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Linear stability of a falling film over a heated slippery plane
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A detailed parametric study on the linear stability analysis of a three-dimensional thin liquid film flowing down
a uniformly heated slippery inclined plane is carried out for disturbances of arbitrary wavenumbers, where the
liquid film satisfies Newton’s law of cooling at the film surface. A coupled system of boundary value problems is
formulated in terms of the amplitudes of perturbation normal velocity and perturbation temperature, respectively.
Analytical solution of the boundary value problems demonstrates the existence of three dominant modes, the
so-called H mode, S mode, and P mode, where the S mode and P mode emerge due to the thermocapillary effect.
It is found that the onset of instabilities for the H mode, S mode, and P mode reduces in the presence of wall slip
and leads to a destabilizing influence. Numerical solution based on the Chebyshev spectral collocation method
unveils that the finite wavenumber H-mode instability can be stabilized, but the S-mode instability and the finite
wavenumber P-mode instability can be destabilized by increasing the value of the Marangoni number. On the
other hand, the Biot number shows a dual role in the H-mode and S-mode instabilities. But the P-mode instability
can be made stable with the increasing value of the Biot number and the decreasing values of the Marangoni
number and the Prandtl number. Furthermore, the H-mode and S-mode instabilities become weaker, but the
P-mode instability becomes stronger, with the increasing value of the spanwise wavenumber. In addition, the
shear mode emerges in the numerical simulation when the Reynolds number is large, which can be destabilized
slightly with the increasing value of the Marangoni number; however, it can be stabilized with the increasing
value of the slip length and introducing the spanwise wavenumber to the infinitesimal perturbation.
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I. INTRODUCTION

The studies of interfacial heat transfer and stability of thin
liquid films have grabbed the attention of many researchers
worldwide due to their widespread applications in engineering
and science. In several types of industrial equipment, such
as falling film evaporators, condensers, etc., thin liquid films
are often encountered because of their large contact area and
small thermal resistance [1]. Furthermore, the heat and mass
transfer rates on the surface of a thin liquid film enhance
significantly due to the solitary wave formation, as reported
by Frisk and Davis [2] and Brauner and Maron [3]. In addi-
tion, for the cooling of microelectronic devices and thermal
protection of rocket engines, thin liquid films are also used.
Besides these engineering applications, due to the importance
of fundamental problems in heat transfer and fluid mechanics,
the study of a heated falling film has its own relevance because
the heat transfer at the film surface plays a major role in
the surface wave dynamics developed under the action of
gravitational force.

The studies of linear and nonlinear stability analyses of an
isothermal thin liquid falling film have been accomplished
extensively after the pioneering experiment of Kapitza and
Kapitza [4], where all the events starting from the initiation of
instability to the formation of a large teardrop-shaped solitary
wave have been shown (see, for example, Alekseenko et al.
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[5], Chang [6], Liu and Gollub [7], and Craster and Matar
[8]). In this context, the linear stability of an isothermal thin
liquid film falling under the action of gravitational force had
been analyzed by both Benjamin [9] and Yih [10] for the flow
at a low Reynolds number. The Orr-Sommerfeld eigenvalue
problem was formulated, and the surface mode or H mode
was identified by using the long-wave asymptotic expansion,
where it was assumed that the wavelength of the infinitesimal
disturbance is very large compared to the liquid film thick-
ness. The critical Reynolds number for the H mode was also
expressed as a function of inclination angle beyond which
the liquid film flow becomes unstable. The existence of shear
mode for the isothermal gravity-driven falling liquid film was
found by Lin [11], Bruin [12], and Chin et al. [13] at the higher
values of the Reynolds number. Bruin’s result indicated that
both surface and shear modes compete with each other for
initiating the primary instability when the inclination angle
is very low. Later, Floryan et al. [14] explored the effect of
surface tension on the shear mode for an isothermal falling
liquid film.

In parallel, in the context of a thermocapillary instability,
Lin [15] performed a linear stability analysis of a thin liq-
uid film falling down a heated inclined plane by using the
long-wave asymptotic expansion in the low Reynolds num-
ber regime. The critical Reynolds number for the H mode
beyond which the flow becomes unstable was calculated an-
alytically and expressed as a function of inclination angle,
Marangoni number, and other flow parameters. Later, Sreeni-
vasan and Lin [16] revisited the above study on exploring the
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thermocapillary instability in an arbitrary wavenumber regime
when the inclination angle is sufficiently small. Smith [17]
investigated the effect of Prandtl number on the primary insta-
bility of a heated falling liquid film in the long-wave regime.
He pointed out that the flow may become unstable at the
higher values of Prandtl number due to heating or cooling
of the plane. He also provided a physical mechanism for the
initiation of primary instability. Goussis and Kelly [18] carried
out a detailed energy budget analysis for a falling liquid film
over a uniformly heated substrate to figure out the physical
mechanism of primary instability. In fact, they proposed three
mechanisms by which the instability can initiate. They recog-
nized two thermocapillary modes (S mode and P mode) and
one hydrodynamic mode (H mode) in low to moderate values
of the Reynolds number, where the hydrodynamic mode (H
mode) and one thermocapillary mode (S mode) emerge in
the long-wave regime while the other thermocapillary mode
(P mode) emerges in the short-wave regime. The effects of
Marangoni number on these three individual modes were ex-
plored, and their results revealed that the Marangoni number
has a destabilizing influence on the long-wave H mode and S
mode, as well as the short-wave P mode. Joo et al. [19] accom-
plished a linear stability analysis of a heated falling liquid film
with the aid of the long-wave asymptotic expansion, where
they considered the evaporation effect on the thermocapillary
instability. Later, Joo et al. [20] further extended their previ-
ous study to decipher the nonlinear stability induced by the
H mode based on the evolution equation for the liquid film
thickness. They reported that the rivulet formation is respon-
sible for the thermocapillary S-mode instability. Ruyer-Quil
et al. [21] and Scheid et al. [22] studied the instability of
a heated liquid film falling down an inclined plane in detail
to decipher the complex wave dynamics on the surface of
a liquid film under the framework of the low-dimensional
model, where the evolution equations were formulated for the
local film thickness, local flow rate, and mean temperature
across the layer, and computed the steady state traveling wave
solution. They demonstrated that the results obtained from the
linear stability analysis of the model equations are in good
agreement with that of the Orr-Sommerfeld boundary value
problem. They also identified the hydrodynamic H-mode and
the thermocapillary S-mode instabilities. It was reported that
the hydrodynamic H-mode and the thermocapillary S-mode
instabilities reinforce each other with the increase in the value
of the Marangoni number. Hu et al. [23] performed a linear
stability analysis of a binary liquid film falling down a heated
inclined plane. The effect of Soret number on the three in-
dividual modes (H, S, and P modes) had been discussed for
low to moderate values of the Reynolds number, where the
Soret number was found to have a destabilizing effect on the
unstable modes, similar to that observed for the Marangoni
number. Furthermore, it was revealed that the H mode and S
mode merge with each other at the higher values of the Soret
number. The variation of P mode with the Soret number was
captured partially up to the moderate value of the Reynolds
number. The absolute and convective instabilities were also
investigated in their study. Samanta [24] analyzed the effects
of Marangoni number and Biot number on the temporal insta-
bility for an inertialess liquid film flowing down a uniformly
heated wall. His result indicated a destabilizing effect of the

Biot number on the temporal mode. A nonlinear stability anal-
ysis of a heated liquid film flowing down an inclined plane was
performed by Dávalos-Orozco [25] based on the Benney-type
surface evolution equation, where the effects of wall thickness
and heat conductivity on the instability had been deciphered.
Some significant results regarding the instability of thin liquid
films flowing down isothermal and nonisothermal inclined
substrates can be found in the review paper of Dávalos-Orozco
[26].

It is observed that for many flows occurring in nature as
well as encountered in engineering applications, the no-slip
condition is not valid at the liquid-solid interface [27,28].
Rather, in such situations, the velocity field satisfies the
Navier-slip boundary condition appropriately at the liquid-
solid interface. The Navier-slip boundary condition may also
be implemented at the liquid-solid interface to model a liquid
film flowing over a permeable substrate when the superficial
volume average velocity of liquid in the porous medium is
small compared to the velocity of liquid in the liquid medium
as demonstrated by Pascal [29]. Although the existence of a
Navier-slip-type empirical boundary condition was initially
proposed by Beavers and Joseph [30], which was theoretically
justified by Saffman [31]. Samanta et al. [32] carried out
linear and nonlinear stability analyses in detail for a liquid film
falling down a slippery inclined plane. Their result indicated
that the slip length has a destabilizing effect on the surface
mode or H mode in the low Reynolds number regime, i.e.,
near the criticality. However, it showed a stabilizing effect
in the moderate Reynolds number regime. In the presence
of wall slip, they have also revealed the amplification of
speed and amplitude of the traveling wave solution. After
that, Ding and Wong [33] extended the model of Samanta
et al. [32] for a liquid film flowing over a uniformly heated
slippery substrate. The critical Reynolds number correspond-
ing to the H mode beyond which the flow becomes unstable
was calculated analytically and expressed as a function of
inclination angle, slip length, Marangoni number, and Biot
number. They produced the result for the slip length under the
frameworks of the Benney-type model and weighted residual
three-equation model and compared the result with that of the
linearized Navier-Stokes equations. It was displayed that the
Benney-type model produces a good result only in the vicin-
ity of the critical Reynolds number, whereas the weighted
residual model produces a good result up to a moderate value
of the Reynolds number. Their results also reestablished the
fact that the phase speed of the traveling wave increases in
the presence of wall slip as reported by Samanta et al. [32].
Ellaban et al. [34] explored the linear stability of a binary
liquid film falling down a heated slippery inclined plane in
the low Reynolds number regime. They reported the effects
of Soret number, Marangoni number, and slip length on the
hydrodynamic H mode and the thermocapillary S mode in the
long-wave regime. From their results, it was evident that both
slip length and the Marangoni number have a destabilizing
effect on the H-mode and S-mode instabilities. Furthermore,
they showed that the neutral curves corresponding to the H
mode and S mode merge with each other with the increase in
the values of the Marangoni number and slip length. Thiele
et al. [35] and Sadiq et al. [36] investigated the instability of
a gravity-driven flow over a heated porous substrate, while
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Ogden et al. [37] investigated the instability of a gravity-
driven flow over a wavy heated porous substrate. All these
studies predicted the destabilizing effect of permeability on
the H-mode instability. Bhat and Samanta [38] studied the
effect of slip length on the instability of a surfactant-laden
liquid film falling down an inclined plane for disturbances
of arbitrary wavenumbers. A stabilizing influence of the slip
length on the shear mode instability was demonstrated.

From the above literature survey, we have noticed that
most of the studies regarding the liquid film flowing over a
uniformly heated slippery substrate were two dimensional and
confined in the low to moderate Reynolds number regime.
As a result, the effect of spanwise wavenumber has not been
examined on the most unstable modes, which generally has
a stabilizing effect on the H mode that can be concluded
from Squire’s theorem for the isothermal film flow. However,
there was no analytical proof of Squire’s theorem for the
nonisothermal flow configuration. This fact is also proved
analytically and numerically in the present study for the non-
isothermal flow configuration. Furthermore, previous studies
paid attention to the hydrodynamic H mode and the thermo-
capillary S mode. There are not many investigations on the
thermocapillary P mode and shear mode that have appeared
in the finite wavenumber regime. In fact, investigation of
the P mode is important because this mode is responsible
for the steady convection rolls, where the fluid surface de-
formation does not play a significant role in this physical
phenomenon [39]. On the other hand, the investigation of
the shear mode is equally important because it appears in
the high Reynolds number regime and sometimes dominates
over the H mode depending on the value of the angle of
inclination. In the present paper, we have accomplished a
detailed parametric study on the individual modes (H mode, S
mode, P mode, and shear mode) found analytically as well as
numerically for a three-dimensional liquid film flowing over a
uniformly heated slippery substrate. The long-wave approxi-
mation technique is used for solving the system of boundary
value problems analytically. However, the Chebyshev spectral
collocation method is used for solving the system of bound-
ary value problems numerically for disturbances of arbitrary
wavenumbers. We have recognized the hydrodynamic H mode
and the thermocapillary S mode and P mode in the low to
moderate Reynolds number regime, while the shear mode is
found when the Reynolds number is large. The individual
effect of Marangoni number, Biot number, Prandtl number,
slip length, and spanwise wavenumber are deciphered on the
different unstable temporal modes.

