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At the molecular level fluid motions are, by first principles, described by time reversible laws. On the other
hand, the coarse grained macroscopic evolution is suitably described by the Navier-Stokes equations, which are
inherently irreversible, due to the dissipation term. Here, a reversible version of three-dimensional Navier-Stokes
is studied, by introducing a fluctuating viscosity constructed in such a way that enstrophy is conserved, along the
lines of the paradigm of microcanonical versus canonical treatment in equilibrium statistical mechanics. Through
systematic simulations we attack two important questions: (a) What are the conditions that must be satisfied in
order to have a statistical equivalence between the two nonequilibrium ensembles? (b) What is the empirical
distribution of the fluctuating viscosity observed by changing the Reynolds number and the number of modes
used in the discretization of the evolution equation? The latter point is important also to establish regularity
conditions for the reversible equations. We find that the probability to observe negative values of the fluctuating
viscosity becomes very quickly extremely small when increasing the effective Reynolds number of the flow in
the fully resolved hydrodynamical regime, at difference from what was observed previously.
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I. INTRODUCTION

The statistical balance between energy injection and dis-
sipation is the key ingredient for the establishment of steady
state conditions in nonequilibrium statistical mechanical sys-
tems. Such systems are driven out of equilibrium by the
presence of an external forcing, while dissipation acts as a
thermostat that removes the excess of energy [1,2], with en-
tropy being produced in the process.

In the case of fluid systems, described by the Navier-Stokes
equation (NSE) [3,4], dissipation is introduced in the form of a
Laplacian operator acting on the velocity field times a positive
constant: the viscosity. Such an operator preferentially damps
the small scales of the flow. There are other ways to intro-
duce dissipation, and two relevant examples are given next.
For instance, in two-dimensional (2D) and geophysical flows,
dissipation is often introduced via the Ekman friction, which
is justified, e.g., by the effects of the bottom and top surfaces
of the thin fluid layer which helps avoiding accumulation of
energy at large scales [5,6]. Another approach, used customar-
ily in numerical simulations to reach high intensity turbulent
states in many applications, is to introduce hyperviscosity
[7], i.e., a positive power of the Laplacian, which confines
dissipation to the small scales, acting, de facto, like a sharp
ultraviolet filter. It is also possible to introduce dissipation by
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combining more than one of the above outlined approaches.
The common characteristic among all the forms of dissipation
described above is that they break the time reversal symmetry,
which is instead preserved by the other terms of the NSE.

Reversible equations govern microscopic motion while
irreversible equations describe, very often, macroscopic evo-
lution of the same systems with equations derived via scaling
of various parameters [8–11]. Thus, the question arises as
to whether the macroscopic description of systems evolving
irreversibly could also be described macroscopically by re-
versible equations.

The equivalence of different ensembles in equilibrium
statistical mechanics (see, e.g., [12,13]) describes, in the
thermodynamic limit, the independence of macroscopic ob-
servables with respect to the chosen thermostat, which defines
the underlying microscopic interactions between the system
and the reservoir in contact with it. In nonequilibrium systems
it is possible to appropriately modify the irreversible term(s)
of the evolution equation in such a way that time reversibility
is restored, while, under suitable constraints, a macroscopic
quantity is kept fixed [14]; an early example for NSE is in
[15] where many conditions are simultaneously imposed to
constrain that the energy content obeys at every scale (above
the Kolmogorov’s) the 5

3 law. The key question is whether,
and under which conditions, the two ensembles (irreversible
and reversible) are equivalent and describe the same physical
problem.

In the context of fluid systems, where the viscous term is
the source of irreversibility, it is possible to introduce a veloc-
ity field-dependent fluctuating viscosity, such that the viscous
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term becomes formally reversible, while keeping fixed a
macroscopic quantity (e.g., the energy or enstrophy, etc.) as
a constraint. The equivalence between the irreversible and re-
versible fluid ensembles was first conjectured in [16,17] in the
limit of vanishing viscosity and fixed system size. Subsequent
numerical attempts addressed this conjecture in a few simple
systems such as in a version of the 2D NSE truncated to a few
modes and with periodic boundary conditions [18], and more
recently in [2,19], in the Lorenz-96 model [20] and a shell
model of turbulence [21,22]. Recently, an interesting attempt
to show equivalence between a reversible 2D NSE, where
both energy and enstrophy are kept fixed, with irreversible 2D
NSE, is presented in [23]. First in [24] and later in [2,25,26]
a second conjecture was laid to address the equivalence in the
limit of infinite system size at fixed viscosity.

Attempts to investigate the properties of the reversible en-
semble for the 3D NSE have only very recently been made
[27,28]. In [27], where the fluctuating viscosity is constructed
in such a way as to keep the energy at a constant value,
the authors gave insight of a possible second order phase
transition between the two statistically steady regimes that
three-dimensional (3D) NSE can exhibit (see Sec. III B),
in the dual limit of infinite system size and vanishing viscosity,
and gave a suggestion of the parametric space where the
conjectures should be addressed. In [28], where enstrophy is
kept constant, the authors employ high spatial resolutions at
small viscosities and by comparing the expectation values of
several different observables provide some evidences of the
agreement between the generated ensembles of irreversible
and reversible 3D NSE.

The goal of this work is twofold. First, we wish to clar-
ify the content and study the domain of validity of the two
conjectures for the 3D NSE, by thoroughly investigating the
distributions of several observables at different scales, with
attention to expectation values and standard deviations. Sec-
ond, we wish to study the statistics of the fluctuating viscosity
in the statistically steady regimes, which provides insights for
the conditions of smoothness of the velocity fields.

The paper is structured as follows. In Sec. II we present the
necessary theory and state the conjectures we wish to test in
our study. In Sec. III the results of the numerical simulations
are provided. The results pertaining the two conjectures are
separately addressed in Secs. III D and III E, respectively. In
Sec. IV we discuss the results on the statistics of the fluc-
tuating viscosity for the reversible NSE. We summarize our
findings and provide some perspectives in Sec. V. We further
supplement our work with a series of Appendixes.

II. VISCOSITY AND REVERSIBILITY

A. Irreversible Navier-Stokes equation in 3D

Here we consider the classical case of an incompressible
fluid enclosed in a three-dimensional container with periodic
boundary conditions, described by the NSE. Assuming in-
compressibility amounts to removing internal energy from the
energy content of the fluid.

The NSE can be written as

∂t u = ν�u − u · ∂ u − ∂p + f , (1)

where u(x, t ) is imposed to have zero divergence and zero
spatial average, p is the pressure field, ν is the viscosity, and f
is a force field. The NSE is fundamentally difficult in 3D be-
cause it is not known whether solutions could be constructed
with sufficient generality. For instance, if we suppose that f
acts only at large scales (i.e., confined to a finite number of
modes) and the initial data have only a finite number of modes,
then it is not known whether, in such a generality and no
matter how small ν > 0 is fixed, a smooth solution follows
for all t > 0. Note that this formulation of the problem is
slightly weaker than the millennium problem B of the Clay
Mathematics Institute [29].

On the other hand, equally hard problems arise in statistical
mechanics systems; for instance, in 3D there is no existence
theorem for an infinite system of hard spheres starting at an
initial state in which the maximal speed and the minimal parti-
cles distance in any unit box are bounded away from ∞ and 0.
Notwithstanding, this has not been an obstacle for developing
the statistical mechanical theory of phase transitions.

The obvious way forward is to introduce extra parameters
which regularize the equations, turning them into equa-
tions which admit solutions and try to study only properties
that can be shown to be independent of the regularization
parameters. For instance, in the case of statistical mechanics
the equations are typically regularized by confining the system
to a finite box, say a cube of volume V .

