [15] in its incompressible limiting form
[16–20]. This conclusion was already anticipated in the pio-
neering papers by Betchov [53,54]. We have further explained
why standard scaling arguments [5–7] for validity of the deter-
ministic Navier-Stokes equation at arbitrarily high Reynolds
numbers do not contradict our conclusions. We have also
discussed interactions of turbulent intermittency with thermal
noise effects that should lead to large spatiotemporal fluc-
tuations in the length scale at which thermal equipartition
occurs in individual realizations. Finally, we have verified our
various theoretical conclusions by simulations with a Sabra
shell model of fluctuating hydrodynamics.

More questions are certainly raised by our results in this
paper than can be currently answered definitively, and there is
an urgent need for new computations, laboratory experiments,
physical theory, and rigorous mathematical analysis to address
them. Many of these questions were raised already by Betchov
in his early works [53–55], as we discuss further below, and
remain completely open to the present day.

A. Relations to prior theory

First, however, it is important to discuss relations of our
work to earlier studies. There is a large body of work at-
tempting to define fluctuating hydrodynamics equations of
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the form Eq. (1.2) as continuum stochastic partial-differential
equations (SPDE’s), with the view that this is necessary for
the understanding of turbulence. For example, the excellent
book on SPDE’s in hydrodynamics [22] states in its preface
that

“In a sentence, one of the purposes of the course was to
understand the link between the Euler and Navier-Stokes
equations or their stochastic versions and the phenomenologi-
cal laws of turbulence.”

and the chapters of this book attempt to make mathemati-
cal sense of equations like Eq. (1.2) as continuum SPDE’s.
This was also the point of view of the earlier paper on the
stochastic shell model [98] which showed how to make sense
of Eqs. (3.8) in the limit N → ∞ (for thermal equilibrium).
An exact mathematical solution of this problem for fluctuating
hydrodynamics would allow the limit � → ∞ formally to be
taken so that the Eq. (1.2) would make sense as an SPDE with
the invariant measure Eq. (1.4). This is a problem of the same
nature as the nonperturbative construction of a renormalized
quantum field theory and it has only been solved for simpler
models such as the KPZ equation [99], where it is already
extremely difficult [121]. We have argued that this point of
view is, in fact, physically incorrect for fluctuating hydrody-
namics and that at any finite Reynolds number, however large,
the Eqs. (1.2) must be regarded as low-wave-number “effec-
tive field theories” with an explicit UV cutoff �, somewhat
arbitrary, but chosen to satisfy the constraints 1/	∇ � � �
1/λmicr. This point of view is not novel, of course, but is stan-
dard in the field of fluctuating hydrodynamics [16–19,25–27].

There have also been renormalization group analyses of
stochastically forced Navier-Stokes fluids to study system-
atically the effect of changing �, notably by Forster et al.
[16,17], who included the case with stochastic force represent-
ing thermal noise as their “Model A.” This paper carried out
a Wilson Fourier-slicing RG analysis of the thermal fluid at
equilibrium obtaining scale-dependent viscosity ν	 and tem-
perature T	 with effective dimensionless nonlinear coupling
constant of the velocity fluctuations at scale 	 given in space
dimension d by

g	 :=
(

kBT	

ρν2
	 	

d−2

)1/2

. (5.1)

These authors reached the conclusion that the thermal fluid
is IR asymptotically free for d > 2, with coupling g	 → 0
for 	 → ∞, corresponding to a linear Langevin model for re-
laxation of long-wavelength fluctuations (Onsager regression
hypothesis). Conversely, they concluded that the thermal fluid
is UV strongly coupled, with the constant g	 becoming large
for 	 → ∞, and they equated this strong-coupling regime
with turbulence:

“We will not attempt to treat the formidable and probably
more interesting problem of the ultraviolet (short-distance,
short-time) correlations described by (2.1), i.e., of fully de-
veloped turbulence\dots ” [17]

Exactly the opposite situation was shown to hold for d < 2
by Refs. [16,17], with now thermal velocity fluctuations UV
asymptotically free and IR strongly coupled. As discussed
in Sec. III A, the shell model that we study numerically in

this work is effectively a model in 0 space dimension and,
according to the RG analysis of Forster et al., it is UV asymp-
totically free, so that the shell variables un are described by
independent linear Langevin models for very large n. Because
3D FNS is instead UV strongly coupled, it might be argued
that thermal fluctuations in our shell model are qualitatively
different at high wave numbers than those for 3D fluids and
that our shell model is thus unsuitable to test the effects of
thermal noise in the turbulent dissipation range.

In fact, it is not hard to see that thermal velocity fluctu-
ations both in 3D fluids and in our stochastic shell model
are weakly coupled at the Kolmogorov dissipation length and
down to much smaller scales. Note that the coupling constant
g	 of Forster et al. in Eq. (5.1) coincides for 	 = η with the
thermal Reynolds number Reth

η which we defined in Eq. (2.4)
and thus gη = θ1/2

η by Eq. (2.17). It follows that the coupling
constant gη at the Kolmogorov scale is tiny for realistic mag-
nitudes of θη. The naïve belief expressed in Ref. [17] that
turbulent flows must correspond to large coupling constant g	

is not necessarily true.
It is true that this coupling will increase as 	 is further

decreased, both in turbulent flows and even in a thermal equi-
librium fluid at rest. One can estimate the wave number kcoup

where coupling becomes strong by setting g	 ∼ 1 in Eq. (5.1)
and solving for k ∼ 1/	, yielding [122]

kcoup =
(

kBT

ρν2

) 1
d−2

. (5.2)

Simple estimates then imply that kcoup in Eq. (5.2) is so large
that it is strictly outside the regime of validity of a hydrody-
namic description! To see this, we can substitute the standard
kinetic theory estimate for kinematic viscosity ν ∼ λmicrcth,
with cth the thermal velocity and sound speed, into Eq. (5.2),
which yields

kcoup ∼ (nλ2
micr

) 1
d−2 ∼

(
λ2

micr

	d
intp

) 1
d−2

, (5.3)

where n is the particle number density of the fluid and 	intp :=
n−1/d is the mean interparticle distance. In a liquid, λmicr ∼
	intp ∼ R, where R is the radius of the molecule, and we see
that kcoupR ∼ 1. In a gas described by the Boltzmann kinetic
equation, kcoup is even larger. The low-density limit for valid-
ity of the Boltzmann equation first identified by Bogolyubov
[123] and Grad [124] is that in which λmfp/	intp � 1 and
	intp/R � 1 with λmfp ∼ 1/nRd−1 held fixed. It is then easy to

see that for such a Boltzmann gas kcoupR ∼ (	intp/R)
d

d−2 � 1.