II. MATHEMATICAL FORMULATION

We consider a gravity-driven three-dimensional incom-
pressible viscous liquid film flowing down a heated slippery
inclined plane, where the inclined plane makes an angle θ

with the horizontal as shown in Fig. 1. It is assumed that the
inclined plane is uniformly heated with temperature T = Tw.
As we are mainly interested in deciphering the thermocapil-
lary instability at the surface of a three-dimensional falling
liquid film, the physical properties of the liquid film, such as
the density ρ and the dynamic viscosity μ, are assumed to be
constants throughout the study; i.e., these physical properties

FIG. 1. Schematic diagram of a thin liquid film flowing down a
heated slippery inclined plane.

of the liquid will not vary with the temperature. However, the
surface tension σ will vary linearly with the temperature and
can be determined by the following relation [40]:

σ (T ) = σa − γ (T − Ta), (1)

where Ta is the ambient temperature and σa is the surface
tension at T = Ta. Here γ = − dσ

dT |T =Ta > 0, as the surface
tension of the liquid film decreases with the increasing value
of the temperature. However, there are some special cases like
water-alcohol solutions where the surface tension increases
with the increasing value of the temperature [39]. The origin
of the Cartesian coordinate system is taken on the slippery
inclined plane and the axes x, y, and z are taken in streamwise,
cross-stream, and spanwise directions, respectively. Here d is
the thickness of the undisturbed liquid film, which is marked
by a dashed line in Fig. 1, and h(x, z, t ) is the thickness of
the disturbed liquid film. The governing equations for the
nonisothermal liquid film flow, i.e., continuity, momentum,
and energy equations, are as follows [39,41,42]:

∂xu + ∂yv + ∂zw = 0, (2)

ρ(∂t u + u∂xu + v∂yu + w∂zu)

= −∂x p + μ(∂xxu + ∂yyu + ∂zzu) + ρg sin θ, (3)

ρ(∂tv + u∂xv + v∂yv + w∂zv)

= −∂y p + μ(∂xxv + ∂yyv + ∂zzv) − ρgcos θ, (4)

ρ(∂tw + u∂xw + v∂yw + w∂zw)

= −∂z p + μ(∂xxw + ∂yyw + ∂zzw), (5)

ρcp(∂t T + u∂xT + v∂yT + w∂zT )

= κ (∂xxT + ∂yyT + ∂zzT ), (6)

where u, v, w, p, and T are, respectively, the velocity com-
ponents, pressure, and temperature of the liquid film. Here g
is the gravitational acceleration, κ is the thermal conductiv-
ity, and cp is the specific heat capacity at constant pressure.
We assume that the thermal conductivity κ is not varying
with the temperature. The above flow configuration is sub-
jected to the following boundary conditions. At the inclined
plane, y = 0, the streamwise and spanwise velocity compo-
nents are nonzero because of the slippery plane. In this case,

065112-3



ARNAB CHOUDHURY AND ARGHYA SAMANTA PHYSICAL REVIEW E 105, 065112 (2022)

the velocity components rather satisfy the Navier-slip and
no-penetration boundary conditions while the temperature is
uniform at the plane, and therefore, we can write [29,32,43–
45]

u = ζx∂yu, v = 0, w = ζz∂yw, T = Tw, at y = 0,

(7)

where ζx and ζz are, respectively, the streamwise and spanwise
dimensional slip lengths, and Tw is the temperature at the
wall. In the current work, we restrict to the case of a slippery
plane whose streamwise and spanwise slip lengths are equal,

i.e., ζx = ζz = ζw. There is an experimental evidence that
the value of slip length for the polydimethylsiloxane (PDMS)
substrate is ∼250 μm [46], and therefore, its nondimensional
value will be of order O(0.1) when the undisturbed liquid
film thickness is about d = 2.5 mm [45,47]. At the liquid film
surface, y = h(x, z, t ), the hydrodynamic stress is balanced
by the surface stress induced by the surface tension times
curvature of the liquid film surface and the Marangoni stress
induced by the surface tension gradient due to the change of
temperature. The dynamic boundary conditions correspond-
ing to the above stress balance at y = h(x, z, t ) can be written
as [39]

μ[(∂yu + ∂xv){1 − (∂xh)2} + 2∂xh(∂yv − ∂xu) − ∂zh(∂zu + ∂xw) − ∂xh∂zh(∂zv + ∂yw)]

+ γ [∂xT + ∂xh∂yT ]
√

1 + (∂xh)2 + (∂zh)2 = 0, (8)

μ[(∂yw + ∂zv){1 − (∂zh)2} + 2∂zh(∂yv − ∂zw) − ∂xh(∂zu + ∂xw) − ∂xh∂zh(∂yu + ∂xv)]

+ γ [∂zT + ∂zh∂yT ]
√

1 + (∂xh)2 + (∂zh)2 = 0, (9)

− p[1 + (∂xh)2 + (∂zh)2] + 2μ[∂xu(∂xh)2 + ∂zw(∂zh)2 + ∂xh∂zh(∂zu + ∂xw) − ∂xh(∂yu + ∂xv) − ∂zh(∂zv + ∂yw) + ∂yv]

= σ [∂xxh{1 + (∂zh)2} + ∂zzh{1 + (∂xh)2} − 2∂xh∂zh∂xzh]{1 + (∂xh)2 + (∂zh)2}− 1
2 . (10)

Without loss of generality, the ambient pressure Pa is
neglected from the normal stress boundary condition. Further-
more, to describe the heat transfer due to convection between
air and liquid at the liquid film surface, y = h(x, z, t ), we use
Newton’s law of cooling [24,39]:

κ
(∂xT ∂xh − ∂yT + ∂zT ∂zh)√

1 + (∂xh)2 + (∂zh)2
= λ(T − Ta), (11)

where λ is the heat transfer coefficient. Finally, the evolution
of the liquid film surface, y = h(x, z, t ), is described by the
kinematic boundary condition

∂t h + u∂xh + w∂zh = v. (12)

A. Dimensionless criterion

Now we introduce the following variables with star no-
tation to nondimensionalize the governing equations and
associated boundary conditions:

u∗ = u

Us
, v∗ = v

Us
, w∗ = w

Us
,

p∗ = pd

2μUs
, x∗ = x

d
, y∗ = y

d
,

(13)

z∗ = z

d
, h∗ = h

d
, t∗ = tUs

d
,

σ ∗ = σ

σa
, T ∗ = T − Ta

Tw − Ta
,

where β = ζw

d is the nondimensional slip length and Us =
ρgd2 sin θ (1 + 2β )/(2μ) is the velocity at the liquid film
surface for base flow with a constant thickness d . For
our convenience, we have removed the star notation from
the nondimensional variables in the subsequent formulation.

Using the above dimensionless criterion, the governing equa-
tions and the associated boundary conditions can be written
as

∂xu + ∂yv + ∂zw = 0, (14)

Re(∂t u + u∂xu + v∂yu + w∂zu)

= −2∂x p + (∂xxu + ∂yyu + ∂zzu) + 2

1 + 2β
, (15)

Re(∂tv + u∂xv + v∂yv + w∂zv)

= −2∂y p + (∂xxv + ∂yyv + ∂zzv) − 2 cot θ

1 + 2β
, (16)

Re(∂tw + u∂xw + v∂yw + w∂zw)

= −2∂z p + (∂xxw + ∂yyw + ∂zzw), (17)

Pe(∂t T + u∂xT + v∂yT + w∂zT ) = (∂xxT + ∂yyT + ∂zzT ),
(18)

u = β∂yu, v = 0, w = β∂yw, T = 1, at y = 0,

(19)

(∂yu + ∂xv)[1 − (∂xh)2] + 2∂xh(∂yv − ∂xu) − ∂zh(∂zu + ∂xw)

− ∂xh∂zh(∂zv + ∂yw)

= −2Ma[∂xT +∂xh∂yT ]
√

1 + (∂xh)2+(∂zh)2, at y = h,

(20)
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(∂yw + ∂zv)[1 − (∂zh)2] + 2∂zh(∂yv − ∂zw) − ∂xh(∂zu + ∂xw) − ∂xh∂zh(∂yu + ∂xv)

= −2Ma[∂zT + ∂zh∂yT ]
√

1 + (∂xh)2 + (∂zh)2, at y = h, (21)

− p[1 + (∂xh)2 + (∂zh)2] + [∂xu(∂xh)2 + ∂zw(∂zh)2 + ∂xh∂zh(∂zu + ∂xw) − ∂xh(∂yu + ∂xv) − ∂zh(∂zv + ∂yw) + ∂yv]

= (We − Ma T )[∂xxh{1 + (∂zh)2} + ∂zzh{1 + (∂xh)2} − 2∂xh∂zh∂xzh]{1 + (∂xh)2 + (∂zh)2}− 1
2 , at y = h, (22)

(∂xT ∂xh − ∂yT + ∂zT ∂zh)√
1 + (∂xh)2 + (∂zh)2

= Bi T, at y = h, (23)

∂t h + u∂xh + w∂zh = v, at y = h, (24)

where Re = ρUsd
μ

is the Reynolds number, which compares

inertia to the viscous force, Ma = γ (Tw−Ta )
2μUs

is the Marangoni
number, which compares the Marangoni force to the viscous
force, We = σa

2μUs
is the Weber number, which compares the

surface force due to the curvature of the liquid film surface to
the viscous force, Bi = λd

κ
is the Biot number, which com-

pares the heat convection at the liquid film surface to the
heat conduction within the liquid film, and Pe = ρcpUsd/κ =
RePr is the Péclet number, where Pr = ρcpν/κ is the Prandtl
number. As we are interested in exploring the linear stability
analysis of a three-dimensional nonisothermal base flow, we
require the solution for the unidirectional parallel liquid film
flow, the so-called the base flow with a constant liquid film
thickness y = 1. The exact solution for the base flow equa-
tions can be expressed as

Ū (y) = 2y + 2β − y2

1 + 2β
, V̄ (y) = 0,

W̄ (y) = 0, 0 � y � 1, (25)

P̄(y) = 1 − y

1 + 2β
cot θ, 0 � y � 1, (26)

T̄ (y) = 1 −
(

Bi

1 + Bi

)
y, 0 � y � 1. (27)

Note that the base flow velocity is explicitly dependent on the
slip length β, while the base flow temperature is dependent
on the Biot number Bi. Furthermore, the base flow velocity
is a parabolic function of y but the base flow temperature is a
linear function of y.