In the present case we consider the truncated NSE, i.e.,
the regularized version of Eq. (1) in Fourier space obtained
by requiring that u is periodic in the container and has

only modes k = (k1, k2, k3) with k � N , and k de f= ||k||2 =√
k2

1 + k2
2 + k2

3 . We focus on properties of the solutions which
hold uniformly in the cutoff N , and the container is sup-
posed to be of size [0, 2π ]3. Therefore, one can introduce
the complex scalars uβ,k = uβ,−k, where the overline notation
denotes the complex conjugate, and two unit vectors eβ (k) =
−eβ (−k) mutually orthogonal and orthogonal to k, so that the
velocity field can be written as

u(x, t ) =
∑

β=1,2;k

i uβ,k(t ) eβ (k)e−ik·x, (2)

where the sum is restricted to k � N . Furthermore, by defining
the kernel T β1,β2,β

p,q,k = −[eβ1 (p) · q][eβ2 (q) · eβ (k)], and mak-
ing the time notation implicit unless strictly necessary, the
NSE can be expressed as

∂t uβ,k =
∑
β1 ,β2
k=p+q

T β1,β2,β

p,q,k uβ1,puβ2,q − νk2uβ,k + fβ,k, (3)

with k, p, q � N . Due to the symmetry between q, k, the sum
over β1, β2 keeping p + q + k = 0 yields the identity∑

β1,β2

T β1,β2,β2

p,q,k uβ1,puβ2,quβ2,k = 0, (4)

reflecting the conservation of both the total energy
∫

dx u2 and
the total helicity

∫
dx u · (∂ ∧ u) in the unforced and inviscid

(ν = 0, f = 0) limits.
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B. Reversible Navier-Stokes equation in 3D

Historically, discussions on the origin of dissipative
macroscopic properties, out of purely reversible Newtonian
dynamics at molecular level, go back at least to Maxwell
[see Eq. (128) in [30]]. Therefore, it is natural to expect that
fluid motion can also be described by microscopic reversible
equations. One can thus inquire whether even at the macro-
scopic level, although molecular motion is no longer explicitly
playing a role, the same phenomena can be described by
macroscopic reversible equations.

Here we shall study stationary states of the truncated NSE.
The basic idea is that viscosity controls the regularity of the
flow by forbidding uncontrolled growth of energy, and dissi-
pates the input work by the forcing:

∫
f · u dx, proportionally

to the product of viscosity times enstrophy

νD(u) = ν
∑
k,β

k2|uβ,k|2, (5)

and where at steady state there is a statistical balance between
input and output of energy. One can envisage that by replacing
the viscous force ν�u with a reversible force that keeps the
enstrophy constant many statistical properties of stationary
states will remain correctly described, independently of the
cutoff N [31].

The analogy with statistical mechanics is helpful; there,
the cutoff is the volume of the container, and the equilibrium
states can be described by different microscopic dynamics,
like the energy conserving microcanonical distribution or the
isokinetic evolution [14]. Both choices of states and evolution
laws give the right statistics for local observables, i.e., observ-
ables depending on the configurations of particles located in a
volume small compared to the total one, i.e., to the cutoff V .
Most importantly, the statistical properties of such observables
have a weaker dependence on V as V → ∞.

In the case of NS fluids subject to large scale forcing, lo-
cality is defined with respect to the Fourier space. The analogs
of local observables are functions of the velocity field u that
only depend on components uk with k small compared to
the cutoff N . More specifically, O(u) is a local observable,
when it depends only on a finite number of modes with k < K
for some K < N . This leads to the proposal that replacing
the standard viscous force with a dissipative reversible term
that keeps the enstrophy constant will lead to stationary states
completely equivalent to the original dynamics up to an arbi-
trary K , as far as the statistical properties of local observables
are concerned, provided N is large (ideally N → ∞, in the
same sense in which equilibrium thermodynamics becomes
ensemble independent as the volume tends to infinity). Here
K can in principle depend on the viscosity and it is important
to understand its scaling properties in the ν → 0 limit (see
below).

Specifically, we consider a different evolution equa-
tion where (i) in Eq. (3) the external force f is fixed, with
|| f ||2 = const ∈ R, and acts on “large scale,” i.e., it has
finitely many modes: f k = 0 if k � k f for some k f ; (ii) the
viscous force −νk2uk is replaced by −α(u)k2uk, with α(u)
defined such that the enstrophy

D = D(u)

is a constant of motion. Note that a similar choice was fol-
lowed by the authors in [28], while in [27] the kinetic energy
was instead kept fixed. Such assumptions lead to the equations

∂t uβ,k =
∑
β1 ,β2
k=p+q

T β1,β2,β

p,q,k uβ1,p uβ2,q − α(u)k2uβ,k + fβ,k, (6)

where

α(u) = �(u) + ∑
β,k k2 fβ,kuβ,k∑

β,k k4|uβ,k|2
= �(u) + W (u)

	(u)
, (7)

with

�(u) =
∑
β1 ,β2
k=p+q

(
T β1,β2,β2

p,q,k k2 uβ1,puβ2,quβ2,k
)

(8)

obtained by multiplying both sides of Eq. (6) by k2uβ,k, then
summing over k, and finally imposing that the right-hand side
equals 0.

We call Eq. (3) irreversible NSE (abbreviated as I) and
Eq. (6) reversible NSE (abbreviated as R). The name re-
versible refers to the property that if St u = u(t ) is a solution of
R, with initial data u0, and if Pu = −u, then PSt u = S−tPu
is also a solution, as a consequence of α(Pu) = −α(u). In-
stead, such an identity does not hold for the solutions of I.

C. Conjectures

Let us introduce the collection EI,N of the stationary dis-
tributions μI,N

ν for the I evolutions, with cutoff N ; for a
given choice of f the distributions are parametrized by the
Reynolds number Re ∝ ν−1. In principle, several distributions
may correspond to the same Re although it is plausible that for
Re large enough there is only one stationary distribution. Like-
wise, let ER,N be the collections of the stationary distributions
μR,N

D for the R evolutions, with the same cutoff N . These
are parametrized by the value D of the (constant) enstrophy.
Again, in general, several distributions may correspond to the
same D; similarly to the irreversible case, it is plausible that
for generic initial data and D large, μR,N

D is unique.
It is natural to associate to each distribution in EI,N and

ER,N the average enstrophy 〈D(u)〉I,N
ν and, respectively, the

enstrophy D, as well as the work per unit time dissipated:

WI,N
ν =

∫
dx 〈 f · u〉I,N

ν , WR,N
D =

∫
dx〈 f · u〉R,N

D , (9)

where 〈O〉I,N
ν , 〈O〉R,N

D denote the averages of an observable O
over the distributions μI,N

ν and μR,N
D . The parameters ν and

D, at given N , are said to be in correspondence if

〈D(u)〉I,N
ν = D. (10)

Equation (10) defines an implicit relationship between D in R
and ν in I.

In this work, we perform a few preliminary checks, based
on a numerical analysis of the truncated NSE, of the follow-
ing two conjectures on the distributions of local observables,
originally presented in [1,17,18], respectively.

Conjecture 1. If the parameters ν, D are in the correspon-
dence defined in Eq. (10), then for all observables O(u) one
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has

limν→0〈O〉R,N
D

limν→0〈O〉I,N
ν

= 1, (11)

for all N . Remark. In the case where the limits are zero or
infinity, Eq. (11) is intended to mean that the same value is ob-
tained in both ensembles. In such cases where there are several
invariant distributions with the same ν or same D, Eq. (11) has
to be interpreted as implying that a correspondence can be set
between a pair of distributions for each collection. Conjecture
1 was proposed and tested for different systems in a limited
number of cases (e.g., [17,20,21]).

Let us introduce the Kolmogorov scale kν = ( ε
ν3 )1/4, with

ε = ν〈D(u)〉 being the energy dissipation rate, defined as
the typical length where inertial and irreversible dissipative
effects balance. We can then state a different conjecture in the
limit of N → ∞

Conjecture 2: Equivalence hypothesis. Let O be a local
observable, i.e., a function of u depending only on a finite
number of modes with k < K . Then if μI,N

ν and μR,N
D satisfy

Eq. (10), one has

limN→∞〈O〉R,N
D

limN→∞〈O〉I,N
ν

= 1 (12)

for all ν and K < cνkν < N with 0 < cν → c0 � ∞ as
ν → 0. It is important to notice that in the case K → ∞
when ν → 0 we have that the equivalence holds on a formally
infinite dimensional manifold.