These considerations suggest that the strong-coupling prob-
lem encountered in the limit � → ∞ is of only academic
mathematical interest and is not relevant to the physical de-
scription of molecular fluids in thermal equilibrium.

It is worth pointing out that the limit � → ∞ reappears
in a different guise when taking the infinite Reynolds-number
limit, Re = UL/ν → ∞ with mean dissipation ε = U 3/L and
fluid parameters ρ, T all held fixed. In that case, �̂ := L� >

L/η → ∞ so that the UV cutoff diverges to infinity when the
fluctuating hydrodynamic equations are nondimensionalized
with the integral-scale quantities L and U . This limit will be
the subject of our following work [125]. Here we just note
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that, assuming the validity of the Landau-Lifschitz Eqs. (1.2)
for arbitrarily large values of Re, we find in Ref. [125] that
the limiting velocity fields are singular (weak) solutions of
the deterministic Euler equation. Thus, both the molecular
noise and the molecular viscosity vanish in this limit. It is
not entirely clear, however, that the fluctuating hydrodynamic
Eqs. (1.2) do remain valid for very large Re, because increas-
ing intermittency could allow extreme turbulent singularities
to reach down to the microscopic length scale λmicr. This
possibility will be discussed more in Sec. V C below.

Finally, there has been much work on thermalization
and equipartition spectra in various mathematical model
fluid problems, especially truncated Euler [77,78,126–128],
but also truncated Burgers [129–132], hyperviscous Navier-
Stokes and Burgers [133–136], and shell models [137–140].
For a good overview of this large literature, see Ref. [141].
In these various deterministic models, equipartition energy
spectra (∼kd−1 for dimension d) and Gaussian thermal statis-
tics have been observed over certain ranges of wave number,
rather similar to our observations. None of these works, how-
ever, have included stochastic terms to model the effects of
thermal noise. There have been a few prior works on stochas-
tic shell models, such as Refs. [98,142], but with different
noise than ours and with very different goals. Our aim in
this work has been to use our stochastic shell model as a
surrogate for 3D fluctuating Navier-Stokes equation, to assess
the effects of thermal noise in the turbulent dissipation range
of molecular fluids and to understand the interactions between
thermal noise and turbulent intermittency. As we have argued
in depth, the shell model is suitable for this purpose. It is
theoretically interesting that truncated 3D Euler can mimic
many of the features of 3D FNS. Not only does the bath
of thermalized hydrodynamic modes at high wave numbers
create an “efffective viscosity” [77,78,126] but also, following
ideas of Kraichnan [77,143], it should create an “effective
noise” satisfying a fluctuation-dissipation relation. Neverthe-
less, the predictions of 3D truncated Euler differ in several
ways from those of 3D FNS, in particular lacking a viscous
dissipation range at intermediate scales. Most significantly,
3D truncated Euler has never been proposed as a realistic
model of the dissipation range of a molecular fluid, whereas
3D FNS is expected to be an accurate mesoscopic model down
to almost microscopic length scales.

B. Prospects for empirical verification

The most important question raised by our work is the
existence of the predicted thermal equipartition range in the
sub-Kolmogorov scales, which we argued supplants the tradi-
tional “far dissipation range” of deterministic Navier-Stokes.
We thus find that deterministic Navier-Stokes Eq. (1.1) and
fluctuating Navier-Stokes Eq. (1.2) make two radically differ-
ent sets of predictions for the turbulent dissipation range, and
it must now be determined which is correct. Current numerical
codes for solving the incompressible fluctuating hydrody-
namic equations [18,19] are adequate to investigate turbulent
flows at Taylor-scale Reynolds numbers up to 100 or so and
such simulations should provide additional confirmation of
our predictions. In fact, since the original submission of this
paper, a preprint [144] has appeared which reports on such a

simulation, directly motivated by our work. Although those
simulations reached only Reλ = 143, that suffices to test our
prediction of an equipartition k2 energy spectrum appearing at
the Kolmogorov scale and Gaussian velocity statistics rather
than strong intermittency in the far dissipation range. Both
of these predictions were fully verified; see Ref. [144] for
details. This numerical confirmation gives strong a posteriori
validation to our methodology of using the stochastic shell
model Eq. (3.8) as a surrogate for 3D FNS Eq. (1.2). Our
predictions for effects of inertial-range intermittency cannot
yet be corroborated, because 3D FNS cannot currently be
solved numerically at the high Reynolds numbers required.
Nevertheless, our work and that of Ref. [144] set the stage for
a clash of two competing physical theories.

Ultimately, of course, the matter must be resolved by
experiment. While the predictions of fluctuating hydrodynam-
ics have been verified in many globally far-from-equilibrium
flows [13] and there is little doubt at all that thermal noise
effects must be present at sub-Kolmogorov scales, the detailed
predictions of fluctuating hydrodynamics can be legitimately
questioned in turbulent flows where they have not yet been
measured. The possibility exists that the local equilibrium
assumption underlying the fluctuation-dissipation relation
Eq. (1.3) could break down, as already noted by Betchov [54]
(see Sec. II.D). This is especially true since extreme turbulent
intermittency could threaten the validity of any hydrodynamic
description at all, at least locally.