B. Perturbation equations

To study the linear stability of the three-dimensional non-
isothermal liquid film flowing down a slippery inclined plane,
we impose an infinitesimal perturbation on the base flow. As a
consequence, each flow variable of the disturbed flow can be
decomposed as follows:

u = Ū + u′, v = v′, w = w′, p = P̄ + p′,
(28)

T = T̄ + T ′, h = 1 + h′,

where u′, v′, w′, p′, T ′, and h′ are the perturbation flow
variables. Substituting the variable’s decomposition (28) in

the nondimensional governing equations and boundary con-
ditions (14)–(24) and linearizing with respect to the base flow
solution, we get the following perturbation equations:

∂xu′ + ∂yv
′ + ∂zw

′ = 0, 0 � y � 1, (29)

Re(∂t u
′ + Ū∂xu′ + v′∂yŪ )

= −2∂x p′ + (∂xxu′ + ∂yyu′ + ∂zzu
′), 0 � y � 1, (30)

Re(∂tv
′ + Ū∂xv

′) = −2∂y p′ + (∂xxv
′

+ ∂yyv
′ + ∂zzv

′), 0 � y � 1, (31)

Re(∂tw
′ + Ū∂xw

′) = −2∂z p′ + (∂xxw
′ + ∂yyw

′

+ ∂zzw
′), 0 � y � 1, (32)

Pe(∂t T
′ + Ū∂xT ′ + v′∂yT̄ )

= (∂xxT ′ + ∂yyT ′ + ∂zzT
′), 0 � y � 1, (33)

u′ = β∂yu′, v′ = 0, w′ = β∂yw
′,

T ′ = 0, at y = 0, (34)

∂yu′ + ∂xv
′ − [2/(1 + 2β )]h′

= −2Ma

[
∂xT ′ − Bi

1 + Bi
∂xh′

]
, at y = 1, (35)

∂yw
′ + ∂zv

′ = −2Ma

[
∂zT

′ − Bi

1 + Bi
∂zh

′
]
, at y = 1,

(36)

− p′ + cot θ

1 + 2β
h′ + ∂yv

′

=
(

We − Ma

1 + Bi

)
(∂xxh′ + ∂zzh

′), at y = 1, (37)

∂yT ′ = Bi

(
Bi

1 + Bi
h′ − T ′

)
, at y = 1, (38)

∂t h
′ + Ū∂xh′ = v′, at y = 1. (39)

C. Orr-Sommerfeld-type boundary value problem

Next we assume the solution of the perturba-
tion equations (29)–(39) in the normal mode form
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[48],

u′(x, y, z, t ) = û(y) exp[i(kxx + kzz − ωt )],

v′(x, y, z, t ) = v̂(y) exp[i(kxx + kzz − ωt )],

w′(x, y, z, t ) = ŵ(y) exp[i(kxx + kzz − ωt )],

T ′(x, y, z, t ) = τ̂ (y) exp[i(kxx + kzz − ωt )],

p′(x, y, z, t ) = p̂(y) exp[i(kxx + kzz − ωt )],

h′(x, z, t ) = η̂ exp[i(kxx + kzz − ωt )],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(40)

where û(y), v̂(y), ŵ(y), τ̂ (y), p̂(y), and η̂ are the amplitudes of
perturbation velocity components, perturbation temperature,
perturbation pressure, and liquid film surface deformation, re-
spectively. Here kx and kz are, respectively, the streamwise and
spanwise wavenumbers, ω = kxc is the angular frequency, c is
the wave speed, and k = √

k2
x + k2

z is the total wavenumber
of the infinitesimal disturbance. Inserting the normal mode
solution (40) in the perturbation equations (29)–(39) and
eliminating the pressure terms, we get the following coupled
system of boundary value problems for the perturbation nor-
mal velocity and perturbation temperature, respectively:

(D2 − k2)2v̂ = iRe

[
(kxŪ − ω)(D2 − k2)

+ 2kx

1 + 2β

]
v̂, 0 � y � 1, (41)

(D2 − k2)τ̂ = Pe

[
i(kxŪ − ω)τ̂

−
(

Bi

1 + Bi

)
v̂

]
, 0 � y � 1, (42)

v̂ = 0, τ̂ = 0, Dv̂ − βD2v̂ = 0, at y = 0, (43)

(D2 + k2)v̂ + 2k2Ma

[
τ̂ − Bi

1 + Bi
η̂

]

+ 2ikx

1 + 2β
η̂ = 0, at y = 1, (44)

[D2 − 3k2 + iRe(ω − kx )]Dv̂ − 2k2η̂

×
[

k2

(
We − Ma

1 + Bi

)
+ cot θ

1 + 2β

]
= 0, at y = 1, (45)

Dτ̂ + Bi

[
τ̂ − Bi

1 + Bi
η̂

]
= 0, at y = 1, (46)

v̂ + i(ω − kx )η̂ = 0, at y = 1, (47)

where D = d
dy is the differential operator. In the present

study, we have investigated the temporal stability analysis,
and thereby, the wavenumber k will be considered as a real
number, while the wave speed c or, equivalently, the angular
frequency ω will be considered as a complex number.

III. ANALYTICAL SOLUTION OF THE BOUNDARY
VALUE PROBLEM

A. Streamwise perturbation in the long-wave regime

In order to perform the temporal stability analysis, we
use the long-wave asymptotic approach as proposed by Yih
[10]. From Squire’s theorem [48,49], we know that the two-

dimensional disturbance begins to become unstable at a lower
Reynolds number than that of the three-dimensional distur-
bance. For this reason, the long-wave analysis will be carried
out for the two-dimensional disturbances with streamwise
wavenumber. The analytical derivation of Squire’s theorem
for the nonisothermal flow configuration is performed in
Appendix A. Consequently, we choose kz = 0 and kx = k.
Furthermore, due to the consideration of two-dimensional
flow configuration, the perturbation velocity components can
be expressed in terms of the perturbation stream function
ψ ′(x, y, t ) as

u′(x, y, t ) = ∂yψ
′, v′(x, y, t ) = −∂xψ

′, (48)

where the perturbation stream function is expressed in the
normal mode form

ψ ′(x, y, t ) = φ̂(y) exp[ik(x − ct )], (49)

where φ̂(y) is the amplitude of the stream function. Using
Eq. (49), we can write v̂(y) = −ikφ̂(y), which is further
substituted in the coupled system of boundary value problems
(41)–(47) for the long-wave stability analysis [24]. Next the
variables φ̂, τ̂ , η̂, and c are represented as the sum of infinite
series in the limit k → 0 as follows:

φ̂(y) = ∑∞
n=0 φnkn, τ̂ (y) = ∑∞

n=0 τnkn,

η̂ = ∑∞
n=0 ηnkn, c = ∑∞

n=0 cnkn,

}
(50)

where n belongs to the set of non-negative integers.

B. Zero-order approximation

Substituting Eq. (50) into the boundary value problems
(41)–(47) and collecting the leading order [O(k0)] equations,
we get

D4φ0(y) = 0, D2τ0(y) = 0, 0 � y � 1, (51)

φ0(y) = 0, τ0(y) = 0,

Dφ0(y) − βD2φ0(y) = 0, at y = 0, (52)

D2φ0(y) − 2

1 + 2β
η0 = 0, D3φ0(y) = 0, at y = 1,

(53)

Dτ0(y) + Bi τ0(y) − Bi2

1 + Bi
η0 = 0, at y = 1, (54)

φ0(y) − (c0 − 1)η0 = 0, at y = 1. (55)

The solution of the zero-order equations (51)–(55) is given by

φ0(y) = (y2 + 2βy)η0

1 + 2β
, τ0(y) = Bi2yη0

(1 + Bi)2
. (56)

It can be clearly observed that the zero-order solution φ0(y)
depends on the slip length β, while τ0(y) depends on the Biot
number Bi. However, the zero-order solution is independent
of the Marangoni number Ma and the Péclet number Pe. Now
with the help of the zero-order kinematic boundary condition
(55), one can obtain the zero-order phase speed c0 for the
infinitesimal disturbance,

c0 = 2. (57)
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Note that the zero-order phase speed is real and equal to two
times the surface velocity of base flow. In particular, this phase
speed is associated with the surface mode or H mode, which
generally appears due to the infinitesimal perturbation of the
liquid film surface [50].

C. First-order approximation

Now we collect the first-order [O(k)] equations:

D4φ1(y) + iRe[φ0(y)D2Ū (y)

+ {c0 − Ū (y)}D2φ0(y)] = 0, 0 � y � 1, (58)

D2τ1(y) + iPe{c0 − Ū (y)}τ0(y)

− iPeBi

1 + Bi
φ0(y) = 0, 0 � y � 1, (59)

φ1(y) = 0, τ1(y) = 0,

Dφ1(y) − βD2φ1(y) = 0, at y = 0, (60)

D2φ1(y) + 2iMa

[
τ0(y) − Bi

1 + Bi
η0

]

− 2η1

1 + 2β
= 0, at y = 1, (61)

D3φ1(y) + iRe(c0 − 1)Dφ0(y) − 2iη0 cot θ

1 + 2β
= 0, at y = 1,

(62)

Dτ1(y) + Bi

[
τ1(y) − Bi

1 + Bi
η1

]
= 0, at y = 1, (63)

φ1(y) + (1 − c0)η1 − c1η0 = 0, at y = 1. (64)

Here the Weber number We is considered of order O(1), and
thereby it does not appear in the first-order normal stress
boundary condition (62). Now solving the first-order equa-
tions (58)–(64), we get the expressions of φ1(y) and τ1(y),
which are given in Appendix B. Putting the expressions of
φ1(y) and τ1(y) in the first-order kinematic boundary condi-
tion (64), we get the expression of c1,

c1 = i(a0 + a1Re + a2 cot θ ), (65)

where

a0 = (1 + 2β )Ma Bi

(1 + Bi)2
,

a1 = (1 + β ){2 + 5β(2 + 3β )}
15(1 + 2β )2

,

a2 = −2(1 + 3β )

3 + 6β
.

Note that the expression of c1 is purely imaginary. Further-
more, the effects of the Marangoni number Ma and the Biot
number Bi are introduced in the expression of c1. With the aid
of the neutral stability condition (ci ≈ kc1 = 0) in the limit
k → 0, the critical value of the Reynolds number, Rec, for the
surface mode or H mode is calculated and can be written as

Rec = 10(1 + 2β )(1 + 3β ) cot θ − 15(1 + 2β )3{Ma Bi/(1 + Bi)2}
4(1 + β ){2 + 5β(2 + 3β )} . (66)

It can be clearly observed that the expression of the critical
Reynolds number coincides with that of Samanta et al. [32]
and Bhat and Samanta [38] in the case of an isothermal film
flowing down a slippery inclined plane (Ma → 0, Bi → 0).
Furthermore, the critical Reynolds number recovers the result
of Trevelyan and Kalliadasis [51] if the slip length β is set to
zero. In addition, the present critical Reynolds number for the
H mode coincides with that of Sadiq et al. [36], if we consider
the average velocity of a unidirectional parallel flow over a
nonslippery plane as the characteristic velocity scale preferred
by them. Figure 2(a) demonstrates the variation of the critical
Reynolds number with the Marangoni number when the slip
length β varies. It should be noted that the critical Reynolds
number reduces with the increasing values of the Marangoni
number and the slip length. Hence, one can expect the destabi-
lizing influences of the Marangoni number and the slip length
on the surface mode or H mode. In particular, the surface
instability induced by the H mode initiates due to the external
perturbation just after the flow Reynolds number exceeds the
critical value Rec. As discussed by Kalliadasis et al. [39], the
temperature is a maximum at the crest while it is a minimum at
the trough due to the difference in height of a perturbed liquid
film surface [see also Eq. (56)]. This fact causes a minimum
surface tension at the crest and a maximum surface tension

at the trough of the perturbed film surface. If the Marangoni
number is increased, the temperature difference between the
liquid and the ambient gas phase is enhanced, which reduces
the surface tension of the liquid and yields a destabilizing
effect to the surface mode or H mode. On the other hand,
the base flow rate increases with the rising values of the slip
length and renders a destabilizing effect to the surface mode
or H mode.

D. Second-order approximation

Now we consider the second-order [O(k2)] equations:

D4φ2(y) + iRe(c0 − Ū )D2φ1(y) + (iRe c1 − 2)D2φ0(y)

+ iReφ1(y)D2Ū (y) = 0, 0 � y � 1, (67)

D2τ2(y) + iPe{c0 − Ū (y)}τ1(y) + (iPe c1 − 1)τ0(y)

− iPeBi

1 + Bi
φ1(y) = 0, 0 � y � 1, (68)

φ2(y) = 0, τ2(y) = 0,

Dφ2(y) − βD2φ2(y) = 0, at y = 0, (69)
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FIG. 2. (a) Variation of the critical Reynolds number Rec with the Marangoni number Ma for the surface mode or H mode when
the slip length β varies. Solid, dashed, and dotted lines represent the results for β = 0, β = 0.04, and β = 0.08, respectively. The other
parameter values are Bi = 1.44 and θ = 15◦. (b) Comparison of temporal growth rate for the H mode with the results obtained from the
Padé approximation and numerical solution. Solid, dashed, and dotted lines represent the results of numerical solution, Padé approximation,
and third-order long-wave analytical solution, respectively. The other parameter values are Re = 5, Ka = 250, Pr = 7, Bi = 1, Ma = 5, and
θ = 15◦.