Remarks:
(1) Conjecture 1 relies on the chaoticity of the evolution at

small ν and fixed N . Instead, Conjecture 2 concerns only the
limit N → ∞ and relies on the chaoticity of the microscopic
motions leading to the NSE. Conjecture 2 is formulated for all
ν, including the case where the asymptotic motion consists of
periodic attracting sets. It just provides a quantitative version
of Conjecture 1: given a local observable living on scale K
the question of how small should ν be to achieve equivalence
receives the quantitative answer that, in the limit N → ∞, ν

has to be such that K < c0kν which becomes eventually true,
as lower and lower values of ν are considered, because kν

diverges as ν → 0.
(2) Conjecture 2 could be extended to more general

macroscopic equations derived via scaling limits from micro-
scopic reversible evolution.

(3) In cases with more than one distribution for a given ν

or D the interpretation should be that extra labels should be
added to distinguish the various distributions and follow the
remark in Conjecture 1. Conjecture 2 first appeared in [24]
and was formally proposed in [25].

(4) In [2,26] a stronger conjecture is directly formulated
with cν = ∞ for all ν.

The two conjectures differ in the order of consideration of
the two limits ν → 0 and N → ∞. In particular, it is impor-
tant to stress that the so-called fully developed turbulent limit
is achieved in nature by N → ∞ first and then ν → 0, i.e., it is
captured by Conjecture 2. On the other hand, the limit ν → 0
for fixed N leads to a quasithermalization (in the sense of [32])
of the high wave numbers range cutoff by the maximum N . An
additional feature of this regime is that the dimension of the

attractor approaches the number of degrees of freedom of the
system [20].

III. NUMERICAL SIMULATIONS

A. Setup

We have performed direct numerical simulations of both I
and R equations for incompressible fluid in a triply periodic
domain of size L = 2π . We used a dealiased (following the
2
3 rule [33]) parallel 3D pseudospectral code, based on the
P3DFFT implementation [34], on cubic grids of size N0 = 64,
128, 256, and 512 collocation points in each direction, ef-
fectively corresponding, via N = N0/3, to N = 21, 42, 85,
and 170 in Fourier space, respectively. N is the same as
the cutoff scale kmax and will be used interchangeably. The
time integration has been implemented with a second-order
Adams-Bashforth scheme and a small time step equal to �t =
10−4 was chosen for all the simulations; tests with different
time steps have been done confirming that the one chosen was
sufficient to ensure the robustness of the presented results.
The grid size is �x = 2π/N0. The zero mode is not forced,
ensuring that the mean velocity field remains zero at all times,
and the external forcing is deterministic and only acts on large
scales, specifically in the k f ∈ [1,

√
2] domain. The phases

were chosen as quenched random variables and kept equal in
all simulations with

∑
k k2|| f ||22 = 1. We refer to Table I in

Appendix C for a summary of the numerical simulations we
performed, which are labeled as R(No.), where R stands for
run in this context, followed by the number of the run, and a
symbol, indicating the statistical regime each run belongs to;
see discussion in Sec. III B.

We examine Conjectures 1 and 2 by testing a set of vis-
cosities: ν = 5 × 10−2, 10−2, 10−3, 10−4, 10−5 for different
values of N . We proceed as follows. First we run a reasonably
long I simulation at fixed ν, N and measure the average en-
strophy 〈D〉I,N

ν in the statistically steady state. Next, we start
the R run from a steady I state for which the instantaneous
enstrophy is D = 〈D〉I,N

ν . This step reduces the transient time
required to reach the attracting set, but it is not strictly neces-
sary, and in principle one can start from any initial condition
with the appropriate enstrophy. We run the R for the same du-
ration as the I, and at each time step we make tiny corrections

by rescaling the velocity field as u → u
√

〈D〉I,N
ν

D(t ) . Although,
given the very small time step we use, the deviations from
condition (10) were tested to be small, the latter correction
ensures that the total enstrophy stays constant within machine
precision.

B. Statistically steady regimes

Two distinct statistically steady regimes can be identified
for the I and R systems, depending on the cutoff N and Re
(or, equivalently, on kν). One is what we call the hydrodynamic
regime, achievable when N is large enough for any ν, such
that kν � N . It is characterized by a well developed inertial
range (for small ν) with a E (k)∼k−5/3 scaling for k f � k �
kν and a well resolved exponential or superexponential decay
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〈E
(k

)〉

k2

ν =10−2

ν =10−3

ν =10−5

FIG. 1. Energy spectrum of I (grayscale filled symbols) and R
(colored open symbols) for N0 = 128 and at changing ν (for I)
or D (for R). We observe a well developed hydrodynamic regime
for ν = 10−2 (R7©), a crossover regime for ν = 10−3(R8
), and
a quasithermalized regime for ν = 10−5 (R10�); see Table I in
Appendix C for details on the runs.

for large wave numbers, where

E (k) =
∑

β,k− 1
2 <k<k+ 1

2

〈|uβ,k|2〉 (13)

are the averaged spectral properties, or simply the energy
spectrum. A scaling close to E (k)∼k−5/3 is observed in nature
because of the regularizing properties of viscosity at small
scales [3,4,6]. The other, quasithermalized, regime [32] fea-
tures a E (k)∼k2 scaling for large values of k [32] and it is
obtained at sufficiently small ν for any fixed N , such that
kν � N . We call this regime quasithermalized because the
average energy content of the individual modes depends only
weakly on k, given the geometrical degeneracy of the energy
shells. A crossover region can be located between the two in
the (N, ν) parameter space [27].

In Fig. 1 we present a first comparison between I and
R by looking at E (k) at changing ν and for fixed spatial
resolution N0 = 128. Here, we have omitted in 〈·〉 the label
I and R for simplicity and the same will be done in what
follows whenever it does not lead to ambiguities. All regimes
can be accessed as the viscosity is varied, and in terms of the
average energy spectrum, the I and R agree remarkably well.
This will be further checked in the following with respect to
the two conjectures. We anticipate that deviations will appear
at scales k beyond the Kolmogorov scale kν , which will be
further explored later. Next we will deal with the two regimes
separately.

C. Mean properties of α

A rigorous (yet nontrivial, see below) consequence of both
conjectures is the relation

lim
N→∞

〈α(u)〉R,N
D = ν, (14)

which holds when Eq. (10) holds. In Fig. 2(a) we
validate Eq. (14). The errors are calculated by δO =
σ (O)

√
1 + 2τO/

√
j, where σ (O) is the standard deviation,

0.8

1.0

1.2

〈α
〉/

ν

(a)

10−5 10−4 10−3 10−2

ν

101

102

103

〈Λ
〉/
〈W

〉

(b)

N0 = 64

N0 = 128

N0 = 256

N0 = 512

FIG. 2. Mean properties of α. (a) The ratio 〈α(u)〉R,N
D /ν = 1 is a

consistency check for equivalence conditions. (b) The ratio 〈�〉/〈W 〉
from Eq. (7) as a function of ν for all N0 considered. The data are
for R.

τO the nondimensional autocorrelation time, and j the en-
semble size. Figure 2(a) provides a consistency check, which
looks at first not entirely obvious because α is not a local
observable; see the definition given in Eq. (7). Yet, if the
conjectures and condition (10) hold, it must be true that the
ensemble average of α is equal to the viscosity. This follows
from the balance between energy input and output in steady
state conditions that hold both for I and R:

lim
N→∞

ν 〈D(u)〉I,N
ν = lim

N→∞
〈 f · u〉, I

lim
N→∞

D 〈α(u)〉R,N
D = lim

N→∞
〈 f · u〉, R.

(15)

Under the equivalence condition 〈D(u)〉I,N
ν = D, the value

limN→∞〈 f · u〉 must be the same in I and R because f · u is a
local observable. Hence, the relation 〈D(u)〉I,N

ν = D imposes
the equality of the averages limN→∞〈 f · u〉 for the I and R
systems, which, in turn, implies the nontrivial relation (14).
We remark that, as α(u) can be measured also in I, we can
also check its statistics. We observe that 〈α(u)〉I,N

ν ≈ ν in
all statistical regimes, which is nontrivial because it is not a
consequence of the equivalence conjecture, because α is not
a local observable. Although the distributions of α(u) in both
R and I are in all cases peaked around ν, as well as the mean
values of both 〈α(u)〉R,N

D and 〈α(u)〉I,N
ν are approximately

equal to ν, their tails are different in the hydrodynamic regime,
but become almost identical in the quasithermalized regime
(see Sec. IV B).