More than 60 years after the early experimental attempt
of Betchov [53], it remains a grand challenge to develop
techniques which can measure the coarse-grained fluid ve-
locities in Eq. (2.29) at the relevant length scales 	 < η. All
traditional fluid-velocity measurement techniques have well-
known limitations in achieving such fine spatial resolution.
Betchov himself in his study [53] used a standard technique
of hot-wire anemometry [145] to measure turbulent velocity
fields. He made special efforts to minimize the high-frequency
noise in the wires to increase their resolution and sensitivity.
Furthermore, he investigated a novel multi-jet configuration
in a “porcupine” box designed to create a nearly isotropic
flow of high turbulence intensity, avoiding the weak electri-
cal signal due to low turbulence intensity in grid-turbulence.
Despite these efforts, the thermal noise spectrum of the fluid
velocity predicted by Betchov remained about four orders
of magnitude below the sensitivity of his measurements; see
his Fig. 6, where the highest wave numbers of his measured
spectrum are also clearly contaminated by electrical noise in
the wire. These limitations of hot-wire technology remain to
the present day. Here we may note that a recent study of
grid turbulence in the Modane wind tunnel by hot-wires [42]
has remarked concerning the measured energy spectra that
“all of them appear to increase as functions of k beyond a
wave number kM” and that “the value of kM depends on the
spectra, but is found to be typically kMη � 3.” This behavior,
of course, naïvely accords with our predictions. The authors
explain these observations however “as a contamination by
the small-scale response of the hot wires” and we have no
reason to doubt this conclusion, but it underlines the essential
limitations of the hot-wire technology.

Another popular set of methods to determine fluid ve-
locity vectors are those under the rubric of “particle-image
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velocimetry” or PIV, which do so by measuring the dis-
placements of small, neutrally bouyant solid beads that seed
the flow [146]. It has been argued that such particles are
advected by a fluctuating fluid velocity coarse-grained over
scales comparable to their radius [19], although the bead ob-
viously displaces and distorts the flow in its near vicinity. We
may note that a new “Giant von Kármán” (GVK) experiment
is currently underway at CEA in France which will attempt
to measure turbulent velocities down to scales ∼η/5 using
PIV with monodisperse polystyrene beads of diameter 5 μm
(B. Dubrulle, private communication) [147]. It is not entirely
clear that the velocity of even a single such particle will corre-
spond to the velocity relevant for fluctuating hydrodynamics,
which corresponds to the local coarse-graining Eq. (2.29) over
individual molecules. The motion of such submerged beads
is known to be sensitive to the local thermal fluctuations of
the velocity, but the effects appear only in the long-time tails
of the particle velocity auto-correlation [148]. Furthermore,
while the instantaneous velocities of micronscale Brownian
particles have been successfully measured in quiescent flows
when confined by optical traps [149,150], it will be very
difficult to measure the velocity of even one such freely ad-
vected particle, let alone many. The large number of particles
that must seed the flow in PIV introduce “ghost particles”
that must be disambiguated by sophisticated post-processing
techniques that introduce additional numerical noise in the
inferred velocities [151]. Another velocity measurement tech-
nique exploiting tracer particles is “laser doppler velocimetry”
or LDV, which has achieved micronscale spatial resolution
in turbulent boundary layers [152], but similar difficulties
of interpretation and sensitivity appear. The sub-Kolmogorov
scales of turbulent fluid flows remain a vast terra incognita of
experimental science.

It may be more reasonable to hope first for indirect ev-
idence of the effects of thermal noise. There are, in fact,
many physical processes in turbulent flows which are rec-
ognized to involve sub-Kolmogorov scales in a fundamental
way but which in a stationary, laminar fluid are known to
be strongly influenced by thermal noise. These include high
Schmidt/Prandtl-number scalar mixing [153], droplet and
bubble formation [154,155], chemical reactions (combustion)
[156,157], and locomotion of micro-organisms [158], among
others. Current theory and numerical modeling of all these
processes in turbulent flows omit thermal noise completely,
e.g., in the case of high Schmidt/Prandtl-number scalar mix-
ing [159–161], dynamics of droplets and bubbles [162–164],
chemical combustion [165–167], and locomotion in turbulent
flows [168,169]. The possibility exists in all of these cases
of interesting interplay between turbulence and thermal ef-
fects, which might yield clear experimental signatures. These
problems are all ripe also for numerical investigation by fluc-
tuating hydrodynamics, which should spur development of
novel schemes which are more efficient at the high Reynolds
numbers required.

C. Validity of a hydrodynamic description

A key question underlying the current intense interest in
extreme events and smallest scales in a turbulent flow [44–50]
is whether such near-singular events may lead to a break-

down in the hydrodynamic approximation. In our shell model
simulation with parameters appropriate to the ABL, the most
singular event that we observed in 300 large-eddy turnover
times penetrated down to a length scale 8.4 μm, which is
still 124 times greater than the mean-free-path length of air.
The 3D FNS model should remain valid for such a singular
event in the atmosphere. However, we cannot rule out that
even more extreme events will occur if much longer times
are considered or if the Reynolds number is further increased.
As discussed in Sec. II D, the Parisi-Frisch multifractal model
predicts that the smallest length scale ηh for a zero Hölder
singularity h = 0 will reach down to a length scale λmicr/Ma
just marginally greater than λmicr for Ma � 1, and there is
some weak evidence that the smallest Hölder exponent in
incompressible fluid turbulence is hmin = 0 [87]. However, if
negative Hölder singularities arise, then scales of order λmicr

or even smaller could be excited. This possibility seems to us
quite realistic and, if it should occur, the hydrodynamic de-
scription would break down in the vicinity of such an extreme
singularity.

Nevertheless, we argue that Landau-Lifschitz fluctuating
hydrodynamics can still be employed, if supplemented with
some finer-scale description near the singular set. An im-
portant point, often not appreciated in discussions of the
dynamical equations of turbulent flow, is that a hydrodynamic
description can be valid even when the conditions of its appli-
cability are not valid globally. A relevant example, discussed
previously in Ref. [86], Sec. III(e), is the singularities spec-
ulated by Leray (Ref. [10], Sec. 3) to develop starting from
smooth initial data for the incompressible Navier-Stokes dy-
namics above some critical Reynolds number Rec. It is known
that the positions of such hypothetical singularities, if they
exist, must be a set of space-time points (x∗, t∗) of Hausdorff
dimension � 1 where the fluid velocity itself blows up as
|u(x, t )| � C/r for r → 0 as one approaches the singularity,
with r2 = |x − x∗|2 + ν|t − t∗|; see Ref. [170], Corollary 1.
In fact, this conclusion can be deduced heuristically from the
multifractal result Eq. (2.25) for the viscous cutoff length ηh,

if one takes into account a constant prefactor by replacing
Re �→ Re/Rec. In that case one can see that ηh > 0 for any
finite value of Re, except that ηh → 0 when Re > Rec and
h → −1; see Ref. [86], Sec. III(e).