D2φ2(y) + φ0(y) + 2iMa τ1(y) − 2iMa Bi η1

1 + Bi

− 2η2

1 + 2β
= 0, at y = 1, (70)

D3φ2(y) + iRe(c0 − 1)Dφ1(y) + (iRe c1 − 3)Dφ0(y)

− 2iη1 cot θ

1 + 2β
= 0, at y = 1, (71)

Dτ2(y) + Bi

[
τ2(y) − Biη2

1 + Bi

]
= 0, at y = 1, (72)

φ2(y) + (1 − c0)η2 − c1η1 − c0η2 = 0, at y = 1. (73)

Solving the second-order equations (67)–(73), we get the ex-
pression of c2 for the surface mode or H mode:

c2 = b0 + b1Bi + b2Bi2 + b0Bi3

60(1 + Bi)3

+ b3ReMa Bi + b4Re cot θ + b5Re2, (74)

where

b0 = −120(1 + 2β ),

b1 = −5[72(1 + 2β ) + MaPe(3 + 8β )],

b2 = 7MaPe − 360(1 + 2β ),

b3 = 19 + 2β[57 + 40β(3 + 2β )]

20(1 + Bi)2(1 + 2β )
,

b4 = 8[5 + 7β{5 + 3β(4 + 3β )}]
63(1 + 2β )2

,

b5 = 160(1 + β )

315(1 + 2β )3

+ 16β(1 + β )[90 + 7β{46 + 15β(5 + 3β )}]
315(1 + 2β )3

.

Obviously, c2 is real. Similarly, solving the third-order
[O(k3)] equations, we obtain the expression of c3 for the
surface mode or H mode,

c3 = −i

[
(h0 + h1Ma + h2Ma2)

50400(1 + Bi)5(1 + 2β )
− (h3 + h4Ma + h5Ma2)Re

25200(1 + Bi)4(1 + 2β )2
+ h6Re2

4989600(1 + Bi)2(1 + 2β )3
+ h7Re3

2027025(1 + 2β )4

]
,

(75)

where the coefficients hi (i = 0, . . . , 7) are given in Ap-
pendix C. Note that c3 is purely imaginary. Hence, the
complex wave speed c for the surface mode or H mode can
be written as

c = c0 + kc1 + k2c2 + k3c3 + O(k4) = cr + ici. (76)

If ci > 0, the infinitesimal disturbance induced by the sur-
face mode or H mode will grow exponentially with time
and the disturbance will be unstable. Figure 2(b) shows the
comparison of temporal growth rate for the H mode with the

results obtained from the Padé approximation and numerical
solution. The discussion of the Padé approximation is supplied
in Appendix D, while the numerical technique for solving
the boundary value problems is discussed in Sec. IV. Note
that the Padé approximation almost captures the result of
numerical solution. However, the long-wave third-order result
deviates from the numerical solution except in the vicinity
of kx = 0, because the long-wave approximation is valid in
the limit kx → 0. The above result indicates that the Padé ap-
proximation is more accurate than the higher-order long-wave
expansion.
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FIG. 3. Neutral stability curve for the stationary instability in the (kz, Ma∗) plane when kx = 0. Solid, dashed, and dotted lines represent
the results for β = 0, β = 0.04, and β = 0.08, respectively. The other parameter values are Rek = 1, Wek = 120, Pek = Prk = 7, Bi = 1.44,
and θ = 15◦. The diamond points are the results of Kalliadasis et al. [39]. The star points represent the onset of instabilities for the S mode
and P mode. (b) Neutral stability curve for the stationary instability in the (kz, Ma∗) plane for different values of kx and β = 0. Solid, dashed,
and dotted lines represent the numerical results for kx = 0, kx = 0.15, and kx = 0.30, respectively. The circular points represent the analytical
result when kx = 0.

E. Spanwise perturbation in the arbitrary wavenumber regime

Following the study of Kalliadasis et al. [39], the bound-
ary value problems (41)–(47) will be further studied for the
two-dimensional disturbances with spanwise wavenumber.
Consequently, we choose kx = 0 and kz = k. As a result, the
boundary value problems (41)–(47) will be simplified into the
following form:

(D2 − k2)2v̂ + iRe ω(D2 − k2)v̂ = 0, 0 � y � 1, (77)

(D2 − k2)τ̂ + Pe

[
iωτ̂ +

(
Bi

1 + Bi

)
v̂

]
= 0, 0 � y � 1,

(78)

v̂ = 0, τ̂ = 0, Dv̂ − βD2v̂ = 0, at y = 0, (79)

(D2 + k2)v̂ + 2k2Ma

[
τ̂ − Bi

1 + Bi
η̂

]
= 0, at y = 1, (80)

[D2 − 3k2 + iReω]Dv̂ − 2k2η̂

[
k2

(
We − Ma

1 + Bi

)

+ cot θ

1 + 2β

]
= 0, at y = 1, (81)

Dτ̂ + Bi

[
τ̂ − Bi

1 + Bi
η̂

]
= 0, at y = 1, (82)

v̂ + iωη̂ = 0, at y = 1. (83)

Here we are mainly interested in exploring the stationary
instability in the arbitrary wavenumber regime, and thereby,
we use the condition ωr = 0. Furthermore, for computing the
neutral stability curve we set ωi = 0. Using the above criteria,
one can obtain the neutral stability condition for the stationary
instability,

Ma∗ = 4k(k cosh k + Bi sinh k){2k − sinh 2k + 2kβ(1 − cosh 2k)}
2Pe[k3(1 + 4β ) cosh k − sinh3 k + kβ{(cosh k − 2 cosh 3k − 8k sinh k)/2}] − 8k5(1+2β ) cosh k

cot θ/(1+2β )+k2(We−Ma∗/Bi)

, (84)

where Ma∗ = Ma Bi/(1 + Bi). Note that the above expression
(84) coincides with that of the liquid film flowing down a
uniformly heated inclined plane [39] if the slip length β is
set to zero. A little difference found in coefficients is the
consequence of the choice of various nondimensional scales.
Furthermore, the above expression (84) recovers the result of
Pearson [52] for a horizontal liquid film over a uniformly
heated plane with a nondeformable film surface in the lim-
its cot θ → ∞ and We → ∞. In accordance with the study
of Kalliadasis et al. [39], the neutral stability curve for the
stationary instability is plotted in the (kz, Ma∗) plane when
the slip length β varies. The result can be found in Fig. 3(a)
when Rek = 1, Pek = Prk = 7, Bi = 1.44, and θ = 15◦ are
fixed. In order to recreate the result of Kalliadasis et al. [39],

we have considered the relations We = Wek/(1 + 2β ) and
Pe = (3/2)(1 + 2β )Pek , where Wek and Pek are the parameter
values of Kalliadasis et al. [39]. It is evident that there exist
two local minima for each neutral stability curve. In fact,
the local minimum appearing at k = 0 is associated with the
threshold of instability for the long-wave S mode, while the
local minimum appearing in the finite spanwise wavenumber
regime is associated with the threshold of instability for the
short-wave P mode [18]. In particular, the S mode and P mode
emerge due to the infinitesimal perturbation of the tempera-
ture at the liquid film surface. For this reason, these modes
are also referred to as the thermocapillary modes. Hence in
the finite wavenumber regime, the thermocapillary instability
is dominated by the P mode rather than the S mode. As
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discussed by Kalliadasis et al. [39], the S mode plays a role
in the long-wave film surface deformation, while the P mode
is responsible for the steady convection rolls. The important
result is that the threshold of instabilities for the S mode and
P mode depletes with the increasing value of β, and ensures
the destabilizing effect of β on the S mode and P mode.
Furthermore, the current result accurately recreates the result
of Kalliadasis et al. [39] in the limit β → 0. In order to see
the effect of streamwise wavenumber on the S mode and P
mode, the neutral curve is also plotted for nonzero values
of the streamwise wavenumber kx. This result is computed
numerically and shown in Fig. 3(b). Note that the onset of
instability for the thermocapillary S mode moves up as long
as the streamwise wavenumber kx increases, which ensures
the destabilizing influence of the streamwise wavenumber on
the thermocapillary S mode. Furthermore, the neutral curve
obtained numerically coincides with that obtained analytically
when kx = 0.

IV. NUMERICAL SOLUTION OF THE
BOUNDARY VALUE PROBLEM

Now the linear stability of the given flow configuration
will be explored for disturbances of arbitrary wavenumbers.
To do that, the boundary value problems (41)–(47) will be
solved numerically by using the Chebyshev spectral collo-
cation method proposed by Schmid and Henningson [53].
To this end, the boundary value problems (41)–(47) are
converted into a generalized matrix eigenvalue problem as
follows:

Aξ = ωBξ, (85)

where ω is the eigenvalue and ξ = [v̂, τ̂ ]T is the associ-
ated eigenvector. The matrices A and B can be expressed as
follows:

A =
(A11 0

A21 A22

)
and B =

(B11 0

0 B22

)
, (86)

where

A11 = iRekx

[
Ū (D2 − k2) + 2

1 + 2β

]
− (D2 − k2)2,

A21 = − Pe Bi

1 + Bi
, A22 = iPekxŪ − (D2 − k2),

B11 = iRe(D2 − k2), B22 = iPe, D = d

dy
.

The eigenvalue problem (85) is closed by applying the bound-
ary conditions (43)–(47). In fact, in the Chebyshev spectral
collocation method, the amplitude function ξ (y) is expanded
in a truncated series of the Chebyshev polynomials [48],

ξ (y) =
N∑

i=0

ξiTi(y), (87)

where N is the number of Chebyshev polynomials and ξi’s are
unknown Chebyshev coefficients to be determined from the
numerical simulation. As the Chebyshev polynomials Ti(y)
are defined over the domain [−1, 1], the liquid layer do-
main [0, 1] is shifted to [−1, 1] by applying a transformation

y = (x + 1)/2. As a result, the derivatives are replaced by
D → 2D, D2 → 4D2, . . .. Inserting Eq. (87) into the matrix
eigenvalue problem (85), the Chebyshev functions are evalu-
ated at the Gauss-Lobatto collocation points x j = cos(π j/N ),
which are extrema of the Chebyshev polynomials, where j =
0, . . . , N .