Since α is a sum of the forcing contribution W (u)/	(u)
and of the internal nonlinear contribution �(u)/	(u) (8), it is
interesting to remark that, on average, the nonlinear term dom-
inates the forcing one as shown in Fig. 2(b), where the ratio
〈�〉/〈W 〉 versus ν is plotted. The ratio increases linearly as ν

decreases in the hydrodynamic regime, before it approaches
a (large) constant depending on N in the quasithermalized
regime. Thus, on average the internal nonlinear exchanges
dominate over the forcing for the R dynamics, introducing
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FIG. 3. Probability distribution function of single mode kinetic
energy U (k) for chosen modes k = (0, 0, m), m = 1, 2, 8, 16, show-
ing the equivalence between R (red straight lines) and I (black
dashed lines). Here ν = 10−4 and N0 = 64 (R4�), belonging to the
quasithermalized regime.

a nonlocal (in scale) coupling among all modes and making
the validity of Conjecture 2 even less trivial.

D. Test of Conjecture 1: Quasithermalized regime

In this section we address the validity of Conjecture 1 for
3D NSE. We remark that it has been confirmed in simpler
dynamical systems in [18,20–22]. Conjecture 1 applies when
we consider decreasing values of ν at fixed N , which leads to
the quasithermalized regime. In terms of observables, we con-
sider the single mode kinetic energy U (k) = ||u(k1, k2, k3)||22
and the energy spectrum E (k) (13) which will be presented
separately.

1. Single mode energy

We consider the probability distribution function (PDF) of
the energy U (k) of a certain mode k. In Fig. 3 we test this for
a chosen type of modes, k = (0, 0, m), with m = 1, 2, 8, 16,
and we see a very good agreement between the two ensem-
bles, where the output of R is shown in red straight lines,
while black dashed lines are used for the I simulations. In
our analysis we have considered several different types of
modes, i.e., permutations of (0, 0, m), (1, 0, m), and (0, p, m),
with m = 1, . . . , N and p = 2, or 7, or 9 (the latter integers
were randomly chosen). The PDFs approximately follow a χ2

distribution.
To further quantify the comparison between I and R,

we study the statistical properties of the ensembles of U (k)
by computing the mean U (1)(k) ≡ 〈U (k)〉, and the standard
deviation U (2)(k) ≡

√
〈U 2(k)〉 − 〈U (k)〉2 of the time series

for each measured mode k. An indication of equivalence is
when the ratios of such quantities are close to 1. In Fig. 4
we present the ratios of the mean U (1)

R (k)/U (1)
I (k) (a) and

the ratios of the standard deviation U (2)
R (k)/U (2)

I (k) (b). To
increase statistical accuracy, we further average the resulting
ratios of the different types of modes considered here at each
m = 1, . . . , N , corresponding to the same shells k. As shown
in Fig. 4, by fixing N0 = 64 while decreasing ν, Conjecture
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I
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FIG. 4. Test of Conjecture 1 for single mode kinetic energy U (k).
(a) Averaged R/I ratio of the mean of kinetic energy of considered
modes, i.e., permutations of (0, 0, m), (1, 0, m), and (0, p, m), with
m = 1, . . . , N and p = 2, or 7, or 9. (b) Same for standard deviation
ratio. The gray band indicates a 10% deviation from 1. Here N0 = 64,
and results from R3
, R4� are shown.

1 holds well in the case of single mode kinetic energy, which
is a prototypical local observable, for the run (R4�). Note
that the run (R3
) belongs to the crossover regime, hence
outside the domain of validity of Conjecture 1, leading to
some small deviations from 1 in Fig. 4(b). As a confidence
interval, we introduce on qualitative grounds a 10% deviation
from 1, displayed as a gray band.

2. Energy spectrum

Subsequently, we study the energy spectrum, which has
been briefly presented in Fig. 1. In Fig. 5 we show the PDF of
kinetic energy for different shells k = 1, 2, 8, 16 for the case
N0 = 64 and ν = 10−4 (R4�). We notice that the statistics of
R and I are almost identical and are approximately Gaussian
as previously observed in [35]; deviation from Gaussianity is
nonetheless present for k = 2.
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100
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(b)

k =2
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k =16
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FIG. 5. Probability distribution function of energy spectra for
k = 1, 2, 8, 16 showing the equivalence between R (red straight
lines) and I (black dashed lines). Here ν = 10−4 and N0 = 64 (R4�)
corresponding to the quasithermalized regime.
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FIG. 6. Test of Conjecture 1 for the energy spectrum. (a) R/I
ratio of mean energy spectrum at shell k for k = 1, . . . , N . (b) Same
for standard deviation ratio. The gray band indicates a 10% deviation
from 1. Here N0 = 64, showing R3
 (ν = 10−3, green triangles),
R4� (ν = 10−4, red squares), and R5� (ν = 10−5, black circles).
Note that we are here also inspecting the crossover regime (green
triangles), hence outside the validity of Conjecture 1 [as shown in
(b)]. Nonetheless, good agreement is still found in (a).

In Fig. 6 we summarize the equivalence between the two
ensembles by plotting the same of Fig. 4 but for the spectral
properties at changing k and at fixed N0 = 64. Accordingly,
we define the mean E (1)(k) ≡ 〈E (k)〉, and the standard de-
viation E (2)(k) ≡

√
〈E2(k)〉 − 〈E (k)〉2 of the time series for

each shell k. As one can see, Conjecture 1 is well verified
at decreasing ν and for any k. Notice in Fig. 6(b) that the
standard deviation ratios for ν = 10−3 (green line points) are
different from 1 except for very small values of k. This is to be
expected, as this case (R3
) belongs to the crossover regime,
hence outside the domain of validity of Conjecture 1. Interest-
ingly, for the same parameters, ν = 10−3, N0 = 64, the single
mode standard deviation ratios are close to 1; see the green
line in Fig. 4(b). This reflects the higher complexity of the
energy spectrum, resulting from the presence of correlations
among Fourier modes. All the above confirm the validity of
Conjecture 1.

E. Test of Conjecture 2: Hydrodynamic regime

We now present our numerical tests of Conjecture 2, which
applies at fixed ν when N is large, corresponding to the hy-
drodynamic regime. We follow a systematic approach by first
keeping the value of ν fixed, and then progressively increase
the value of N . We then repeat this protocol for different
values of ν. Again, we consider the single mode kinetic energy
and the energy spectrum.

1. Single mode energy

In Fig. 7 we fix N0 = 128, ν = 10−2 (R7©) and compare
the PDF of single mode kinetic energy, shifted to their mean,
for the modes k = (0, 0, m), m = 1, 4, 10, 40, between R and
I. The agreement between the two ensembles is compelling.

A further analysis can be seen in Fig. 8 where all mean and
standard deviation ratios of the time series have been collected
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×10−8

(d)
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FIG. 7. Probability distribution function of single mode kinetic
energy U (k) for chosen modes k = (0, 0, m), m = 1, 4, 10, 40,
showing the equivalence between R (red straight lines) and I (black
dashed lines). Here ν = 10−2 and N0 = 128 (R7©), belonging to the
hydrodynamic regime.

for (a) ν = 10−2 and (b) ν = 10−3 for different values of N
and m. In Fig. 8, for scales beyond the Kolmogorov scale
kν (indicated by the red tick), we observe a disagreement
between R and I.

Therefore, one could argue that, within the numerical setup
we have investigated in this work, kν is an approximate upper
bound (in the sense of order of magnitude) for the maxi-
mum wave number K for which the Conjecture 2 applies;
or as stated after Eq. (12), cν ≈ 1, both when considering
U (1)(k), and U (2)(k). The observed difference between the R
and I ensembles for k � kν is further confirmed for all our
well-resolved runs in the hydrodynamic regime. On the other
hand, in the crossover regime, i.e., here for R2© in Fig. 8(a)
and R8
, R13
 in Fig. 8(b), the agreement for single mode
statistics of the two ensembles, although not expected by
Conjecture 2, is satisfactory.

