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This study is a direct follow-up of the paper by Heifetz and Guha [Phys. Rev. E 100, 043105 (2019)] on a
minimal nonlinear dynamical system, describing a prototype of linearized two-dimensional shear instability. In
that paper, the authors describe the instability in terms of an action at a distance between two vorticity waves, each
of which propagates counter to its local mean flow as well as counter to the other. Here we add to the model the
effect of mutual interaction between the waves and the mean flow, where growth of the waves reduces the mean
shear and vice versa. This addition yields oscillatory Hamiltonian dynamics, including states of phase slipping
and libration with finite-size wave amplitude oscillations. We find that wave–mean-flow dynamics emerging from
unstable normal modes in the linearized stage are doomed to librate around the antiphased neutral configuration
in which the waves hinder each other’s counterpropagation rate. We discuss as well how the given dynamics
relates to familiar models of phase oscillators.
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I. INTRODUCTION

Recently, Heifetz and Guha [1] explored a dynamical
system stemming from a generic minimal model (denoted
hereafter as the HG model) for the interaction at a distance
between two counterpropagating vorticity waves in shear
flows. It generalized the seminal conceptual model of Hoskins
et al. [2] for counterpropagating Rossby wave instability in
geophysical shear flows to a generic dynamics of counterprop-
agating vorticity waves found in other systems (e.g., [3–9]).
The minimal model describes how two remote waves affect
each other’s growth and propagation rate counter to their
local mean flow, as well as counter to each other. Despite
its nonlinear representation, the model results from linearized
two-dimensional shear dynamics, where the waves’ ampli-
tudes are assumed to remain small and therefore do not affect
the mean flow. In this study, we extend the minimal model
to include the finite wave amplitude dynamics, where energy
conservation implies that growth of the waves reduces the
mean shear and vice versa.

In the linearized stage, modal instability of small ampli-
tudes is obtained when the waves are phase-locked in a way
that their counterpropagation rate balances the shear imposed
by the mean flow. Therefore, when reaching finite ampli-
tudes, thus consequently reducing the mean shear, the waves’
counterpropagation rate overcomes the mean shear and phases
unlock. This leads to a transient dynamics by which the wave-
wave interaction affects the waves’ amplitudes and relative
phase, as well as the magnitude of the mean shear. The change
in the latter affects the waves’ relative phase and consequently
the waves’ growth. We find that this extended mechanism
gives rise to a Hamiltonian dynamics in which the waves
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settle into a libration or perform phase slippings while their
amplitudes remain finite, contrasting the linear wave-wave
model, in which the wave amplitudes can grow exponentially.

The paper is organized as follows: In Sec. II we extend
the minimal model to allow wave–mean-flow interaction in a
simple form. In Sec. III we analyze the stability properties of
this model and derive criteria for the emergence of libration
states. Next, in Sec. IV we discuss similarities of the vorticity
wave dynamics in shear flows with other familiar models of
phase oscillators. Finally, in Sec. V we discuss our results and
suggest some roots for future work.

II. ADDING WAVE–MEAN-FLOW INTERACTION
TO THE HG MODEL

A. Summary of the minimal model

The wave interaction equations, implied in the HG model
[1,10], read

Q̇1 = σ1Q2 sin ε, Q̇2 = σ2Q1 sin ε, (1a)

ε̇1 = −ω̂1 + σ1
Q2

Q1
cos ε, ε̇2 = −ω̂2 − σ2

Q1

Q2
cos ε. (1b)

Here Q1,2(t ) and ε1,2(t ) are the amplitudes and phases of
two counterpropagating vorticity waves q1,2(t ) = Q1,2eiε1,2 in
regions (1,2) in the (x, y) plane, separated from each other in
the y direction, as illustrated in Fig. 1.