A. Validation of the numerical code

First of all, the present numerical code is verified by
comparing the numerical results with the available results
existing in the literature. Following Ding et al. [33], the
numerical results are reproduced for the temporal growth
rate ωi with the streamwise wavenumber kx = k induced by
the surface mode or H mode when Re = 15.75, Ka = 9655,
θ = π/2, Pr = 0.01, B = 0.32, β = 0.025, and kz = 0. Fig-
ure 4(a) displays the temporal growth rate for three different
values of M, or equivalently, the Marangoni number Ma.
In order to reproduce the results of Ding et al. [33], we
have rescaled the nondimensional parameters using the fol-
lowing relations: M = Ma(2Re)2/3(1 + 2β )1/3, B = Bi(1 +
2β )1/3/(2Re)1/3, and Ka = We(2Re)2/3(1 + 2β )1/3, where
Ka is the Kapitza number which depends only on the phys-
ical properties of the liquid. Note that the current numerical
results are found to be in good agreement with the numerical
results of Ding et al. [33]. Obviously, the temporal growth rate
ωi induced by the surface mode or H mode intensifies with
the increasing value of the Marangoni number as expected,
because the Marangoni number has a destabilizing effect on
the surface mode [see also Fig. 2(a)]. On the other hand,
Fig. 4(b) displays the neutral stability curve in the (Re, kx)
plane for different values of M when Ka = 250, θ = 15◦,
Pr = 7, B = 1, β = 0, and kz = 0. In this case, the results
are reproduced for the surface mode or H mode and the
thermocapillary S mode and compared with that of Kalliada-
sis et al. [39]. Again we have seen an excellent agreement
between them. In particular, we have found only one neu-
tral stability curve generated by the H mode in the (Re, kx)
plane when M = 0, as expected. As soon as M 	= 0, two
neutral stability curves emerge. One associated with the S
mode appears in the low Reynolds number regime, while
the other one associated with the H mode appears when the
Reynolds number exceeds its critical value given in Eq. (66).
Obviously, the onset of instability induced by the H mode and
the onset of stability for the S mode remain on the Re axis
(kx = 0) when M = 15. In particular, the H-mode instabil-
ity emerges in the long-wave regime due to the perturbation
of the film surface when the Reynolds number exceeds its
threshold value. However, the S-mode instability generated
by the Marangoni stress emerges in the long-wave regime
due to the infinitesimal temperature perturbation at the film
surface when the Reynolds number is very low (Re → 0).
As soon as the Reynolds number increases, the inertia force
intensifies and gradually dominates over the Marangoni force.
As a result, the S-mode instability weakens, and eventually
dies down with increasing Re. Obviously, there exists a range
of the Reynolds number where the S-mode instability is fully
damped when M = 15. Apparently, it seems that the inertia
force has a stabilizing effect on the thermocapillary S mode.
If the Reynolds number is further increased, the H-mode
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FIG. 4. (a) Variation of the temporal growth rate ωi for the surface mode or H mode with streamwise wavenumber kx for different values
of M when Re = 15.75, Ka = 9655, θ = π/2, Pr = 0.01, B = 0.32, β = 0.025, and kz = 0. Solid, dashed, and dotted lines stand for M =
−96.55, M = 0, and M = 96.55, respectively. The symbolic points are the results of Ding et al. [33]. (b) Variation of the neutral stability
curves in the (Re, kx) plane for different values of M when Ka = 250, θ = 15◦, Pr = 7, B = 1, β = 0, and kz = 0. Solid, dashed, dotted, and
dash-dotted lines stand for M = 0, M = 15, M = 16, and M = 30, respectively. The symbolic points are the results of Kalliadasis et al. [39].

instability emerges when the Reynolds number exceeds the
critical Reynolds number. Indeed, we have found a range of
the Reynolds number where both H mode and S mode are sta-
ble to infinitesimal disturbances when M = 15. On the other
hand, these two neutral stability curves merge with each other
with the increasing value of M (M = 16) and generate a single
onset of stability. Note that the onset of stability shifts in the fi-
nite streamwise wavenumber regime with increasing M when
kz = 0. This fact indicates the destabilizing influence of M.
In addition, for further verification with the analytical result,
we have calculated the critical Reynolds number numerically
for the surface mode or H mode and compared with that of
the analytical result in Table I when the parameter M varies.
It can be clearly observed that the analytical and numeri-
cal results are in good agreement when Ka = 250, θ = 15◦,
Pr = 7, B = 1, and β = 0. Furthermore, the critical Reynolds
number for the H mode decreases with the increasing value
of M, which is fully consistent with the result shown in
Fig. 2(a).

B. Effect of the Marangoni number

In this section, we discuss the individual effect of M or,
equivalently, the Marangoni number Ma on the different un-

TABLE I. Comparison between the analytical and numerical val-
ues of the critical Reynolds number Rec for the surface mode or H
mode when the parameter M varies. The other parameter values are
Ka = 250, θ = 15◦, Pr = 7, B = 1, and β = 0.

M Analytical value (Rec) Numerical value (Rec)

5 4.1600 4.1633
7 3.9264 3.9296
9 3.6594 3.6541
11 3.3521 3.3545
13 2.9522 2.9481
15 2.1596 2.1527

stable modes. Numerically, we have found the existence of
three distinct modes, the so-called H mode, S mode, and P
mode, for low to moderate values of the Reynolds number.
However, the shear mode emerges when the Reynolds number
is very large [12–14,54]. These distinct modes are demon-
strated in Fig. 5 for the different sets of parameter values. In
fact, these distinct modes are recognized by their phase speeds
which are completely different for H mode, S mode, P mode,
and shear mode. In Fig. 6(a), the neutral stability curve for
the H mode is plotted in the (Re, kx) plane for different values
of M or, equivalently, the different values of the Marangoni
number when Ka = 250, θ = 15◦, Pr = 7, B = 1, β = 0.02,
and kz = 0. It is observed that in the vicinity of the threshold
of instability, the unstable region induced by the H mode
enhances with the increase in the value of M. Consequently,
the critical Reynolds number Rec reduces, and just after that
the H-mode instability initiates. This fact clearly indicates that
the Marangoni number or, equivalently, the parameter M has
a destabilizing effect on the H mode, which was previously
reported by Hu et al. [23], Ding et al. [33], and Ellaban et al.
[34] for a falling film over a uniformly heated plane. However,
the unstable region for the H mode slightly reduces in the
moderate Reynolds number regime with the increase in the
value of M. This result is fully opposite to the effect of M on
the H-mode instability in the region close to the threshold of
instability. In order to confirm these long-wave destabilizing
and short-wave stabilizing influences of M on the H mode, the
temporal growth rate is plotted in Fig. 6(b) for two different
values of the Reynolds number selected from the destabilizing
and stabilizing zones shown in Fig. 6(a). Note that the tem-
poral growth rate intensifies with the increasing value of M
when Re = 5 [see top of Fig. 6(b)] but the range of unstable
wavenumber slightly decreases with the increasing value of M
when Re = 40 [see bottom of Fig. 6(b)]. These facts ensure
the long-wave destabilizing and the short-wave stabilizing
influences of M on the H mode. Basically, the nontrivial
stabilizing effect of M on the H mode in the finite streamwise
wavenumber regime can be attributed to the influence of sur-
face tension on the H mode, because the contribution of the
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FIG. 5. (a) The eigenvalues in the (cr , ci) plane when Re = 1, kx = 0.05, and M = 15. (b) The eigenvalues in the (cr , ci) plane when
Re = 15, kx = 3, and M = 20. (c) The eigenvalues in the (cr , ci) plane when Re = 25000, kx = 0.8, and M = 25. The other parameter values
are Ka = 250, θ = 15◦, Pr = 7, B = 1, β = 0.02, and kz = 0.

capillary term k2We appearing in the normal stress balance
equation (45) enhances with the increasing wavenumber k
and yields a stabilizing effect. Next we have demonstrated the
solo effect of M on the thermocapillary S mode. Figure 7(a)
depicts the neutral stability curve in the (Re, kx) plane for the
thermocapillary S mode when the parameter M or, equiva-
lently, the Marangoni number varies. Obviously, the unstable
region created by the thermocapillary S mode gradually en-
hances as long as M increases. In other words, the critical
Reynolds number for the S mode beyond which the flow
becomes stable due to infinitesimal temperature perturbation
increases as long as M increases. Similarly, the unstable range
of streamwise wavenumber also magnifies with increasing M.
Hence, one can infer that the Marangoni number has a desta-
bilizing influence on the thermocapillary S-mode instability.
The favorable impact of M on the thermocapillary S-mode
instability can also be found in Fig. 7(b) (top), where the
temporal growth rate in the (kx, ωi) plane intensifies signif-
icantly with the increasing value of M when Re = 0.1. This
result was previously reported by Ellaban et al. [34] for a

falling film over a uniformly heated inclined plane. Further-
more, Fig. 7(b) (bottom) demonstrates the phase speed of the
S mode, which reduces with the increasing value of M. Next
we have shown the individual effect of M on the thermocap-
illary P mode. Figure 8(a) displays the neutral stability curve
in the (Re, kx) plane for the thermocapillary P mode when the
parameter M varies but the other flow parameters Ka = 250,
θ = 15◦, Pr = 7, B = 1, β = 0.02, and kz = 0 are fixed. In
this case, the neutral stability curve forms an unstable island
shape rather than the unstable open domain found for the H
mode when M = 30. Obviously, the unstable domain appears
in the finite streamwise wavenumber regime instead of the
long-wave regime. As long as M decreases, the unstable close
domain for the P mode shrinks significantly, and ultimately
converts into a point at M ≈ 17.86. If M is further decreased,
the unstable domain completely vanishes. In particular, the
thermocapillary P-mode instability does not exist at the low
value of M. However, if the parameter M exceeds a critical
value M ≈ 17.86, the unstable island forms and expands with
increasing M. Hence, the parameter M or, equivalently, the
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FIG. 6. (a) Variation of the neutral stability curve for the H mode in the (Re, kx) plane for different values of M or, equivalently, the
Marangoni number Ma. Solid, dashed, and dotted lines stand for M = 6, M = 10, and M = 14, respectively. (b) Variation of the temporal
growth rate ωi for the H mode with streamwise wavenumber kx for different values of M when Re = 5 (top) and Re = 40 (bottom). Solid,
dashed, and dotted lines stand for M = 6, M = 10, and M = 14, respectively. The other parameter values are Ka = 250, θ = 15◦, Pr = 7,
B = 1, β = 0.02, and kz = 0.
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FIG. 7. (a) Variation of the neutral stability curve for the thermocapillary S mode in the (Re, kx) plane for different values of M or,
equivalently, the Marangoni number Ma. Solid, dashed, and dotted lines stand for M = 6, M = 10, and M = 14, respectively. (b) Variation of
the temporal growth rate ωi for the thermocapillary S mode with streamwise wavenumber kx for different values of M when Re = 0.1 (top).
Variation of the phase speed cr for the thermocapillary S mode with streamwise wavenumber kx for different values of M when Re = 0.1
(bottom). Solid, dashed, and dotted lines stand for M = 6, M = 10, and M = 14, respectively. The other parameter values are Ka = 250,
θ = 15◦, Pr = 7, B = 1, β = 0.02, and kz = 0.

Marangoni number has a destabilizing effect on the P mode.
This result can also be understood from the plot of temporal
growth rate illustrated in Fig. 8(b) (top), where the temporal
growth rate significantly diminishes, which is followed by
the successive reduction of the unstable range of streamwise
wavenumber with the decreasing value of M. Figure 8(b) (bot-
tom) displays the associated phase speed for the P mode. Note
that the phase speed for the P mode enhances with increasing
M as opposed to the result of the S mode. In Fig. 9, we have
displayed the neutral stability curve and the temporal growth
rate for the shear mode when Ka = 51000, θ = 1′, Pr = 7,
Bi = 1, β = 0.02, and kz = 0. Note that the unstable region
forms a tonguelike shape in the neutral diagram. It seems that
change in the Marangoni number has a destabilizing impact
on the shear mode instability because the critical Reynolds
number for the shear mode instability decreases with increas-

ing Ma. Furthermore, the temporal growth rate also enhances
with increasing Ma, which is fully consistent with the result
shown in Fig. 9(a).