We therefore conclude (in disagreement with Ref. [9],
Sec. 8.3) that negative Hölder singularities and locally infinite
fluid velocities are consistent with the incompressible fluid
approximation, as long as those equations are interpreted in
the integral or “weak” sense, i.e., as balances of momentum
integrated over intervals of time and over control volumes
in space. The local breakdown of the conditions of validity
of the hydrodynamic approximation need not violate those
equations, at least if the points of breakdown occur in a suf-
ficiently low-dimensional subset of space-time. In that case, a
hybrid description should be possible with the incompressible
fluid equations coupled to a more microscopic model (kinetic
theory, molecular dynamics) in the region of singularity. For
these same reasons, we believe that the fluctuating hydrody-
namic description invoked in this work can be valid, even if
negative Hölder singularities develop in the infinite-Re limit
or perhaps already for finite Re > Rec. Indeed, the rigorous
Onsager-Machlup large-deviations theory derived in Ref. [7]
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for a stochastic lattice gas in the limit of (global) Kn � 1
and Ma � 1 is valid at any fixed value of Re even if Leray
singularities appear in the solutions of incompressible Navier-
Stokes equation. It is worth observing that the fluctuating
hydrodynamic equations can be derived microscopically with
nonuniform spatial grids [27] so that a global wave-number
cutoff � need not be imposed and instead local cutoff lengths
can be adapted to the particular solution.

We may note that the strong subsonic flow condition,
Ma � 1, does set some upper limit on the Reynolds numbers
that are achievable within an incompressible fluid approxi-
mation. In both nature and in the laboratory, Re = UL/ν is
generally made larger by increasing L and/or U = (εL)1/3,

so that achieving very high Re at fixed ε requires Ma � 1
or even � 1, as in astrophysical turbulence environments
such as the molecular gas of the interstellar medium. In
such compressible fluid turbulence strong shock discontinu-
ities develop with h = 0 and a shock-width of order ∼λmfp,

so that the fluid approximation breaks down locally and a
Boltzmann kinetic equation is required to describe the in-
ternal structure of the shock [171–173]. For compressible
fluid turbulence, the thermal effects will be described by
the fluctuating hydrodynamics of the compressible Navier-
Stokes equation [13,14,24–26] or for large-Ma flows with
strong shocks, by the nonlinear fluctuating Boltzmann equa-
tion [174]. It should be noted that even in the latter case, a
hydrodynamic description is still valid at length scales 	 �
λmfp, because at scales much larger than the shock width the
dynamics is accurately described by a (weak) Euler solution
with an idealized discontinuity [175]. As we shall discuss
in our following paper, the general description of turbulent
inertial ranges by suitable (weak) solutions of the Euler equa-
tions [176–178] is unchanged by thermal noise effects in the
dissipation range.

New physical theory and new mathematical analysis are
however demanded by our results. Existing derivations of
the nonlinear fluctuating hydrodynamic equations [25–27] are
based upon the projection-operator methods of Zwanzig-Mori
[179,180]. Although these methods are formally exact and
have seen recent mathematical and computational develop-
ment [181,182], they have not been fully justified from the
point of view of rigorous statistical mechanics. In fact, impor-
tant questions exist regarding the ultimate limits of validity
of the fluctuating hydrodynamic equations, since those equa-
tions often work quite well for micro- and nanoscale fluid
systems without a clear separation of scales. This suggests
that the existing rigorous framework of hydrodynamic scaling
limits [7,183] may be too restrictive. The resulting stochastic
hydrodynamic equations present also some very challenging
questions regarding their mathematical formulation. As the
existing formal microscopic derivations [25–27] make clear,
the fluctuating hydrodynamics equations are not stochastic
PDE’s because they contain an explicit UV cutoff �. Current
mathematical theory (e.g., [22]) suffices to show that such cut-
off models specify a well-posed dynamics for each finite value
of �, but the fundamental issue remains to be addressed that
physical predictions should be �-independent. The reflexive
response might be to attempt to show that a well-defined
SPDE exists in the limit � → ∞, with a suitable choice of
“bare” parameters, so that finite-� models can be regarded as

“approximations” to this idealized continuum limit. Based on
our arguments in Sec. II A, this point of view seems rather un-
physical. It seems to us that a more natural goal is to establish
some exact “renormalization group invariance” of the finite-�
effective field-theories which expresses invariance of their
predictions to changes of UV cutoff � and of other arbitrary
features of the models, such as the numerical discretization.

D. Future directions

In this paper we have focused on the dissipation range of
fully developed, homogeneous turbulence, but there should be
influences of thermal noise also on other turbulent flows and
processes. Several of these novel effects and new directions
of research were suggested already by Betchov. For example,
he argued that thermal noise could play an important role in
triggering transition to turbulence (Ref. [54], Secs. IIE and
IIG), a possibility currently being actively explored [184,185],
and that thermal noise could generate unpredictability in
fully developed turbulence (Ref. [54], Sec. IIH), anticipat-
ing modern ideas on spontaneous stochasticity [101,186].
In Ref. [55], Betchov suggested information-theoretic ap-
proaches as a possible means to distinguish Gaussian thermal
fluctuations from turbulent fluctuations, in line with recent
research [187,188]. Betchov recognized as well that thermal
noise effects must occur not only in incompressible fluid
turbulence but also in other turbulent systems, e.g., in mag-
netized plasmas, where he extended magnetohydrodynamic
equations to include stochastic electric fields from thermal
fluctuations (Ref. [54], Sec. III). Such molecular noise charac-
teristics have recently been derived for homogeneous plasma
kinetics even at the level of large deviations [189] and at the
linear level in the collisional two-fluid regime of magnetized
plasmas [190,191]. We expect that there will be signatures
of thermal noise in astrophysical plasma turbulence at high
magnetic Prandtl numbers, such as the partially ionized inter-
stellar medium [192]. In fact, thermal noise must be expected
to act upon any fluid modes which are strongly affected by
molecular dissipation. Another example is the viscous sub-
layer eddies of wall-bounded turbulence, where additional
fluctuating forces are predicted to appear in the vicinity of
solid walls associated with dissipative, microscopic slip co-
efficients [14,193].