2. Energy spectrum

With respect to the energy spectrum at the hydrodynamic
regime, we first present the distributions at low k. In Fig. 9 we
plot the PDF of energy spectra at k = 1 and 3 for ν = 10−2 at
N0 = 128 (R7©) and we observe a very good agreement be-
tween R (red line) and I (black dashed line). Then, in Fig. 10
the same are shown for a larger range of k, i.e., k = 2, 4, 6, 20
and a smaller viscosity ν = 10−3 at N0 = 512 (R16©), which
is the only fully resolved run at ν = 10−3. Again, the agree-
ment between the two ensembles is remarkable, and slight
disagreement at the tails is likely due to statistical accuracy.

In Fig. 11 we collect the mean energy spectrum E (1)(k)
at different k. We test the Conjecture 2 by quantifying the
agreement between R and I through the ratio E (1)

R (k)/E (1)
I (k),

while fixing ν, at changing N . A deviation from 1 would indi-
cate disagreement with respect to this observable. In Fig. 11(a)
at ν = 10−2 we remark that N0 = 64 (R3
) is slightly under-
resolved (not well developed falloff region in the spectrum),
but still follows the same trend as the rest of the well-resolved
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FIG. 8. Test of Conjecture 2 for single mode kinetic energy U (k).
(i) Averaged R/I ratio of mean kinetic energy of considered modes
and (ii) standard deviation ratio, at (a) ν = 10−2 and (b) ν = 10−3.
The gray band indicates a 10% deviation from 1. The red vertical bar
indicates the order of magnitude of the Kolmogorov scale, estimated
as kν = ( ε

ν3 )1/4.
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FIG. 9. Probability distribution function of energy spectrum
showing equivalence between R (red straight lines) and I (dashed
black lines), for k = 1, 3. For (a) and (b) it holds E (1)

R (k)/E (1)
I (k) ≈ 1

and E (2)
R (k)/E (2)

I (k) ≈ 1, confirming full equivalence between R and
I up to k ∼ 4 with respect to E (k) at ν = 10−2. Here ν = 10−2 and
N0 = 128 (R7©) corresponding to the hydrodynamic regime, and
the y axis is in logarithmic scale.
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FIG. 10. Probability distribution function of energy spectrum
showing equivalence between R (red straight lines) and I (dashed
black lines), for k = 2, 4, 6, 20. For (a)–(d) it holds E (1)

R (k)/E (1)
I (k) ≈

1 and E (2)
R (k)/E (2)

I (k) ≈ 1, confirming full equivalence between R
and I up to k ∼ 20 with respect to E (k) at ν = 10−3. Here N0 = 512
and ν = 10−3 (R16©) corresponding to the hydrodynamic regime,
and the y axis is in logarithmic scale.

simulations at increasing k. Deviations occur for k � kν when
the ratio of E (1)(k) is considered. In Fig. 11(b) we show the
results for ν = 10−3, where for all cases the ratio is close to
1 up until k ∼ kν , which is close to the cutoff of N0 = 512.
Also in (b), the ratio E (1)

R (k)/E (1)
I (k) of the under-resolved

runs (N0 = 128 and 256) stays unity for all k.

3. Empirical determination of the locality cutoff K

So far, the cases we have studied reveal a very good agree-
ment between R and I for the quasithermalized regime (see
Sec. III D), which confirms Conjecture 1, and full agreement
for the hydrodynamic regime for k � kν when considering
U (1)(k), U (2)(k), and E (1)(k). In accordance with the defini-
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FIG. 11. Test of Conjecture 2 for the energy spectrum, consid-
ering the R/I ratio of its mean at shell k for k = 1, . . . , N , at (a)
ν = 10−2 and (b) ν = 10−3. The transparent region corresponds to
the statistical error. The gray band indicates a 10% deviation from 1.
kν shows the location of the Kolmogorov scale. The plots share the
same x axis.
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FIG. 12. Probability distribution function of energy spectrum for
R (red straight lines) and I (dashed black lines) (k = 10 and 80 >

kν ∼ 29). For k = 10 the two distributions have the same mean. Here
ν = 10−2 and N0 = 256 (R12©) corresponding to the hydrodynamic
regime, and the y axis is in logarithmic scale.

tion of Conjecture 2, we recall that a scale K can be defined
such that observables depending on uk with k < K can be
considered “local,” thus determining the domain of validity of
Conjecture 2. Furthermore, Conjecture 2 states that K < cνkν

with 0 < cν → c0 � ∞ as ν → 0. We state now that cν and
accordingly K can differ when considering different observ-
ables for testing the equivalence. Indeed, for U (1)(k), U (2)(k),
and E (1)(k) we concluded that cν ∼ 1.

Next, we look at the statistics of energy spectrum at
larger k. In Fig. 12 we show two examples where disagree-
ment is observed in the case of ν = 10−2. Taking N0 = 256
(R12©) we show in Fig. 12(a) the PDF of E (k) at k = 10,
for which the ratios E (1)

R (k)/E (1)
I (k) ≈ 1 [see Fig. 11(a)], but

E (2)
R (k)/E (2)

I (k) �= 1. In Fig. 12(b) we choose a k larger than
the Kolmogorov scale, i.e., k = 80 > kν ∼ 29, and both ratios
of mean and standard deviation between R and I are not equal
to 1.

In Fig. 13 we quantify the behavior of the standard de-
viation E (2)(k) of each ensemble, by considering their ratio
R/I for all k. Conjecture 2 is tested for fixed ν, (a) ν =
10−2 and (b) ν = 10−3 at increasing N . Starting from k = 1
there is initially agreement between R and I but we observe
that E (2)

R (k)/E (2)
I (k) departs from unity at a smaller k than

E (1)
R (k)/E (1)

I (k), which is also smaller than kν . Notice that in
(a) the runs with N0 = 128 and 256 are fully resolved and
belong to the hydrodynamic regime, and although the runs at
N0 = 64 are slightly under-resolved, it follows the same trend
with the rest. Moreover, once the cutoff N is larger than kν

by a sufficient margin, further increases in N do not change
the features of the ratio curves, both for E (1)

R (k)/E (1)
I (k) and

E (2)
R (k)/E (2)

I (k). Instead, in (b) only the N0 = 512 case is fully
resolved, and although E (1)

R (k)/E (1)
I (k) ≈ 1 for all N0 [see

Fig. 11(b)] the standard deviation ratios differ when changing
N0. This occurs because N0 = 128 and 256 are under-resolved
at ν = 10−3, and belong to the crossover regime (hence out-
side the validity of Conjecture 2), but are still displayed to
show the transition from crossover to hydrodynamic regime,
and how the agreement improves in that case.

To be more specific about the deviation from 1 with respect
to Fig. 13, for (a) at ν = 10−2 it appears that K ≈ 4. Instead,
from Fig. 13(b) at ν = 10−3 it appears K ≈ 20. The fact
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FIG. 13. Test of Conjecture 2 for the energy spectrum, consid-
ering the R/I ratio of its standard deviation at shell k for k =
1, . . . , N , at (a) ν = 10−2 and (b) ν = 10−3. In (a) the runs with
N0 = 128 and 256 are fully resolved and belong to the hydrodynamic
regime, while in (b) only N0 = 512 is fully resolved. The gray band
indicates a 10% deviation from 1. kν shows the location of the
Kolmogorov scale. The range of validity of Conjecture 2 increases
as we decrease viscosity in the hydrodynamic regime, as expected.
The plots share the same x axis.

that K increases at decreasing ν, with sufficiently large N , is
foreseen by Conjecture 2, and confirmed here. In other words,
equivalence between R and I holds for a larger range of k,
as ν decreases, when the testing criterion is the shape of the
distributions of E (k), or similarly the standard deviation of it,
E (2).