C. Effect of the Biot number

In this section, we investigate the solo effect of the Biot
number on different unstable modes found in the numerical
simulation. Accordingly, the other flow parameters are kept
constant at Ka = 250, θ = 15◦, Pr = 7, M = 16, β = 0.02,
and kz = 0. First, we discuss the H-mode and S-mode insta-
bilities. We have noticed that the Biot number or, equivalently,
the parameter B has a dual effect on the H-mode instabil-
ity. The variation of the neutral stability curve for different
values of B has been shown in Fig. 10(a). Initially, at the
low value of the Biot number (B � 0.5), the unstable zone
induced by the H mode magnifies with the increase in the
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FIG. 8. (a) Variation of the neutral stability curve for the thermocapillary P mode in the (Re, kx) plane for different values of M or,
equivalently, the Marangoni number Ma. Solid, dashed, and dotted lines stand for M = 20, M = 25, and M = 30, respectively. The point
appears at M ≈ 17.86. (b) Variation of the temporal growth rate ωi for the thermocapillary P mode with streamwise wavenumber kx for
different values of M when Re = 20 (top). Variation of the phase speed cr for the thermocapillary P mode with streamwise wavenumber kx for
different values of M when Re = 20 (bottom). Solid, dashed, and dotted lines stand for M = 20, M = 25, and M = 30, respectively. The other
parameter values are Ka = 250, θ = 15◦, Pr = 7, B = 1, β = 0.02, and kz = 0.
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FIG. 9. (a) Variation of the neutral stability curve for the shear mode in the (Re, kx) plane for different values of the Marangoni number
Ma. Solid, dashed, and dotted lines stand for Ma = 0, Ma = 15, and Ma = 30, respectively. (b) Variation of the temporal growth rate ωi for
the shear mode with streamwise wavenumber kx for different values of Ma when Re = 8000. Solid, dashed, and dotted lines stand for Ma = 0,
Ma = 15, and Ma = 30, respectively. The other parameter values are Ka = 51000, θ = 1′, Pr = 7, Bi = 1, β = 0.02, and kz = 0.

value of B close to the onset of instability. But as soon as the
Reynolds number increases, the unstable zone created in the
finite wavenumber zone reduces marginally with the increas-
ing value of B (B � 0.5). For further confirmation of these
results, we have also plotted the temporal growth rate curve
in Fig. 11(a) at two different values of the Reynolds number
selected from two different zones. The results reveal that the
temporal growth rate increases with increasing B (B � 0.5)
near the onset of instability when Re = 5. On the other hand,
the unstable range of the streamwise wavenumber reduces in
the finite wavenumber regime with increasing B (B � 0.5)
when Re = 20. Hence, the parameter B has a destabilizing
effect close to the onset of instability but exhibits a stabilizing
effect far away from the onset of instability when B � 0.5.
On the contrary, at the high value of the Biot number (B � 1),
the unstable zone induced by the H mode decreases with the
increase in the value of B close to the onset of instability. But
far away from the onset of instability, a destabilizing effect of
B on the H mode is found as the unstable region magnifies

marginally with the increasing value of B [see Fig. 10(b)].
The variation of the temporal growth rate for the H mode with
the streamwise wavenumber for two different values of Re is
also shown in Fig. 11(b) when B � 1, which fully supports
the result reported in Fig. 10(b). It is evident that the result
pertaining to the H mode at the low Biot number (B � 0.5) is
opposite to that of the high Biot number (B � 1). In particular,
the increasing Biot number causes a higher heat transfer at
the liquid film surface due to thermal convection. As a re-
sult, the liquid film surface becomes cooler and makes the
effect of surface tension stronger and results in a stabilizing
effect. On the other hand, we have observed a similar effect
of the Biot number or, equivalently, the parameter B on the
S-mode instability. In particular, at the low value of the Biot
number (B � 0.5), the unstable region induced by the S mode
enhances with increasing B [see Fig. 10(a)]. However, the
opposite phenomenon takes place at the high value of the
Biot number (B � 1); i.e., the unstable region induced by
the S mode reduces with increasing B [see Fig. 10(b)]. The
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FIG. 10. (a) Variation of the neutral stability curve for the H mode and S mode in the (Re, kx) plane for different values of B (B � 0.5) or,
equivalently, the Biot number Bi. Solid, dashed, and dotted lines stand for B = 0.15, B = 0.3, and B = 0.5, respectively. (b) Variation of the
neutral stability curve for the H mode and S mode in the (Re, kx) plane for different values of B (B � 1) or, equivalently, the Biot number Bi.
Solid, dashed, and dotted lines stand for B = 1, B = 1.5, and B = 2, respectively. The other parameter values are Ka = 250, θ = 15◦, Pr = 7,
M = 16, β = 0.02, and kz = 0.
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FIG. 11. (a) Variation of the temporal growth rate ωi for the H mode with streamwise wavenumber kx for different values of B (B � 0.5)
when Re = 5 (top) and Re = 20 (bottom). Solid, dashed, and dotted lines stand for B = 0.15, B = 0.3, and B = 0.5, respectively. (b) Variation
of the temporal growth rate ωi for the H mode with streamwise wavenumber kx for different values of B (B � 1) when Re = 5 (top) and Re = 20
(bottom). Solid, dashed, and dotted lines stand for B = 1, B = 1.5, and B = 2, respectively. The other parameter values are Ka = 250, θ = 15◦,
Pr = 7, M = 16, β = 0.02, and kz = 0.

above results are further confirmed by plotting the temporal
growth rate for the S mode, which is demonstrated in Fig. 12.
Obviously, the results of temporal growth rate are in favor of
the results predicted from the neutral stability curve shown
in Fig. 10. In particular, we have noticed that the temporal
growth rate becomes stronger with increasing B when B � 0.5
[see Fig. 12(a)], but it becomes weaker with increasing B
when B � 1 [see Fig. 12(b)]. Now we discuss the effect of the
Biot number on the thermocapillary P mode. As a result, the
neutral stability curve pertaining to the P mode is plotted in
the (Re, kx) plane. Figure 13(a) illustrates the neutral stability
curve for the P mode when the parameter B varies but the other
parameters Ka = 250, θ = 15◦, Pr = 7, M = 25, kz = 0, and
β = 0.02 are fixed. Again, the unstable region induced by
the P mode forms an island shape, as observed in Fig. 8(a).
From the results, it can be clearly seen that the unstable region
decreases rapidly with the increase in the value of the Biot

number, and ultimately shrinks into a point at B ≈ 2.71. If
the Biot number is further increased, the P-mode instability
disappears. In other words, there exists a critical value of
the Biot number (B ≈ 2.71) above which the unstable island
generates due to the P-mode instability. The temporal growth
rate and the phase speed associated with the P mode are
shown in Fig. 13(b) for different values of the Biot number
when Re = 7. Obviously, the temporal growth rate decreases
with the increase in the value of B, which is followed by
the successive reduction of the unstable range of streamwise
wavenumber kx. Hence, one can infer that the Biot number
has a stabilizing effect on the P mode. In addition, it is found
that the Biot number does not have a significant impact on
the shear mode instability (see Fig. 14). Apparently, it seems
that the Biot number has a stabilizing effect on the shear
mode because the temporal growth rate for the shear mode
diminishes with increasing B.
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FIG. 12. (a) Variation of the temporal growth rate ωi for the S mode with streamwise wavenumber kx for different values of B (B � 0.5)
when Re = 0.1. Solid, dashed, and dotted lines stand for B = 0.15, B = 0.3, and B = 0.5, respectively. (b) Variation of the temporal growth
rate ωi for the S mode with streamwise wavenumber kx for different values of B (B � 1) when Re = 0.4. Solid, dashed, and dotted lines stand
for B = 1, B = 1.5, and B = 2, respectively. The other parameter values are Ka = 250, θ = 15◦, Pr = 7, M = 16, β = 0.02, and kz = 0.
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FIG. 13. (a) Variation of the neutral stability curve for the thermocapillary P mode in the (Re, kx) plane for different values of B or,
equivalently, the Biot number Bi. Solid, dashed, dotted, and dash-dotted lines stand for B = 1, B = 1.5, B = 2, and B = 2.5, respectively.
The point appears at B ≈ 2.71. (b) Variation of the temporal growth rate ωi for the thermocapillary P mode with streamwise wavenumber kx

for different values of B when Re = 7 (top). Variation of the phase speed cr for the thermocapillary P mode with streamwise wavenumber kx

for different values of B when Re = 7 (bottom). Solid, dashed, dotted, and dash-dotted lines stand for B = 1, B = 1.5, B = 2, and B = 2.5,
respectively. The other parameter values are Ka = 250, θ = 15◦, Pr = 7, M = 25, β = 0.02, and kz = 0.

D. Effect of the slip length

In this section, we deal with the influence of wall slip on
different unstable modes found in the numerical simulation.
Figure 15(a) reveals the neutral stability curves for the H mode
and S mode in the (Re, kx) plane for different values of the slip
length β when Ka = 250, θ = 15◦, Pr = 7, M = 14.8, B = 1,
and kz = 0. It is observed that near the onset of instability, the
critical Reynolds number for the H mode beyond which the
flow becomes unstable decreases with the increase in the value
of the slip length and, thereby, the unstable region generated
by the H mode magnifies. But at the moderate value of Re, i.e.,
far away from the onset of instability, the unstable region in-
duced by the H mode reduces with the increase in the value of
the slip length. Hence, it can be inferred that, near the thresh-
old of instability, wall slip has a destabilizing effect on the H
mode, whereas far away from the threshold of instability, wall
slip has a stabilizing effect. In order to reinforce the above

results, the temporal growth rate for the H mode is plotted
with respect to the streamwise wavenumber kx in Fig. 15(b)
for two different values of the Reynolds number. At Re = 4, it
can be observed that the temporal growth rate for the H mode
increases significantly with the rising value of the slip length
[see top of Fig. 15(b)]. On the other hand, the maximum
temporal growth rate for the H mode decreases slightly as the
value of β increases at Re = 20 [see bottom of Fig. 15(b)].
A similar type of results pertaining to the slip length on the
H mode was previously reported by Samanta et al. [32] for
an isothermal film falling down a slippery inclined plane.
Apparently, it seems that the nonisothermal condition does
not change the effect of slip length on the H mode. The
variation of the neutral stability curve in the (Re, kx) plane
corresponding to the S-mode instability for different values of
β has been revealed in Fig. 15(a). In this case also, we have
found a similar effect of β on the S-mode instability. Near the
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FIG. 14. (a) Variation of the neutral stability curve for the shear mode in the (Re, kx) plane for different values of the Biot number Bi.
Solid, dashed, and dotted lines stand for Bi = 1, Bi = 1.5, and Bi = 2, respectively. (b) Variation of the temporal growth rate ωi for the shear
mode with streamwise wavenumber kx for different values of Bi when Re = 7700. Solid, dashed, and dotted lines stand for Bi = 1, Bi = 1.5,
and Bi = 2, respectively. The other parameter values are Ka = 51000, θ = 1′, Pr = 7, Bi = 1, β = 0.02, and kz = 0.
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FIG. 15. (a) Variation of the neutral stability curve for the H mode and S mode in the (Re, kx) plane for different values of the slip length
β. Solid, dashed, and dotted lines stand for β = 0, β = 0.04, and β = 0.08, respectively. (b) Variation of the temporal growth rate ωi for the
H mode with streamwise wavenumber kx for different values of β when Re = 4 (top). Variation of the temporal growth rate ωi for the H mode
with streamwise wavenumber kx for different values of β when Re = 20 (bottom). Solid, dashed, and dotted lines stand for β = 0, β = 0.04,
and β = 0.08, respectively. (c) Variation of the temporal growth rate ωi for the S mode with streamwise wavenumber kx for different values
of β when Re = 0.05 (top). Variation of the temporal growth rate ωi for the S mode with streamwise wavenumber kx for different values of β

when Re = 1.3 (bottom). Solid, dashed, and dotted lines stand for β = 0, β = 0.04, and β = 0.08, respectively. The other parameter values
are Ka = 250, θ = 15◦, Pr = 7, M = 14.8, B = 1, and kz = 0.