In consequence of these many important directions of re-
search, this paper which focuses on the dissipation range is
just the first in a series to study the influence of thermal noise
on turbulent flows. In Ref. [125] we shall discuss its more sub-
tle effects on the turbulent inertial-range in the limit Re � 1,

in particular the role of thermal noise in triggering Eulerian
spontaneous stochasticity [101,186]. We plan to make also
a parametric study of the Reynolds-number dependence of
the dissipation-range intermittency discussed in this work,
to explore possible limitations to the hydrodynamic descrip-
tion of small-scale fluid turbulence. In a work in preparation
[194], we study high Schmidt-number turbulent mixing and
we show that the exponentially decaying scalar spectrum the-
oretically predicted for the viscous-diffusive range [195] and
verified numerically by deterministic Navier-Stokes simula-
tions [196,197] is erased by thermal noise and replaced by
a k−2 power-law spectrum associated to giant concentration
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fluctuations [198,199]. Similar effects should be present also
in the high magnetic Prandtl-number kinematic dynamo. Be-
cause of the universality of the fluctuation-dissipation relation,
thermal noise is inextricably linked to dissipation and the two
effects must always appear together.
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APPENDIX A: PROOF OF THE FLUCTUATION-
DISSIPATION RELATIONS

We here derive the fluctuation-dissipation relation Eq. (1.3)
for the incompressible Navier-Stokes equation and the cor-
responding result for the noisy Sabra model Eq. (3.8). The
former result is well-known [13,14,16,17,25,26] but we give
the proof here for completeness and, also, to stress the close
parallels to the same result for the Sabra model. A good
general reference is Ref. [200].

1. FDR for Navier-Stokes

We begin with the truncated fluctuating Navier-Stokes sys-
tem Eq. (2.1) which can be written as a system of SDE’s for
the Fourier modes

ûk =
∫

�

d3x e−ik·xu(x) (A1)

of the velocity field satisfying |k| < �. Because of the reality
condition

û∗
k = û−k (A2)

not all of these modes are independent. We take the modes
whose wave vector lies in the half-set

K+ =
⎧⎨⎩k :

kx > 0, or
ky > 0 if kx = 0, or
kz � 0 if kx = ky = 0

⎫⎬⎭, (A3)

as the independent complex modes. The fluctuating Navier-
Stokes equation can then be written as

∂t ûk,m + ikn

(
δmp − kmkp

k2

) ∑
p+q=k

ûp,nûq,p + νk2ûk,m = q̂k,m

(A4)

for k ∈ K+ with |k| < �, and where q̂k is a suitable ran-
dom force, further specified below, that represents the thermal
noise. Here we note that the wave numbers p, q which are
summed over in the expression

Bk,m(û, û∗) = −ikn

(
δmp − kmkp

k2

) ∑
p+q=k

ûp,nûq,p, (A5)

may lie in the complementary set K− = −K+ and in the case
that p ∈ K−, then ûp should be interpreted instead as û∗

−p.

There is a corresponding equation of motion for the complex-
conjugate variables

∂t û
∗
k,m = B∗

k,m[û, û∗] − νk2û∗
k,m + q̂∗

k,m, (A6)

with B∗
k,m[û, û∗] := Bk,m[û, û∗]∗ when k ∈ K+ and |k| < �.

Finally, we note that the random force q̂k(t ) is Gaussian with
mean zero and covariance

〈q̂k,m(t )q̂∗
k′,n(t ′)〉 = 2νkBT

ρ
V δk,k′δ(t − t ′)

(
k2δmn − kmkn

)
,

(A7)
with q̂∗

k = q̂−k and k · q̂k = 0. To see the equivalence with
Eq. (1.3), we note ∇ · τ̃ in Eq. (1.2) can be written as

∇ · τ̃ = q̃ + ∇π̃ , (A8)

with the random scalar field π̃ chosen so that ∇ · q̃ = 0, and
in that case π̃ can be absorbed into the pressure and q̃ is
Gaussian with covariance

〈q̃m(x, t )q̃n(x′, t ′)〉 = 2νkBT

ρ
(−�xδm,n + ∇x,m∇x,n)

× δ3(x − x′)δ(t − t ′). (A9)

The Fourier coefficient q̂k(t ) of q̃(x, t ) then satisfies Eq. (A7).
We now wish to show that the noise covariance Eq. (A7) is

correctly chosen so that the Gibbs measure

PG[û, û∗] = 1

Z
exp [−E/kBT ] (A10)

for kinetic energy

E =
∫

�

d3x
ρ

2
|u(x)|2

= ρ

2V

∑
|k|<�

|ûk|2 = ρ

V

∑
k∈K+,|k|<�

|ûk|2 (A11)

is invariant under the stochastic dynamics Eq. (A4) with
no large-scale forcing. The proof is based on the Fokker-
Planck equation for the probability distribution P[û, û∗] of
the Fourier modes. We employ the standard device of treating
ûk and its complex conjugate û∗

k as independent variables
in complex differential calculus (Wirtinger derivatives). The
Fokker-Planck equation equivalent to the coupled Langevin
Eqs. (A4) is easily checked to be

∂t P =
∑

k∈K+

[
− ∂

∂ûk
·
(

Vk[û, û∗]P
)

− ∂

∂û∗
k

·
(

V∗
k[û, û∗]P

)

+2νkBT

ρ
V (k2I − kk) :

∂2

∂ûk∂û∗
k

P

]
:= L∗P, (A12)

where

Vk[û, û∗] = Bk[û, û∗] − νk2ûk (A13)

and V∗
k[û, û∗] := Vk[û, û∗]∗ are the components of the drift

velocity in the phase-space.
The proof further uses two fundamental properties of

the truncated Euler dynamics: the Liouville theorem on
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conservation of phase-volume,∑
k∈K+