Note that the location of the minimum of E (2)
R (k)/E (2)

I (k) in
Fig. 13 shifts with changing ν for well-resolved simulations.
It actually corresponds to the end of the inertial range, and
it is related to the chosen observable that is kept fixed in R.
Since here we chose the enstrophy D(u), which is dominated
by the small scales, i.e., large k, the constraint 〈D(u)〉I,N

ν =
D actually suppresses the fluctuations of ER(k), for those k
around the end of the inertial range; see also Fig. 12(a). A
similar result was observed in [21].

The resulting values of K as extracted from second-order
moments of the energy spectrum E (2)(k) are gathered in
Fig. 14(a) for runs in the mixed hydrodynamic-crossover
regime. Both at ν = 5 × 10−2 and ν = 10−2 the runs are in
the hydrodynamic regime, while at ν = 10−3 only N0 = 512
(R16©) is well resolved, for which we notice that K is max-
imum. In Fig. 14(b) we show that the empirically determined
K does scale proportionally to kν , indicating that the range
of scales where Conjecture 2 holds is increasing with the
Reynolds number, i.e., supporting the statements that Conjec-
ture 2 is uniformly valid in a subset of the inertial range for all
turbulent intensities.

From Figs. 7–12, as well as Fig. 14(b), and with reference
to Conjecture 2 it appears that within the case studied here we
have the following:

(i) cν ≈ 1 when considering U (1)(k), U (2)(k), and E (1)(k)
for the equivalence test, and

(ii) cν ≈ 1
8 when considering E (2)(k).
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FIG. 14. (a) A quantitative estimate of the locality cutoff scale
K , defined as the maximum wave number where all observables used
to check the equivalence (Conjecture 2) have the same value within
10%, versus ν at different N0. Here filled points correspond to runs
in the hydrodynamic regime and open points to the crossover regime.
(b) The ratio cν = K/kν for all runs in the hydrodynamic regime as a
function of ν, which is approximately constant. Both plots share the
same x axis in logarithmic scale.

All the above confirm the validity of Conjecture 2 up to
some wave number K .

IV. PROPERTIES OF THE REVERSIBLE
NAVIER-STOKES EQUATIONS

In the previous section we have established the domain of
validity of Conjecture 2, and hence the equivalence of the
two nonequilibrium ensembles, using a dimensionless scale-
by-scale comparison for different local observable, based on
single Fourier modes energy or shell energy (see Figs. 6, 8,
11, and 13). We have shown that the equivalence holds up
to some wave number K . Similar results are shown when
comparing the whole probability distribution function of the
same quantities. These results extend and clarify the recent
investigations [27,28] where the equivalence was tested on
the basis of the energy spectrum or on the global scaling
properties of high order moments of the velocity increments
in the inertial range only.

Let us remark that the property valid in R that D(u) is a
finite nonzero constant of motion has obvious implications on
the sequence of solutions uN (t ) and for the Leray’s solutions
[36,37], which are their weak limits as N → ∞. Perhaps the
most remarkable is an a priori upper bound on α(u) which
can be proven (see Appendix A) to satisfy, for any solution
and any N , the condition

|α(u)| < C2(
√

D +
√

D
−1

). (16)

A second interesting and potentially very important remark
on the R evolution is that if for all N large enough there
were ε > 0 such that also 0 < ε < α < κ , with probability
1 in the stationary state, then, it is possible to conclude that
the attractor consists of uN (t ) with derivatives of all orders

bounded uniformly in N , i.e., on the attractor the fields are
uniformly smooth. This is an immediate consequence of the
autoregularization results, (see Proposition 5, Sec. 3.2, in [38],
and [39]), and of the constancy of the enstrophy D, as shown
in Appendix B. Positivity of the lower bound on α is expected
at large viscosity i.e., small Re.

Note also that by combining the aforementioned bound
of Eq. (16), as proposed in the literature, with the fact that
the dissipation νD in I has a positive limit as ν → 0 should
indicate (see [40, p. 306]), that the upper bound on α is
O(ν− 1

2 ), which puts a limit to the fluctuations of α (which by
the Conjecture is on average equal to ν; see also Sec. III C).
Furthermore, the upper bound (16) suggests that the transport
contribution to α [i.e., �(u)/	] might dominate over the
second term [i.e., the forcing contribution (

∫
� f · u)/	], as

confirmed in Fig. 2(b).

A. Numerical results about the sign of α in R
In this section we inspect the statistics of the fluctua-

tions of α(u) for R, in order to assess the probability to
observe negative values at varying the control parameters. In
Fig. 15(a) we show in light colors the temporal evolution of
α/ν, and in solid colors its running average, performed as

1
t−t0

∑t
t ′=t0

α[u(t ′)]/ν for R at ν = 10−3 and N0 = 64, 512
[green (R3
) and red (R16©), respectively]. The presented
time window, which is scaled by the Kolmogorov time τK =√

ν/ε, is the maximum achieved for the run with N0 = 512
(R16©), while for R3
 this is only about 1% of its total
temporal extent. Then, in Fig. 15(b) the PDFs of α/ν are
presented for N0 = 64, 128, 256, and 512 at ν = 10−3. No-
tably, all PDFs agree, even though at ν = 10−3 only N0 = 512
is fully resolved, belonging therefore to the hydrodynamic
regime, while the other simulations belong to the crossover
regime. The inset plots (i) and (ii) are, respectively, the energy
spectrum and the PDF in semilogarithmic scale.

In Fig. 15(c) we show the same of Fig. 15(b) but at lower
viscosity, ν = 10−4, where the data set at N0 = 64 (R4�) is
in the quasithermalized regime, while the other runs are in the
crossover regime. As one can see, except for the case of the
quasithermalized regime, in all other simulations we do not
observe negative values of α within our statistical sample.

Additionally, in Fig. 15(d) we perform a detailed study
at fixed ν = 10−3 and low resolution, in order to observe
when, and how, the transition to the occurrence of frequent
negative values of α takes place. Starting from N0 = 64 and
gradually decreasing N0, we observe that the PDF of α first
turn from non-Gaussian to quasi-Gaussian, while becoming
narrower (see N0 = 48 and N0 = 44), before starting to widen
(see N0 = 40), until occurrence of α < 0 events appears (see
N0 � 36). The rapid change in the left tail of the PDF at
changing N0 suggests that in order to further substantiate the
asymptotic probability to observe negative α values, when N0

is large and in the presence of intermediate or hydrodynamical
regimes, one would need statistical samples significantly (ex-
ponentially) larger than those we could generate here, which
is by far out of the scope of this paper and probably out of
reach given the available computational power. This result is
in agreement with some previous observations made in the
context of a reduced model of turbulence [21].
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FIG. 15. Statistics of α for R. (a) Temporal evolution of α/ν as a function of time, which is rescaled by the Kolmogorov timescale τK , at
ν = 10−3. In solid line, green (for N0 = 64) and red (for N0 = 512) is the running average of α/ν. The fact that 〈α/ν〉 = 1 in R is a rigorous
prediction of Conjecture 2 [see also Eq. (14)]. (b) PDF of α/ν obtained considering the whole available statistics for each N0, at ν = 10−3.
The inset (i) is the energy spectrum, and inset (ii) is the PDF in logarithmic scale. (c) Same as (b) at ν = 10−4. (d) Same as (b) at ν = 10−3

showing successively small N0 between 32 and 64.

In [28] negative values of α are observed in a reversible
ensemble at N0 = 1024 and Taylor-based Reynolds number
Reλ = 300. Indeed, such results are somewhat puzzling and
are not expected on the basis of our data. We do not expect to
be able to observe α < 0 at such large N0 and such Reynolds
number by extrapolating from our results for the fully resolved
hydrodynamical regime (see Sec. IV B below).

B. Numerical results about the sign of α in I
Interestingly enough, α(u) is an observable that can be

measured also in the I ensemble, by computing Eq. (7). In
Fig. 16 we present the cases for two viscosities, ν = 10−2 [(a)
and (b)] and ν = 10−3 [(c) and (d)]. In Figs. 16(a) and 16(c)
we show the time series of α(u)/ν for a time window scaled
by the Kolmogorov timescale τK , and in Figs. 16(b) and 16(d)
the corresponding PDF for different different resolutions N0.