threshold of instability, the unstable region for the S mode in-
creases with increasing β. Consequently, the critical Reynolds
number after which the flow becomes stable increases with
increasing β. Hence, the wall slip has a destabilizing effect on
the S mode. The interesting fact is that the onset of stability
for the S mode increases, while the onset of instability for
the H mode decreases with increasing β, and finally, both the
onsets merge with each other with the higher values of β and
generate a single onset of stability. Note that the single onset
of stability moves towards the finite streamwise wavenumber
regime with increasing β. In addition, we have found that
the unstable range of the streamwise wavenumber for the S
mode reduces with increasing β at low Reynolds number. To
reinforce these results the variation of the temporal growth
rate ωi for the S mode with the streamwise wavenumber kx for
different values of β has been plotted in Fig. 15(c) when Ka =
250, θ = 15◦, Pr = 7, M = 14.8, B = 1, and kz = 0. The tem-
poral growth rate is found to increase with increasing β at
Re = 1.3 [see bottom of Fig. 15(c)], while the unstable range
of the streamwise wavenumber decreases with increasing β at
Re = 0.05 [see top of Fig. 15(c)]. Next we have explored the
effect of slip length on the P-mode instability. In Fig. 16(a),
the variation of the neutral stability curve corresponding to

the thermocapillary P mode is shown for different values
of the slip length when Ka = 250, θ = 15◦, Pr = 7, M =
25, B = 1, and kz = 0. The result indicates that the P-mode
instability occurs in the finite wavenumber regime rather than
the long-wave regime and forms an islandlike unstable region
in the neutral diagram, which gradually magnifies with the
increase in the value of the slip length. Hence, it can be
concluded that the wall slip has a destabilizing effect on the
thermocapillary P mode. Apparently, it seems that the effect
of the slip length on the P mode is opposite to the effect of
the Biot number on the P mode. To confirm this result, we
have also plotted the temporal growth rate with the variation
of the streamwise wavenumber at Re = 40 in Fig. 16(b) (top)
for different values of β. It can be observed that the temporal
growth rate enhances with the increase in the value of the
slip length, which is followed by the successive increment
of the range of kx. This result is fully consistent with the
result reported in Fig. 16(a). Figure 16(b) (bottom) displays
the phase speed of the thermocapillary P mode as the slip
length varies. Note that the phase speed enhances with the
slip length as opposed to the effect of the Biot number on the
phase speed for the P mode. Figure 17 depicts the effect of
slip length on the shear mode when the slip length β varies. In
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FIG. 16. (a) Variation of the neutral stability curve for the thermocapillary P mode in the (Re, kx) plane for different values of the slip
length. Solid, dashed, and dotted lines stand for β = 0, β = 0.04, and β = 0.08, respectively. (b) Variation of the temporal growth rate ωi for
the thermocapillary P mode with streamwise wavenumber kx for different values of β when Re = 40 (top). Variation of the phase speed cr

for the thermocapillary P mode with streamwise wavenumber kx for different values of β when Re = 40 (bottom). Solid, dashed, and dotted
lines stand for β = 0, β = 0.04, and β = 0.08, respectively. The other parameter values are Ka = 250, θ = 15◦, Pr = 7, M = 25, B = 1, and
kz = 0.

the numerical simulation, we have fixed Ka = 51000, θ = 1′,
Pr = 7, Ma = 15, Bi = 1, β = 0.02, and kz = 0. The neutral
stability curve corresponding to the shear mode has been
plotted in Fig. 17(a) for different values of β. In this case, the
tonguelike unstable region is created in the neutral diagram,
which decreases significantly with the slight increment of β.
Hence, it can be inferred that the wall slip has a stabilizing
effect on the shear mode instability, as opposed to the result
of the Marangoni number on the shear mode. Obviously, the
effect of slip length on the shear mode is more prominent
than the effect of the Marangoni number. Actually, with the
introduction of slip at the impermeable wall, the viscous fric-
tion force reduces and causes a stabilizing effect on the shear
mode because the viscous friction force is responsible for the
generation of the unstable region corresponding to the shear
mode. To reinforce the above result, we have also plotted
the temporal growth rate with the streamwise wavenumber

in Fig. 17(b) when Re = 8000. The result indicates that the
temporal growth rate significantly decreases with the increase
in the value of the slip length and ensures the destabilizing
effect of the slip length.

E. Effect of the Prandtl number

There is evidence that the Prandtl number does not have
a significant impact on the different unstable modes except
the thermocapillary P mode. For this reason, we focus our
attention only on the thermocapillary P mode when the Prandtl
number changes. Figure 18(a) illustrates the variation of the
neutral stability curve in the (Re, kx) plane for the thermo-
capillary P mode when Ka = 250, θ = 15◦, M = 25, B = 1,
β = 0.02, and kz = 0. In this case also, the neutral stability
curve generates an unstable island with the increasing value

6 7 8 9 10
Re 103

1.6

2

2.4

2.8

k x

= 0.00
= 0.01
= 0.02

Unstable

Stable

(a)

2 2.1 2.2 2.3 2.4
k

x

0

0.5

1

1.5

i

10-3

= 0.00

= 0.01
= 0.02

(b)

FIG. 17. (a) Variation of the neutral stability curve for the shear mode in the (Re, kx) plane for different values of the slip length β. Solid,
dashed, and dotted lines stand for β = 0, β = 0.01, and β = 0.02, respectively. (b) Variation of the temporal growth rate ωi for the shear mode
with streamwise wavenumber kx for different values of β when Re = 8000. Solid, dashed, and dotted lines stand for β = 0, β = 0.01, and
β = 0.02, respectively. The other parameter values are Ka = 51000, θ = 1′, Pr = 7, Bi = 1, Ma = 15, and kz = 0.
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FIG. 18. (a) Variation of the neutral stability curve for the thermocapillary P mode in the (Re, kx) plane for different values of the Prandtl
number. Solid, dashed, and dotted lines stand for Pr = 5, Pr = 6, and Pr = 7, respectively. The point appears at Pr ≈ 4.50. (b) Variation
of the temporal growth rate ωi for the thermocapillary P mode with streamwise wavenumber kx for different values of Pr when Re = 20
(top). Variation of the phase speed cr for the thermocapillary P mode with streamwise wavenumber kx for different values of Pr when Re = 20
(bottom). Solid, dashed, and dotted lines stand for Pr = 5, Pr = 6, and Pr = 7, respectively. The other parameter values are Ka = 250, θ = 15◦,
M = 25, B = 1, β = 0.02, and kz = 0.

of Pr. In fact, the unstable region forms as soon as the Prandtl
number exceeds a critical value. In particular, at the critical
value of Pr ≈ 4.50, the unstable region appears as a point in
the (Re, kx) plane when the streamwise wavenumber is finite.
If the Prandtl number is increased, the unstable region expands
gradually. Hence, one can infer that the Prandtl number has
a destabilizing effect on the P-mode instability. To strengthen
the above result, the variation of the temporal growth rate with
the streamwise wavenumber is plotted in Fig. 18(b) (top) for
different values of the Prandtl number when Re = 20. The
result is fully in favor of the result of the neutral stability
curve depicted in Fig. 18(a) because the temporal growth
rate becomes stronger with increasing Pr. Furthermore, the
phase speed of the thermocapillary P mode magnifies with
increasing Pr [see bottom of Fig. 18(b)].

F. Effect of the spanwise wavenumber

Finally, we have investigated the effect of spanwise
wavenumber on the individual unstable modes. First, we have
plotted the neutral stability curves for the H mode and S
mode in the (Re, kx) plane for different values of the spanwise
wavenumber kz. The ensuing results can be found in Fig. 19
when Ka = 250, θ = 15◦, Pr = 7, M = 25, B = 1, and β =
0.02. The results are produced for two different values of M.
In both cases, we have noticed almost a similar scenario as
observed in Refs. [55–57]. Note that a single neutral stability
curve emerges at the spanwise wavenumber kz = 0. As soon
as kz is increased, the single neutral stability curve turns into
a pair of separatrices at kz ≈ 0.048, which is illustrated by
a dashed line. More specifically, two unstable regions are
formed, and both the regions are separated by a single point
[see Fig. 19(a)]. In fact, one unstable region is associated with
the H mode, while the other unstable region is associated with
the S mode. Furthermore, the unstable region induced by the
H mode significantly decreases with the increasing value of kz.
Similarly, the unstable region induced by the S mode also de-
creases with the increasing value of kz. The important result is

that the unstable region for the H mode gradually shift towards
the finite streamwise wavenumber regime with increasing
kz instead of lying in the long-wave regime [58]. However,
the unstable region for the S mode gradually shifts towards
the long-wave regime with increasing kz, and ultimately
disappears from the neutral diagram approximately at kz =
0.18 [see Fig. 19(a)]. Hence, the spanwise wavenumber has
a stabilizing effect on the H-mode and S-mode instabilities.
Next we have shown the influence of kz on the thermocapillary
P mode and the shear mode. The results are displayed in
Fig. 20. Note that the unstable region for the P mode increases,
but the unstable region for the shear mode decreases with the
increasing value of the spanwise wavenumber and ensures a
destabilizing effect on the P mode but ensures a stabilizing
effect on the shear mode. In order to figure out the behavior
of individual modes in the (kx, kz) plane, the neutral stability
curves pertaining to individual unstable modes are revealed
in Fig. 21. In this case, the Reynolds number is varied while
other flow parameters are kept constant. Note that the unstable
domains associated with the H mode, P mode, and shear mode
enhance as long as the Reynolds number increases. However,
the unstable domain associated with the S mode reduces with
the increasing value of the Reynolds number because inertia
has a stabilizing effect on the S mode. These results are fully
consistent with the results reported in the previous sections.

V. SUMMARY AND CONCLUSIONS

We have investigated a linear stability analysis of a three-
dimensional thin viscous incompressible liquid film flowing
down a uniformly heated slippery inclined plane. Here the
liquid film is flowing under the action of gravitational force.
As the plane is uniformly heated, we implement a constant
temperature at the plane, while Newton’s law of cooling is
implemented to describe the heat transfer due to convection
at the film surface. In order to perform the linear stability
analysis, we have developed a coupled system of boundary
value problems in terms of the amplitudes of perturbation
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FIG. 19. (a) Variation of the neutral stability curve for the H mode and S mode in the (Re, kx) plane for different values of the spanwise
wavenumber and M = 25. Solid, dashed, dotted, dash-dotted, and thin solid lines stand for kz = 0, kz ≈ 0.048, kz = 0.07, kz = 0.12, and
kz = 0.18, respectively. (b) Variation of the neutral stability curve for the H mode and S mode in the (Re, kx) plane for different values of the
spanwise wavenumber and M = 30. Solid, dashed, dotted, dash-dotted, and thin solid lines stand for kz = 0, kz = 0.05, kz = 0.1, kz = 0.15,
and kz = 0.20, respectively. The other parameter values are Ka = 250, θ = 15◦, Pr = 7, B = 1, and β = 0.02.

normal velocity and perturbation temperature, respectively,
which is in fact a coupled system of a fourth-order differential
equation for the perturbation normal velocity and a second-
order differential equation for the perturbation temperature.
The boundary value problems are solved analytically by using
the long-wave series expansion as well as numerically in the
arbitrary wavenumber regime by using the Chebyshev spec-
tral collocation method. The analytical solution reveals the
existence of three dominant modes, the so-called H mode, S
mode, and P mode, in low to moderate values of the Reynolds
number. In fact, the H mode emanates due to the streamwise
component of the gravitational force, while the S mode and
P mode emanate due to the thermocapillary effect. It is found
that the threshold of instabilities for the H mode, S mode, and
P mode depletes with the increasing value of the slip length
and ensures a destabilizing effect.