(
∂

∂ûk
· Bk[û, û∗] + ∂

∂û∗
k

· B∗
k[û, û∗]

)
= 0, (A14)

and the conservation of kinetic energy,∑
k∈K+

(
Bk[û, û∗] · ∂E

∂ûk
+ B∗

k[û, û∗] · ∂E
∂û∗

k

)
= 0. (A15)

The Liouville theorem for truncated Euler has been well-
known since the work of Lee [62] and, in fact, follows easily
from definition Eq. (A5) by the observation that

∂

∂ûk
· Bk[û, û∗] = −2ik · û({0),

∂

∂û∗
k

· B∗
k[û, û∗] = 2ik · û(0). (A16)

The conservation of kinetic energy Eq. (A15) follows from
the detailed conservation for wave-vector triads first noted by
Onsager [63]. The consequence of Eqs. (A14) and (A15) is
that∑
k∈K+

[
− ∂

∂ûk
· (Bk[û, û∗]PG) − ∂

∂û∗
k

· (B∗
k[û, û∗]PG)

]
= 0,

(A17)

so that PG[û, û∗] is an invariant measure for the truncated
Euler system.

The full stationarity condition ∂t PG = 0 therefore simpli-
fies to ∑

k∈K+
νk2

[
∂

∂ûk
· (ûkPG) + ∂

∂û∗
k

· (û∗
kPG)

]

= −2νkBT

ρ
V
∑

k∈K+
(k2I − kk) :

∂2

∂ûk∂û∗
k

PG.

(A18)

It is worth observing that this is exactly the stationarity
condition for the Gibbs measure under the linear Ornstein-
Uhlenbeck dynamics

∂t ûk = −νk2ûk + q̂k, ∂t û∗
k = −νk2û∗

k + q̂∗
k, (A19)

corresponding to the fluctuating Stokes equation. However,
the elementary derivatives

∂PG

∂ûk
= − ρû∗

k

V kBT
PG,

∂PG

∂û∗
k

= − ρûk

V kBT
PG,

∂2PG

∂ûk∂û∗
k

= −
[

ρ

V kBT
(I − k̂k̂) − ρ2û∗

kûk

(V kBT )2

]
PG (A20)

imply that both sides of Eq. (A18) are indeed equal to the
same quantity ∑

k∈K+
νk2

(
4 − 2ρ|ûk|2

V kBT

)
PG. (A21)

Thus, PG is an invariant measure, as claimed. Because of the
nondegeneracy of the noise and the boundedness of the drift,
this is in fact the unique invariant measure.

It is furthermore easy to show by the same arguments that
the backward Fokker-Planck operator

LF =
∑

k∈K+

[
Vk[û, û∗] · ∂F

∂ûk
+ V∗

k[û, û∗] · ∂F

∂û∗
k

+ 2νkBT

ρ
V (k2I − kk) :

∂2

∂ûk∂û∗
k

F

]
(A22)

for any real functions F [û, û∗], G[û, û∗] satisfies the follow-
ing adjoint property with respect to the equilibrium Gibbs
measure PG :∫

G(LF ) PG dû dû∗ =
∫

(L̃G)F PG dû dû∗, (A23)

where dû dû∗ =∏k∈K+ dûk dû∗
k, and where

L̃F =
∑

k∈K+

[
Ṽk[û, û∗] · ∂F

∂ûk
+ Ṽ∗

k[û, û∗] · ∂F

∂û∗
k

+2νkBT

ρ
V (k2I − kk) :

∂2

∂ûk∂û∗
k

F

]
, (A24)

with

Ṽk[û, û∗] = −Bk[û, û∗] − νk2ûk, (A25)

is the time-reversal L̃ of the operator L under u → −u. The
adjoint property Eq. (A23) is equivalent to the detailed bal-
ance condition

P[u, t |u0, 0]PG[u0] = P[−u0, t | − u, 0]PG[−u] (A26)

for the transition probability densities of the nonlinear diffu-
sion Eq. (A12). Thus, the fluctuating Navier-Stokes dynamics
is time-reversible in thermal equilibrium.

Finally, we derive for the Gibbs distribution PG the spec-
trum of the mean energy per unit mass

E = 〈E〉
ρV

= 1

2V 2

∑
|k|<�

〈|ûk|2〉, (A27)

which is conventionally considered for turbulence of an in-
compressible fluid. The variance of the Gaussian measure is
given by

〈|ûk|2〉 = 2V kBT

ρ
, (A28)

which expresses energy equipartition, taking into account the
two “spin” degrees of freedom for the solenoidal Fourier
modes. Then taking the infinite-volume limit

1

V

∑
k

→ 1

(2π )3

∫
d3k for V → ∞ (A29)

and we see that E = ∫ �

0 dk E (k) with

E (k) ∼ kBT

ρ

4πk2

(2π )3
. (A30)
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This is the k2 equipartition spectrum first derived by Lee [62]
and Hopf [64] for truncated Euler dynamics.

2. FDR for Sabra model

Corresponding results for the Sabra shell model are
obtained by identical arguments. The Fokker-Planck equa-
tion for the probability distribution P[u, u∗] of the vector
u = (u0, u1, . . . , uN ) of shell-variables is easily derived from
the coupled Langevin Eqs. (3.8) as

∂t P =
N∑

n=0

[
− ∂

∂un
(Vn[u, u∗]P) − ∂

∂u∗
n

(V ∗
n [u, u∗]P)

+ 4νkBT

�
k2

n

∂2

∂un∂u∗
n

P

]
:= L∗P, (A31)

where (now writing Bn[u] as Bn[u, u∗])

Vn[u, u∗] = Bn[u, u∗] − νk2
nun (A32)

and V ∗
n [u, u∗] = Vn[u, u∗]∗. The inviscid Sabra model dynam-

ics also satisfies a Liouville theorem
N∑

n=0

(
∂

∂un
Bn[u, u∗] + ∂

∂u∗
n

B∗
n[u, u∗]

)
= 0, (A33)

which is direct by inspection of Eq. (3.2), and conserves
kinetic energy:

N∑
n=0

(
Bn[u, u∗]

∂E
∂un

+ B∗
n[u, u∗]

∂E
∂u∗

n

)
= 0. (A34)

Consequently, the stationarity condition ∂t PG = 0 for the mea-
sure PG[u, u∗] defined in Eq. (3.10) simplifies to

N∑
n=0

νk2
n

[
∂

∂un
(unPG) + ∂

∂u∗
n

(u∗
nPG)

]

= −
(

4νkBT

�

) N∑
n=0

k2
n

∂2

∂un∂u∗
n

PG. (A35)

However, the elementary derivatives

∂PG

∂un
= − �u∗

n

2kBT
PG,

∂PG

∂u∗
n

= − �un

2kBT
PG,

∂2PG

∂un∂u∗
n

= −
[

�

2kBT
− �2|un|2

(2kBT )2

]
PG (A36)

imply that both sides of Eq. (A35) are equal to the same
quantity

N∑
n=0

νk2
n

(
2 − �|un|2

kBT

)
PG. (A37)

Thus, the Gibbs distribution PG is the unique invariant mea-
sure of the noisy Sabra model dynamics Eq. (3.8) when the
external driving force is set to zero, fn = 0. Furthermore,
the analogue of the adjoint property Eq. (A23) for fluctuat-
ing Navier-Stokes holds also for the noisy shell model, so
that the dynamics is time-reversible under the transformation
un → −un in thermal equilibrium.

APPENDIX B: DERIVATION OF THE SLAVED
TAYLOR-ITŌ SCHEME

For completeness we sketch here the derivation of the
Taylor-Itō scheme from Ref. [103] for our noisy Sabra model
Eq. (3.8), written as

dun = andt + bndWn, (B1)

with

an = Bn[u] − νk2
nun + fn, bn =

(
2kBT

�

)1/2

kn. (B2)

Explicit integration of the linear viscous term gives

un(tk+1) = e−νk2
n�t

[
un(tk ) +

∫ tk+1

tk

cn[t, u(t )] dt

+
∫ tk+1

tk

dn(t ) dWn(t )

]
, (B3)

with

cn[t, u(t )] = eνk2
n (t−tk ){Bn[u(t )] + fn(t )}, (B4)

and

dn(t ) = eνk2
n (t−tk )bn. (B5)

Taylor-expanding dn(t ) as

dn(t ) = eνk2
n (t−tk )bn = {1 + νk2

n (t − tk ) + O[(t − tk )2]
}
bn

(B6)

and then substituting into the time-integral yields∫ tk+1

tk

dn(t ) dWn(t )

= bn�Wn(tk ) + νk2
nbn

∫ tk+1

tk

(t − tk ) dW (t ) + O[(�t )5/2]

= bn�Wn(tk ) + νk2
nbn[�t�Wn(tk ) − �Zn(tk )]

+ O[(�t )5/2] (B7)

by an integration by parts.
To similarly expand cn[t, u(t )] we must use the Itō formula

cn[t, u(t )] = cn[tk, u(tk )] +
∫ t

tk

ds (∂s + L)cn[s, u(s)]

+
∑

m

∫ t

tk

ds

{
bmdWm(s)

∂cn

∂um
[s, u(s)]

+ bmdW ∗
m (s)

∂cn

∂u∗
m

[s, u(s)]

}
, (B8)

where L is the forward Kolmogorov operator

L =
∑

m

(
am

∂

∂um
+ a∗

m

∂

∂u∗
m

+ 2b2
m

∂2

∂um∂u∗
m

)
. (B9)
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This implies that∫ tk+1

tk

dt cn[t, u(t )] dt = cn[tk, u(tk )]�t +
∫ tk+1

tk

dt
∫ t

tk

ds (∂s + L)cn[s, u(s)]

+
∑

m

∫ tk+1

tk

dt
∫ t

tk

ds bm

{
dWm(s)

∂cn

∂um
[s, u(s)] + dW ∗

m (s)
∂cn

∂u∗
m

[s, u(s)]

}
. (B10)

Substitution of the Itō formulas for (∂s + L)cn[s, u(s)] and ∂cn
∂um

[s, u(s)] then gives the Itō-Taylor series approximation to the
desired order∫ tk+1

tk

dt cn[t, u(t )] dt = cn[tk, u(tk )]�t +
∫ tk+1

tk

dt
∫ t

tk

ds (∂t + L)cn[tk, u(tk )]

+
∑

m

∫ tk+1

tk

dt
∫ t

tk

ds bm

{
dWm(s)

∂cn

∂um
[tk, u(tk )] + dW ∗

m (s)
∂cn

∂u∗
m

[tk, u(tk )]

}
+ R, (B11)

where R is a stochastic remainder term. Straightforward calculations using Eq. (B4) then give∫ tk+1

tk

dt cn[t, u(t )] = �t{Bn[tk, u(tk )] + fn(tk )} + 1

2
(�t )2

(
νk2

n{Bn[tk, u(tk )] + fn(tk )} + ḟn(tk )
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+ 1

2
(�t )2
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m

{
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∂um
[tk, u(tk )] + a∗

m

∂Bn

∂u∗
m

[tk, u(tk )] + 2b2
m

∂2Bn
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m

[tk, u(tk )]

}

+
∑

m
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{
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∂Bn

∂um
[tk, u(tk )] + �Z∗

m(tk )
∂Bn

∂u∗
m

[tk, u(tk )]

}
+ R. (B12)

Putting it all together gives the integration scheme

un(tk+1) = e−νk2
n�t

(
un(tk ) + �t{Bn[tk, u(tk )] + fn(tk )} + 1

2
(�t )2

(
νk2

n{Bn[tk, u(tk )] + fn(tk )} + ḟn(tk )
)

+ 1

2
(�t )2

∑
m

{
am

∂Bn

∂um
[tk, u(tk )] + a∗

m

∂Bn

∂u∗
m

[tk, u(tk )] + 2b2
m

∂2Bn

∂um∂u∗
m

[tk, u(tk )]

}

+
∑

m

bm

{
�Zm(tk )

∂Bn

∂um
[tk, u(tk )] + �Z∗

m(tk )
∂Bn

∂u∗
m

[tk, u(tk )]