Region 1 is governed by a mean flow in the positive
x direction, U1 > 0, and region 2 is governed by a nega-
tive mean flow, U2 < 0. ω̂1,2 = k(U1,2 + c1,2) are the waves’
frequencies, in the absence of interaction, viewed from a
frame of rest, where c1,2 are the intrinsic propagation phase
speeds of the waves counter to their local mean flow and
counter to each other [sgn(c1,2) = −sgn(U1,2) and sgn(c1) =
−sgn(c2)], where k is their wave number. Generally, ω̂1,2

can take any sign according to the efficiency of the wave
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FIG. 1. Schematic overview of the minimal model. (a) Counterpropagation mechanism of the vorticity waves q1(t ) and q2(t ), in regions
(1,2), propagating counter to their local mean flows U1,2. (b)–(f) Wave interaction at a distance as a function of the vorticity phase difference
ε = ε1 − ε2. The far velocity field induced by one wave on the other may affect the latter’s counterpropagation rate and amplitude: (b) ε =
0—the waves help each other to counterpropagate against the mean flow. (c) ε = π/2—the waves amplify each other’s amplitudes (the
inclined lines indicate that the total vorticity perturbation is tilted against the action of the shear). (d) ε = π—the waves hinder each other’s
counterpropagation speed. (e) ε = 3π/2—the waves decay each other’s amplitudes (the vorticity perturbation is tilted with the action of the
shear). (f) Polar phase diagram of the wave interaction mechanism. Any point on the circle represents different phase configurations (for
instance, the star indicates a growing-hindering configuration as π > ε∗ < π/2). Since wave growth (decay) leads to decay (growth) of the
shear δU12 = U1 − U2, the latter decreases (increases) in the upper (lower) part of the circle.

counterpropagation mechanism and the magnitude of the lo-
cally opposing mean flow. In Fig. 1(a), the counterpropagation
is depicted. Wavy lines represent the wave displacement, and
counterclockwise (clockwise) circulations represent positive
(negative) vorticity anomalies carried by the waves. In region
1 (2), the wave’s vorticity and displacement are in antiphase
(in phase). Consequently, the velocity induced by the vorticity
anomalies (indicated by vertical arrows) translates the wave
displacement to the left (right) in region 1 (2), as illustrated by
the dashed wavy lines, yielding, therefore, negative (positive)
intrinsic phase speeds c1 < 0 (c2 > 0).

Equation set (1) describes the interaction of the waves
at a distance. This interaction is realized by the evanescent
far-field velocity, induced by the localized vorticity anomalies
of the waves. The strength of the interaction at a distance
is given by positive-definite coupling constants σ1,2 whose
values depend on the specific problem at hand (obtained
mathematically by Green’s function described by the vorticity
inversion, e.g., [11]). As illustrated in Fig. 1, the velocity
field induced by each wave on the other may affect both the
propagation rate and the amplitude of the opposed waves.
The part of the induced velocity that is in phase (antiphased)
with the velocity of the other wave helps (hinders) the latter
to propagate counter to its local mean flow. Furthermore,
the part of the induced velocity field that is in phase (an-
tiphased) with the displacement of the other wave causes
the latter to grow (decay). As will be discussed in Sec. II C,
when the waves manage to be phase-locked (that is, to tune
their phase speeds to propagate in concert) in a growing
configuration, modal insatiability of exponential growth is
obtained.

Equation set (1 a) conserves the total wave action:

Atot = A1 + A2, (2)

where A1 = [Q2/(2σ )]1 and A2 = −[Q2/(2σ )]2. Further-
more, Eqs. (1 a)–(1 b) conserve the wave pseudoenergy:

Hww ≡ −(ω̂1A1 + ω̂2A2)

−2iσ
√
A1

√
A2 cos ε = A1ε̇1 + A2ε̇2. (3)

Hereafter, we use the convention that
√
A1 = +[Q/

√
2σ ]1,√

A2 = +i[Q/
√

2σ ]2. The subscript “ww” denotes wave-
wave interaction and σ ≡ √

σ1σ2 is the geometric mean of
the interaction coefficients. Heifetz and Guha [1] showed then
that equation set (1) obeys a canonical generalized action-
angle form, in which Hww serves as the Hamiltonian:

Ȧ1 = −2iσ
√
A1

√
A2 sin ε = −∂Hww

∂ε1
, (4a)

Ȧ2 = 2iσ
√
A1

√
A2 sin ε = −∂Hww

∂ε2
, (4b)

ε̇1 = −ω̂1 − iσ

√
A2√
A1

cos ε = ∂Hww

∂A1
, (4c)

ε̇2 = −ω̂2 − iσ

√
A1√
A2

cos ε = ∂Hww

∂A2
. (4d)