The numerical solution of the coupled system of boundary
value problems reveals that the H-mode instability can be

intensified in the long-wave regime but can be weakened in
the finite wavenumber regime with the increasing value of the
Marangoni number. On the other hand, the thermocapillary
S-mode instability and the finite wavenumber P-mode insta-
bility will be stronger if the Marangoni number is increased.
Furthermore, we have found that the Biot number exhibits
a dual role in the H-mode and S-mode instabilities. More
specifically, it exhibits a peculiar behavior on the H mode
and S mode. In the long-wave regime, the unstable zones
generated by the H mode and S mode increase successively
as soon as the Biot number increases, and finally merge with
each other with the higher values of the Biot number when
B � 0.5. However, if the Biot number takes a large value,
i.e., if B � 1, the opposite phenomenon happens. In partic-
ular, a single neutral stability curve appears at B = 1. But,
it turns into two neutral stability curves with the increasing
value of B. One is associated with the H mode, while the
other one is associated with the S mode. It is observed that
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FIG. 20. (a) Variation of the neutral stability curve for the thermocapillary P mode in the (Re, kx) plane for different values of the spanwise
wavenumber. Solid, dashed, and dotted lines stand for kz = 0, kz = 0.5, and kz = 1, respectively. The other parameter values are Ka = 250,
θ = 15◦, Pr = 7, M = 20, B = 1, and β = 0.02. (b) Variation of the neutral stability curve for the shear mode in the (Re, kx) plane for different
values of the spanwise wavenumber. Solid, dashed, and dotted lines stand for kz = 0, kz = 0.25, and kz = 0.5, respectively. The other parameter
values are Ka = 13000, θ = 1◦, Pr = 7, Ma = 30, Bi = 1, and β = 0.02.
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FIG. 21. (a) Variation of the neutral stability curve for the H mode in the (kx , kz) plane for different values of the Reynolds number. Solid,
dashed, and dotted lines stand for Re = 5, Re = 10, and Re = 15, respectively. The other parameter values are Ka = 250, θ = 15◦, Pr = 7,
M = 25, B = 1, and β = 0.02. (b) Variation of the neutral stability curve for the S mode in the (kx , kz) plane for different values of the Reynolds
number. Solid, dashed, and dotted lines stand for Re = 0.4, Re = 0.8, and Re = 1.2, respectively. The other parameter values are Ka = 250,
θ = 15◦, Pr = 7, M = 14, B = 1, and β = 0.02. (c) Variation of the neutral stability curve for the P mode in the (kx , kz) plane for different
values of the Reynolds number. Solid, dashed, and dotted lines stand for Re = 5, Re = 10, and Re = 15, respectively. The other parameter
values are Ka = 250, θ = 15◦, Pr = 7, M = 21, B = 1, and β = 0.02. (d) Variation of the neutral stability curve for the shear mode in the (kx ,
kz) plane for different values of the Reynolds number. Solid, dashed, and dotted lines stand for Re = 15000, Re = 17500, and Re = 20000,
respectively. The other parameter values are Ka = 13000, θ = 1◦, Pr = 7, Ma = 30, Bi = 1, and β = 0.02.

two unstable zones decrease gradually with the increasing
value of B. Moreover, the P-mode instability emanates in the
finite streamwise wavenumber regime when the parameter
B exceeds a critical value and magnifies with increasing B.
Hence, the Biot number has a stabilizing effect on the P-mode
instability. Apparently, it seems that the Biot number does not
have a significant influence on the shear mode. The numerical
simulation of the coupled system of boundary value problems
also demonstrates that the slip length has a destabilizing effect
on the H mode and S mode as observed in the analytical
calculation because the unstable regions induced by the H
mode and S mode magnify with the increasing value of the
slip length. In this case also, the onset of instability for the
H mode and the onset of stability for the S mode merge with
each other and form a single neutral stability curve as long as
the slip length increases. Furthermore, the onset of stability
shifts towards the finite streamwise wavenumber regime with
increasing β. We have noted that the Prandtl number has no
significant influence on the H mode, S mode, and shear mode,
but the P mode becomes more unstable with the increasing
value of the Prandtl number. In fact, the unstable region ap-

pears when the Prandtl number exceeds a critical value and
expands significantly as long as the Prandtl number increases.
Finally, the effect of spanwise wavenumber is explored on
the different unstable modes. It is found that the unstable
regions generated by the H mode, S mode, and shear mode
decrease with the increasing value of the spanwise wavenum-
ber. However, the opposite event happens in the case of the P
mode, where the P-mode instability intensifies as long as the
spanwise wavenumber increases.
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APPENDIX A: SQUIRE’S TRANSFORMATION FOR
NONISOTHERMAL FLOW CONFIGURATION

This Appendix deals with Squire’s transformation for the
nonisothermal flow configuration. Using the normal node
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solution (40), the linearized three-dimensional perturbation
equations (29)–(39) can be rewritten as

ikxû + ∂yv̂ + ikzŵ = 0, 0 � y � 1, (A1)

Re[(Ū − c)ikxû + ∂yŪ v̂]

= −2ikx p̂ + [
∂yyû − (

k2
x + k2

z

)
û
]
, 0 � y � 1, (A2)

Re(Ū − c)ikx v̂

= −2∂y p̂ + [
∂yyv̂ − (

k2
x + k2

z

)
v̂
]
, 0 � y � 1, (A3)

Re(Ū − c)ikxŵ

= −2ikz p̂ + [
∂yyŵ − (

k2
x + k2

z

)
ŵ

]
, 0 � y � 1, (A4)

Pe[(Ū − c)ikx τ̂ + ∂yT̄ v̂]

= [
∂yyτ̂ − (

k2
x + k2

z

)
τ̂
]
, 0 � y � 1, (A5)

û = β∂yû, v̂ = 0, ŵ = β∂yŵ, T̂ = 0, at y = 0,

(A6)

∂yû + ikx v̂ − 2ĥ

1 + 2β
= −2Ma

[
ikx τ̂ − Bi

1 + Bi
ikxĥ

]
,

at y = 1, (A7)

∂yŵ + ikzv̂ = −2Ma

[
ikzτ̂ − Bi

1 + Bi
ikzĥ

]
, at y = 1,

(A8)

−p̂ + cot θ

1 + 2β
ĥ + ∂yv̂ = −

[
We − Ma

1 + Bi

]

× (
k2

x + k2
z

)
ĥ, at y = 1, (A9)

∂yτ̂ = Bi

[
Bi

1 + Bi
ĥ − τ̂

]
, at y = 1, (A10)

(Ū − c)ikxĥ = v̂, at y = 1. (A11)

Now we apply the following extended form of Squire’s trans-
formations [58]:

.

kxû + kzŵ = kũ, v̂ = ṽ, k2
x + k2

z = k2, p̂ = p̃,

c = c̃, kx τ̂ = kτ̃ , kxĥ = kh̃, k cot θ = kx cot θ̃ ,

kxRe = kR̃e, kxPe = kP̃e, kWe = kxW̃e,

kMa = kxM̃a, Bi = B̃i.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A12)

Using the above transformations (A12), the three-dimensional
perturbation equations (A1)–(A11) can be converted into
equivalent two-dimensional perturbation equations:

ikũ + ∂yṽ = 0, 0 � y � 1, (A13)

R̃e[(Ū − c̃)ikũ + ∂yŪ ṽ]

= −2ik p̃ + [∂yyũ − k2ũ], 0 � y � 1, (A14)

R̃e[(Ū − c̃)ikṽ]

= −2∂y p̃ + [∂yyṽ − k2ṽ], 0 � y � 1, (A15)

P̃e[(Ū − c̃)ikτ̃ + ∂yT̄ ṽ]

= [∂yyτ̃ − k2τ̃ ], 0 � y � 1, (A16)

ũ = β∂yũ, ṽ = 0, τ̃ = 0, at y = 0, (A17)

∂yũ + ikṽ − 2h̃

1 + 2β
= −2M̃a

[
ikτ̃ − B̃i

1 + B̃i
ikh̃

]
,

at y = 1, (A18)

− p̃ + cot θ̃

1 + 2β
h̃ + ∂yṽ

= −
[

W̃e − M̃a

1 + B̃i

]
k2h̃, at y = 1, (A19)

∂yτ̃ = B̃i

[
B̃i

1 + B̃i
h̃ − τ̃

]
, at y = 1, (A20)

(Ū − c̃)ikh̃ = ṽ, at y = 1, (A21)

where tilde quantities are the parameters for the two-
dimensional nonisothermal flow configuration. From the
above transformation, we note that R̃e = (kx/k)Re, which
implies that R̃e < Re as kz 	= 0 for the three-dimensional
disturbance. Therefore, we can conclude that the primary
instability corresponding to the two-dimensional disturbance
initiates at a lower Reynolds number than that of the three-
dimensional disturbance.

APPENDIX B: SOLUTION OF FIRST-ORDER
LONG-WAVE EQUATIONS

φ1(y) = i

[
2(d0 + d1Re)y + (d0 + d1Re)βy2

6(1 + Bi)2(1 + 2β )2

+ d2y3 + d3y4 + d4y5

]
, (B1)

τ1(y) = Bi

(1 + Bi)2

[
e0y

30(1 + Bi)
+ e1y3

+ e2y4 + e3y5

]
, (B2)

where

d0 = −6β(1 + 2β )[−BiMa(1 + 2β )η0 + i(1 + Bi)2η1

+ (1 + Bi)2η0 cot θ ],

d1 = (1 + Bi)2[3c0(1 + 2β )2 − 2(1 + 4β + 6β2)]η0,

d2 = η0[Reβ{c0 + 2(c0 − 1)β − (1 + 2β ) cot θ}]
3(1 + 2β )2

,

d3 = Re[c0 + 2(c0 − 1)β]η0

12(1 + 2β )2
, d4 = Re(1 + β )η0

30(1 + 2β )2
,

e0 = iPe(−10 − 25Bi − 6Bi2 + 15Bic0 + 5Bi2c0)

1 + 2β

+10(3 + Bi){Bi(c0 − 2) − 1}β]η0

1 + 2β
+ 30Bi(1 + Bi)η1,

e1 = iPe[Bi{c0 + 2(c0 − 2)β} − 2β]η0

6(1 + 2β )
,

e2 = i(1 + 3Bi)Peη0

12(1 + 2β )
, e3 = − iBiPeη0

20(1 + 2β )
.
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APPENDIX C: EXPRESSIONS OF THE COEFFICIENTS FOR c3

h0 = 6720(1 + Bi)5[5We{1 + β(5 + 6β )} − 3{3 + 5β(3 + 4β )} cot θ ],

h1 = (1 + Bi)[Bi{16800Bi(5 + 3Bi) + (5435 − Bi(2090 + 749Bi))Pe2} − 40Bi{(Bi(28 + 31Bi) − 619)Pe2

− 840(3 + Bi(19 + 11Bi))}β + 4480{15(1 + Bi)(2Bi(6 + 7Bi) − 3) + Bi(6 + Bi)Pe2}β2

+ 806400Bi(1 + Bi)2β3 − 33600(1 + 5β ) + 280BiPe(1 + Bi)(1 + 2β )(7Bi − 120β − 33) cot θ ],

h2 = 4200Pe(Bi − 8β − 3)(Bi + 2Biβ )2,

h3 = 5(Bi + 1)4 csc2 θ [{8β(252β(5β(12β + 23) + 82) + 6617) + 6617} cos(2θ )

− 8β{252β(5β(12β + 25) + 92) + 7513} − 7513],

h4 = Bi(1 + Bi)[Pe{3653Bi − 9605 + 2Biβ(10649 + 40β(536 + 343β ))} − 10β{8317 + 8β(3419 + 7β(703 + 360β ))}
+ 280(1 + Bi)(1 + 2β ){49 + β(343 + 120β(7 + 6β ))} cot θ ],

h5 = −21000Bi2(1 + 2β )3{5 + 4β(5 + 6β )},
h6 = 495BiMa(1 + 2β )[13535 + 2β{67675 + 8β(34983 + 70β(1045 + 216β(5 + 2β )))}]

− 256(1 + Bi)2[17363 + 11β{17363 + 30β(2609 + 63β(94 + 15β(7 + 3β )))} cot θ ],

h7 = 16(1 + β )[75872 + 13β{75872 + 11β(38692 + 15β(7888 + 21β(652 + 75β(8 + 3β ))))}].

APPENDIX D: PADÉ APPROXIMATION OF
THE LONG-WAVE SOLUTIONS

Following the works of Lange et al. [59] and Pal and
Samanta [60], the Padé approximation is applied to im-
prove the result obtained from the third-order long-wave
solution when the wavenumber kx → 0. To this end, the
complex wave speed c for the H mode is expressed as a
ratio of two polynomials in terms of wavenumber kx = k
(kz = 0),

c = P(k)

Q(k)
, (D1)

where

P(k) = p0 + p1k + p2k2 + · · · + pik
i,

Q(k) = 1 + q1k + q2k2 + · · · + q jk
j 	= 0,

where the unknown coefficients p0, p1, . . . , pi and q1, . . . , q j

are determined analytically by using the long-wave solution.
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