}
+ bn

[
(1 + νk2

n�t )�Wn(tk ) − �Zn(tk )
])

. (B13)

This result may be compared with Eq. (6.1) of Ref. [103].
For the Sabra shell model, the only nonvanishing first-

derivatives are
∂Bn

∂un−2
= 1

2
ikn−1un−1,

∂Bn

∂un+2
= ikn+1u∗

n+1

∂Bn

∂un−1
= 1

2
ikn−1un−2,

∂Bn

∂un+1
= −1

2
iknu∗

n−1

∂Bn

∂u∗
n−1

= −1

2
iknun+1,

∂Bn

∂u∗
n+1

= ikn+1un+2, (B14)

while for all m
∂2Bn

∂um∂u∗
m

= 0. (B15)

Substituting these results into Eq. (B13) yields our numerical
scheme Eq. (3.18) for the noisy Sabra model.

APPENDIX C: CONVERGENCE OF
STEADY-STATE AVERAGES

Convergence of steady-state averages for our numerical
study required a sufficiently large averaging time T and proper

resolution of the dynamics required a sufficiently large trunca-
tion wave number N and sufficiently small time step �t . Here
we describe the tests we have made that our choices of those
parameters were sufficient.

In Sec. III B 3 we already addressed at length the con-
vergence of transition probabilities with respect to the
high-wave-number shell truncation N . Such convergence of
transition probabilities implies convergence of the averages
with respect to truncation wave number. The time step was
chosen as �t = 10−5 to be smaller than the viscous time
tvisc = 1/νk2

N for the highest shell number N. Setting the
external forcing to zero, fn = 0 for all shells n, guarantees
the Gaussian Gibbs distribution Eq. (3.10) and we checked
that the time step �t = 10−5 sufficed to reproduce that distri-
bution to excellent accuracy for all shells, whereas reducing
the step size to �t = 1 × 10−4 ∼ 3 × 10−4 introduced errors
for n near N. In the forced simulation with fn chosen as in
Eq. (4.2), it was likewise found that the same choice �t =
10−5 sufficed to produce Gaussian thermal equilibrium very
accurately at the highest two shells (see Fig. 6) and further
produced accurately the known stretched-exponential decay
in the deterministic model run (see insets in Fig. 9). These
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consistency checks confirmed that our time step �t = 10−5

was sufficiently small.
The total averaging time T was taken to be 300 large

eddy turnover times, based on convergence tests of the sta-
tistical averages presented in Sec. IV. Dividing the total time
into ten subintervals of times T/10 and calculating aver-
ages separately over each led to negligible changes, which
suggested that we had acceptable convergence for −0.9 <

p < 6. This was confirmed by the good agreement of our

scaling exponents with the very accurate values obtained
in Ref. [56], as shown in Fig. 10. Our work was not fo-
cused on high-precision of inertial-range scaling exponents,
so that this was acceptable accuracy for our purposes. Cru-
cially, the profound differences that we observed in the
dissipation range between the statistics of the determinis-
tic Sabra model Eq. (3.1) and of the noisy Sabra model
Eq. (3.8) lie very far outside all error bars on the numerical
calculations.
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subregions should be the given Gaussian distribution (2.30) for
	int p � 	 � ηh.

[89] M. Gross, M. E. Cates, F. Varnik, and R. Adhikari, Langevin
theory of fluctuations in the discrete Boltzmann equation,
J. Stat. Mech. (2011) P03030.

[90] X. Xue, L. Biferale, M. Sbragaglia, and F. Toschi, A lattice
Boltzmann study on Brownian diffusion and friction of a par-
ticle in a confined multicomponent fluid, J. Comput. Sci., 47
101113 (2020).

[91] E. B. Gledzer, System of hydrodynamic type admitting two
quadratic integrals of motion, Sov. Phys. Dokl. 18, 216 (1973).

[92] K. Ohkitani and M. Yamada, Temporal intermittency in the
energy cascade process and local Lyapunov analysis in fully
developed model turbulence, Prog. Theor. Phys. 81, 329
(1989).

[93] L. Biferale, Shell models of energy cascade in turbulence,
Annu. Rev. Fluid Mech. 35, 441 (2003).

[94] D. Vincenzi and J. D. Gibbon, How close are shell models
to the 3D Navier–Stokes equations? Nonlinearity 34, 5821
(2021).

[95] P. Constantin, B. Levant, and E. S. Titi, Analytic study of shell
models of turbulence, Physica D 219, 120 (2006).

[96] P. Constantin, B. Levant, and E. S. Titi, Regularity of inviscid
shell models of turbulence, Phys. Rev. E 75, 016304 (2007).

[97] P. D. Ditlevsen, Turbulence and Shell Models (Cambridge
University Press, Cambridge, UK, 2010).

[98] H. Bessaih and B. Ferrario, Invariant Gibbs measures of the
energy for shell models of turbulence: The inviscid and vis-
cous cases, Nonlinearity 25, 1075 (2012).

[99] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic Scaling of
Growing Interfaces, Phys. Rev. Lett. 56, 889 (1986).

[100] N. Schörghofer, L. Kadanoff, and D. Lohse, How the viscous
subrange determines inertial range properties in turbulence
shell models, Physica D 88, 40 (1995).

[101] A. A. Mailybaev, Spontaneous stochasticity of velocity
in turbulence models, Multiscale Model. Simul. 14, 96
(2016).

[102] V. S. L’vov, I. Procaccia, and D. Vandembroucq, Universal
Scaling Exponents in Shell Models of Turbulence: Viscous
Effects are Finite-Sized Corrections to Scaling, Phys. Rev.
Lett. 81, 802 (1998).

[103] G. J. Lord and J. Rougemont, A numerical scheme for stochas-
tic PDEs with Gevrey regularity, IMA J. Numer. Anal. 24, 587
(2004).

[104] D. Pisarenko, L. Biferale, D. Courvoisier, U. Frisch, and M.
Vergassola, Further results on multifractality in shell models,
Phys. Fluids 5, 2533 (1993).

[105] E. Platen and W. Wagner, On a Taylor formula for a class of
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