First, from Figs. 16(a) and 16(c) we note that also in I
the nontrivial result 〈α(u)〉I,N

ν = ν holds (see also Sec. III C).
On the other hand, from Figs. 16(b) and 16(d) we observe
some different behavior from the corresponding PDF of the R
ensemble in particular for the case of ν = 10−3. In the latter
case the high wave number range starts to depart from the

hydrodynamic regimes and probably has a direct impact on
the fluctuations of α.

V. CONCLUSIONS

We present a detailed numerical study of the 3D reversible
Navier-Stokes equation [see Eq. (7)] obtained by imposing the
conservation of enstrophy D via a thermostat, and compare
our results with the output obtained from the corresponding
[see Eq. (3)] standard irreversible NSE case. We investigate
two conjectures concerning the equivalence of the two ensem-
bles. These conjectures, which had been previously presented
in [2,26], pertain to two limiting conditions. The first equiv-
alence is studied by keeping the flow evolving on a finite set
of modes, and by decreasing the viscosity of the irreversible
system or, equivalently, increasing the total enstrophy of the
reversible one. In this limit, which leads to the regime that
we have dubbed quasithermalized in the sense of [32], the
equivalence between the two ensembles is more and more
accurate with decreasing ν for any fixed N and for all scales,
thereby confirming Conjecture 1.

We emphasize that Conjecture 2, which is the most rel-
evant to the physics of turbulence, had never been tested
in 3D Navier-Stokes in such a detail and rigor, and only
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FIG. 16. Statistics of α for I. (a), (c) Temporal evolution of α/ν as a function of time, which is rescaled by the Kolmogorov timescale
τK , at (a) ν = 10−2 and (c) ν = 10−3. In solid line, green (for N0 = 64) and red (for N0 = 512) is the running average of α/ν. The fact that
〈α/ν〉 = 1 within 0.1% in I is remarkable (in spite of the difference in fluctuations with R), as α is a nonlocal observable, hence not directly
expected by Conjecture 2. (b), (d) Probability density function of α/ν obtained considering the whole available statistics for each N0, at (b)
ν = 10−2 and (d) ν = 10−3. The inset is the PDF in logarithmic scale.

partially in 2D Navier-Stokes. In particular, opposed to what
was presented in [28], here we have studied the limit of larger
and larger values of N while keeping a fixed value for the
viscosity, and then explored the ν → 0 limit. In this regime
we empirically observe that the equivalence between the two
ensembles is restricted to “local” observables having support
in a region of the Fourier space restricted by a typical wave
number K , where K is smaller than, but proportional to, kν .
The latter observation has been made possible by extending
the class of observable studied in [28] to high order moments
of the Fourier energy content and to its whole probabil-
ity distribution function. Our results are consistent against
changes in N and by decreasing the time discretization at
least as far as we could test within our numerical capacities.
The inertial-range equivalence between the two ensembles in
the hydrodynamic limit is a further important confirmation
of the robustness and universality of Navier-Stokes equa-
tions against changing of the dissipative mechanisms, at least
concerning wave numbers smaller than cνkν . This is particu-
larly nontrivial as the dissipative term of R is highly nonlinear
and nonlocal.

From our numerical results the prefactor cν entering in
Conjecture 2 is close to a constant ≈ 1

8 or ≈1 depending on
the observable (see discussion in the end of Sec. III E 3) and
independently of N . The question of the scaling in the ν → 0

limit remains an important open question that will require
more numerical studies.

Note that, in Remark 4 of Sec. II C, we mentioned a
stronger version of Conjecture 2, presented in [2,26], where
cν = ∞ for all ν. Our results here make it appear doubtful
that such conjecture could hold in such a strong sense. How-
ever, a study for a different fixed observable (instead of the
enstrophy D), of the timescale, of the larger values N , and of
the integration precision necessary to reveal the ν dependence
of cν , or even cν = ∞ for all ν, may be necessary to reach a
firm conclusion.

Furthermore, we have presented a numerical empirical
study of the PDF of the fluctuating viscosity for the reversible
case, showing the existence of a trend towards less and less
probable negative events by increasing the Reynolds in the
hydrodynamical regime, similarly to what had been observed
in a reversible shell model [21]. The problem of the sign
of α is related to that of the divergence of the phase-space
contraction rate σ [26] and the problem of measuring the
large deviations of σ is extremely delicate due to the fact
that negative events are expected to happen with extremely
small probability. We remark that, a recently published paper
has presented results on the probability of observing negative
values of α (see Fig. 4 of [28]) that are in contrast with what
has been reported for the hydrodynamical limit (N → ∞ first)
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in this work. In particular, in [28] a transition in the shape
of the PDF is observed for large numerical grids showing a
non-negligible probability to have negative events.

Finally, by studying the average of α for the I, we have
shown that equivalence can also hold for a nonlocal observ-
able, which is a nontrivial application of the conjectures.
So, it would be natural to test whether equivalence might
be extended to other important nonlocal observables. For in-
stance, the Lyapunov exponents, as done in a simpler model
in [20], and in 2D NSE [2,24], where equivalence of the
local Lyapunov spectra1 is observed in several cases, in spite
of its nonlocal nature. Further numerical investigations by
increasing both the cutoff N , and the runs duration would be
extremely useful to better elucidate the equivalence between
the two ensembles in the asymptotic limit when N → ∞ first
and ν → 0 later, the so-called fully developed turbulence.
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APPENDIX A: BOUND ON α

We recall Eq. (4), for which it is well known that it leads to
the a priori bounds

||uN (t )||22 � max (E0, (F0ν
−1)2) de f= E,∫ t

0
dτ ||∂uN (τ )||22 �

(
1

2
E + t

√
F0E0

)
ν−1 (A1)

satisfied (for all N) by the solution u in terms of the square L2

norms E0 = ||u(0)||22 = ∑
β,k |uβ,k|2 = 1

(2π )3

∫ |u(x)|2dx and
F0 = || f ||2 (see, for instance, Proposition 1, Sec. 3.2, in [38]).
There is no problem about the forcing term W (u) = ∫

� f ·
u dx in Eq. (7) as Eq. (A1) implies, if 	 = ∫

(�u)2 dx � D, a
bound on it K2F

√
E	−1 � CD− 1

2 . The other term has in the
numerator �(u) = − ∫

(u · ∂u) · �u dx which is bounded via
the Hölder inequality with exponents 4,4,2 by

|�(u)| �
(∫

||u||42 dx
) 1

4
(∫

||∂u||42 dx
) 1

4
(∫

||�u||22 dx
) 1

2

(A2)

1Obtained from the Jacobian matrix, formally J (u) = ∂u̇
∂u , by aver-

aging over time the spectrum λ0(u), λ1(u), ..., of the symmetric part
of J (u).

and the three factors can be bounded via Sobolev’s inequality
[37,41]: if 2 � q � 6, a = 3

4 (q − 2) then

∫
Br

||u||q2 dx � CS
q

[(∫
Br

||∂u||22 dx
)a

·
(∫

Br

||u||22 dx
)q/2−a

+ r−2a

(∫
Br

||u||22 dx
)q/2

]
, (A3)

where Br is a sphere of radius r and the integrals are per-
formed with respect to dx. The CS

q is a suitable constant. The
second term of the right-hand side can be omitted if u has zero
average over Br .

Therefore, in the above case, where u, ∂u,�u do have zero
average, choose q = 4, a = 3

2 , Br = [0, 2π ]3; calling C
S
4 =

(CS
4 )

1
4 and 	 = ∫

(�u)2 dx, it is

�(u) � C
S
4 (E 1

8 D
3
8 )C

S
4(D

1
8 	

3
8 )	

1
2 � CE 1

8 D
1
2 	

7
8 (A4)

so that

|α(u)| � C1(E 1
8 D

1
2 	− 1

8 + E 1
2 	−1)

� C(E 1
8 D

3
8 + E 1

2 D−1) < C2(
√

D +
√

D
−1

) (A5)

and |α(u(t ))| is thus bounded, for any solution and any N , by
a constant:|α| � κ .