The dynamics following from Hww is similar to a complex
amplitude dynamics in the limit of vanishing dissipation
[12,13]. On the contrary, if damping due to viscosity effects is
present, then eventually A1 and A2 approach constant values,
and the dynamics reduces to a phase-oscillator model of the
Kuramoto-type [9,14].
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B. Wave-mean flow interaction

As a consequence of energy conservation, the growth of
wave amplitudes to a finite level must come at the expense
of the mean flow energy, leading to a variation δU1,2(y, t ) ≡
U1 − U2 of the mean flow. For vortical wave–mean flow in-
teraction, U̇ (y, t ) = −Ȧ(y, t ), e.g., [15]. Since our model is
crude and contains only two bulks of the mean flow (rather
than a continuous profile), we represent the averaging effect
of the wave action growth on the bulk mean flow velocities by
two nondimensional positive-definite constants, α1,2, whose
values depend on the details of the problem, so that U̇1,2 =
−[αȦ]1,2. As sgn(Ai) = sgn(Ui ), growth in the wave vorticity
amplitudes decreases the absolute value of the mean flow in
their region and thus the kinetic energy of the mean flow. From
Eqs. 1(a), (4a), and (4b) and Fig. 1, it is clear that this scenario
happens when the vorticity field of wave 1 lags behind wave 2
(0 < ε < π ), e.g., Fig. 1(c). Since ∂yU (y) > 0, this situation
can be envisioned by a vorticity field tilted against the mean
shear. Vice versa, when the vorticity field is tilted with the
mean shear (−π < ε < 0), e.g., Fig. 1(e), the wave energy is
deposited back into the mean flow.

Hereafter, we assume that this is the only consequence of
the wave-mean flow interaction, although generally (accord-
ing to the details of the problem at hand) it may alter the
interaction coefficients σ1,2, as well as the intrinsic counter-
propagation phase speeds of the waves, c1,2, with respect to
the mean flow. Furthermore, in order to focus on the wave–
mean-flow interaction, we ignore resonant triad interactions
affecting the dynamics (e.g., [16]). Hence, our only modifica-
tion to the minimal model is by allowing the frequencies to
vary with time:

˙̂ω1,2 = −[βȦ]1,2, (5)

with β1,2 ≡ kα1,2, so that [∂ω̂/∂A]1,2 = −β1,2. Quite remark-
ably, this modification conserves the canonical Hamiltonian
structure of (4), with the same total wave-action constant of
motion, Atot, but with a modified Hamiltonian constant of
motion Hwwm,

Hwwm = Hww + Hwm, Hwm ≡ −1

2

(
β1A2

1 + β2A2
2

)
, (6)

that is replacing Hww on the right-hand side of (4) (where
the subscripts “wwm” and “wm” stand, respectively, for the
combined wave-wave–mean-flow and the wave–mean-flow
interactions).

C. Antisymmetric wave-action dynamics

The essence of the nonlinear wave-wave–mean-flow inter-
action can be understood for vanishing total action Atot = 0.
In that case, A1 = −A2 ≡ A ≡ Q2/2σ , thus the wave-action
is antisymmetric. Equation set (4) then simplifies to

dε

dτ
= 2 cos ε − μ,

dA
dτ

= 2A sin ε. (7)

Here, time is scaled by the mean interaction coefficient,
τ ≡ σ t , and μ ≡ ω̂/σ is the control parameter of the lin-
earized dynamics, representing the ratio between the tendency
of the waves to propagate in opposite directions (ω̂ ≡ ω̂1 − ω̂2)

and the wave interaction (given by the mean interaction coef-
ficient σ ), acting to “tie” them together.

Antisymmetric wave-action dynamics is of special im-
portance. In the minimal model, the phase evolution (7) is
independent of the waves’ amplitude. Moreover, it allows a
resonance mechanism leading to exponential growth of the
waves’ amplitudes. This occurs when the waves are phase-
locked (dε/dτ = 0) in a growing configuration (π > ε > 0)
to maintain mutual amplification, Fig. 1(f). The resonance
mechanism is the wave interaction interpretation for the modal
instability in the linear stage. Phase-locking is obtained if
cos ε0 = μ/2 and therefore it sets a range −2 � μ � 2. The
scaled exponential growth rate, 2 sin ε0, obtained from (7), is
then positive for the growing normal modes (π > ε0 > 0) and
negative for the decaying ones (−π < ε0 < 0).