APPENDIX B: REVERSIBLE NAVIER-STOKES
GLOBAL SMOOTHNESS

Let ε < α[u(t )] � κ and suppose that the ini-
tial data u(0) and f satisfy ||uk||2, || f k||2 < cpk−p

for all p > 0 (recall that we consider only ini-
tial data and force with a finite number � N
of modes, for simplicity). Let a(t, τ ) = ∫ t

τ
α(u(t ′)dt ′; then

ε(t − τ ) < a(t, τ ) < κ (t − τ ).
Following, for instance [38], we can write uk(t ) =

e−a(t,0)k2
uk(0) + ∫ t

0 e−a(t,τ )k2
(Nk[u(τ )] + f k)dτ , where

Nk[u(τ )] is the nonlinear term of the NSE. Therefore,
the sum of the first and last terms can be bounded by 2cp

kp

while the integral is bounded by

∫ t

0
e−εk2(t−τ )

∑
p+q=k

||up · q||2||uq||2 dτ �
√
E
√

D(1 − e−εk2t )

εk2

(B1)

so that adding the two bounds ||uk||22 < C2
k2 for a suitable C2.

Therefore, again, ||uk(t )||2 can be bounded by adding 2cp

kp and
a bound on∫ t

0
e−εk2(t−τ )

∑
p+q=k

||p||2||up||2 ||q||22||uq||2
||p||2||q||2 dτ. (B2)

A bound on the latter integral is obtained via the Schwartz in-
equality and the remark that p + q = k implies ||p||2||q||2 �
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k0
2 ||k||2, k0 = 1, and

∑
p+q=k

||p||2||up||2||q||22||uq||2
||p||2||q||2 � 2C2

k0

∑
p+q=k

||p||2||up||2
||p||2||q||2

� 2C2

k0

√
D

⎛
⎝ ∑

p+q=k

1

(||p||2||q||2)2

⎞
⎠

1
2

�
(

2C2

k0

)1+ 1
8

||k||−
1
4

2

√
D

⎛
⎝ ∑

p+q=k

1

(||p||2||q||2)2− 1
4

⎞
⎠

1
2

�
(

2C2

k0

)1+ 1
8 √

D||k||−
1
4

2

(∑
n

1

||n||4− 1
2

2

) 1
2

, (B3)

where p has been changed to n just to make clear that sum-
ming over p + q = k allows using the Schwartz inequality.
Hence, integration over t , as in Eq. (B1), yields

||uk(t )||2 � γ1

k2+ 1
4

. (B4)

Thus, if D is finite the bound ||uk||2 < γ k−2

[Eq. (B1)] can be improved into ||uk||2 < γ1k−2− 1
4 .

Iterating a autoregularization phenomenon sets in and

||uk(t )||2 � γp

k2+ 1
4 p

for all p � 1 (B5)

so that u(t ) is a C∞ function and all its derivatives
can be bounded in terms of the enstrophy D, uniformly in
N . See Sec. 3.3 in [38] for related results on the classic
autoregularization.

APPENDIX C: NUMERICAL PARAMETERS

Table I summarizes the values of various observables
corresponding to the runs with different kinematic vis-

cosities and cutoffs. The parentheses present the statistical
error of the last digit in a given value. We define the
following: physical length of the container L = 2π , root-

mean-square velocity urms =
√

〈||u||22〉/3, averaged rate of

energy dissipation ε = ν〈D〉, kν = ( ε
ν3 )1/4 is the Kolmogorov

scale, Taylor length λ = urms

√
15
〈D〉 , integral length � =

3L
8 〈∑k k−1E (k)/

∑
k E (k)〉 [see Eq. (13)], Taylor-Reynolds

number Reλ = urmsλ
ν

, Reynolds number Re = urms�
ν

, large-eddy
turnover time T� = �

urms
.

We present the final D/D ratio, which is an abbreviation
for D/D ≡ D/〈D(u)〉I,N

ν . Ideally, this should be 1, and it is
indeed unity when we start the R simulation based on the
ensemble average 〈D(u)〉I,N

ν from I. But, for almost all runs,
we increased the statistics of I, which eventually improved
〈D(u)〉I,N

ν . Therefore, the D/D ratio gives an estimate of the
quality of each collection ER,N of R runs with respect to the
collection EI,N for a particular ν. A significant D/D discrep-
ancy would also explain possible discrepancies in 〈α〉/ν and
accordingly other ratios of observables.

The ratio T/T�, where T is the total length of the simulation
in physical units, is essentially an indicator of the statistical
significance of the generated ensemble. Empty entries (left
blank) are met in cases at the quasithermalized regime for
particular observables of which the definitions are relevant in
the hydrodynamic regime (e.g., kν, λ).

An interesting fact about Table I is that the averaged values
for each entry turn out to be the same on average, up to
statistical errors, for both R and I. Showing one value implies
that is it the same for R and I at the particular N0 and ν.
When the averages are not the same within statistical errors,
we show both estimates in the form R|I. This happened in
the case of N0 = 256 in two cases, namely, R11© and R15�
(see, e.g., ε). For R11© we attribute this to poor statistics,
notice T/T� = 374, which is the lowest, and for R15� we
attribute to a poor estimation of 〈D(u)〉I,N

ν , notice D/D =
1.034(2), which is the highest.

TABLE I. Values of various observables corresponding to the numerical simulations, labeled as R(No.) indicating the run numbering,
with different kinematic viscosities and cutoffs. All resulting parameters are the same up to statistical errors (which are included inside
the parentheses for the error of the last digit) for both I and R, except for those cases separated as R|I. D/D is an abbreviation for
D/D ≡ D/〈D(u)〉I,N

ν . The symbols next to the run numbering correspond to the statistical regimes; ©: hydrodynamic, 
: crossover, �:
quasithermalized.

N0 = 64 R1© R2© R3
 R4� R5�
ν 5 × 10−2 10−2 10−3 10−4 10−5

〈α〉/ν 1.015(7) 0.999(3) 1.000(4) 1.000(8) 0.93(20)
D/D 0.998(2) 0.999(1) 0.999(1) 1.000(1) 1.01(2)
urms 1.22(1) 1.30(1) 1.46(1) 2.92(1) 7.00(1)
Re 43 185 1705 7.9 × 103 1.2 × 105

Reλ 30 77 300
ε 0.74 0.72 0.76 0.66 0.39
kν 8 29 165
λ 1.23 0.59 0.21
� 1.77 1.43 1.16 0.27 0.17
T/T� 8300 1.3 × 104 2.3 × 104 1.8 × 105 5.8 × 105
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TABLE I. (Continued.)

N0 = 128 R6© R7© R8
 R9
 R10�
ν 5 × 10−2 10−2 10−3 10−4 10−5

〈α〉/ν 1.01(3) 0.995(5) 1.011(6) 0.99(1) 0.99(2)
D/D 1.008(2) 0.998(1) 0.996(2) 0.999(2) 1.027(1)
urms 1.22(4) 1.29(3) 1.36(3) 1.88(4) 4.61(1)
Re 43 183 1850 1.4 × 104 6.1 × 104

Reλ 30 76 267 1570
ε 0.75 0.71 0.73 0.76 0.68
kν 8 29 164 932
λ 1.22 0.59 0.20 0.08
� 1.78 1.42 1.36 0.72 0.13
T/T� 760 4690 4950 104 1.1 × 105

N0 = 256 R11© R12© R13
 R14
 R15�
ν 5 × 10−2 10−2 10−3 10−4 10−5

〈α〉/ν 1.06(4) 0.99(2) 1.00(2) 1.00(2) 0.94(2)
D/D 1.008(2) 1.008(1) 1.008(2) 1.019(2) 1.034(2)
urms 1.25|1.21 1.29(5) 1.35(5) 1.46(5) 2.70(6)
Re 44 184 1800 1.7 × 104 105

Reλ 31 76 260 973
ε 0.78|0.73 0.71 0.73 0.71 0.74|0.79
kν 8 29 164 919
λ 1.26|1.22 0.59 0.19 0.06
� 1.80 1.42 1.33 1.18 0.36
T/T� 374 680 760 800 3950

R16© ν 〈α〉/ν D/D urms Re Reλ

10−3 0.97(3) 0.997(2) 1.35(5) 1800 260

N0 = 512 ε kν λ � T/T�

0.71(7) 163 0.19 1.35 400
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