The dynamics of system (7) is demonstrated in Figs. 2(a)–
2(f) in the plane (X,Y ) = A(cos ε, sin ε) for different values
of the control parameter μ. The phase plane flow in polar
coordinates then reads

Uε ≡ A dε

dτ
= 2X − μA, UA ≡ dA

dτ
= 2Y. (8)

For |μ| > 2 [Figs. 2(a) and 2(f)], the phase portrait is com-
posed of elliptic trajectories whose semimajor axis lays on
the X axis. As no modal exponential growth is permitted,
the amplitude is bounded and varies along the periodic orbits
[as demonstrated in Figs. 2(g) and 2(h) for μ = −2.5]. For
|μ| < 2 [Figs. 2(b)–2(e)], the phase converges rapidly to the
unstable modal phase ε0 [e.g., the sigmoidlike structure in
Fig. 2(i), corresponding to the dynamics in Fig. 2(c), for
μ = −1.5] and all amplitudes, after a short transient stage,
grow practically exponentially, Fig. 2(j) (unless initiated at the
exact decaying modal configuration of ε = −ε0).

We assume that wave–mean-flow interaction becomes rel-
evant when the waves reach the finite wave-action amplitude
that is larger by, say, two orders of magnitude than its ini-
tial one (that is, by one order of magnitude for the vorticity
amplitude Q). We see that such finite amplitudes are reached
when |μ| < 2, as then the waves converge rapidly into the
growing mode configuration with phase difference ε0. This
phase corresponds to a counterpropagation speed that bal-
ances the mean shear such that μ0 = 2 cos ε0. Additionally,
values of |μ| only slightly above 2 can give rise to a bottle-
neck in the phase dynamics such that the system spends an
exceedingly long time in a growing configuration. In those
cases, the waves may temporarily reach finite amplitudes as
well. Consequently, we assume that the initial conditions for
the wave–mean-flow interaction model are when the waves
possess (i) finite amplitude A0 and (ii) relative phase differ-
ence ε0.

D. Wave-wave–mean-flow interaction model
for antisymmetric wave-action dynamics

As the waves’ amplitudes grow, the mean shear decays.
According to (5),

dμ

dτ
= −2

β

σ

dA
dτ

, (9)
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FIG. 2. (a)–(f) Phase plane portrait of the antisymmetric wave-action dynamics, described by Eq. (7), with X = A cos ε and
Y = A sin ε. Shown are the unit circle A = 1 (dashed) and the circle at which A = |μ0| (doted-dashed). Trajectories starting at angles
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(g),(h) show phase slips of ε(t ) and oscillations of ln(A)(t ) for trajectories shown in panel (a). Panels (i),(j) are similar but show phase locking
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where β ≡ (β1 + β2)/2 is the mean-wave–mean-flow inter-
action coefficient. Consequently, the immediate effect of the
wave–mean-flow interaction is that μ(t ) becomes smaller than
μ0 and the phase difference ε becomes larger than ε0, as
now the waves’ counterpropagation rate overcomes the mean
shear and the phase unlocks. This tendency is expected to go
on until ε(t ) > π , as then the wave-wave interaction reduces
each other’s amplitude and consequently the mean shear re-
gains strength and acts to shift the waves back to a growing
configuration.

The transient dynamics can therefore be formulated as

follows. We first rescale the wave action: Ã ≡ 2 β

σ
A, so that

the wave–mean-flow interaction of (9) implies

dμ

dτ
= −dÃ

dτ
�⇒ Ã(t ) + μ(t ) = Ã0 + μ0 ≡ γ0. (10)

Implementing (7) with the wave-wave interaction dynamics,
we obtain the two equivalent forms of the modified model, in
terms of the variable pairs (ε, μ) or (ε, Ã):

dε

dτ
= 2 cos ε − μ,

dμ

dτ
= 2(μ − γ0) sin ε, (11)

dε

dτ
= 2 cos ε + Ã − γ0,

dÃ
dτ

= 2Ã sin ε, (12)

with γ0 as a control parameter. Exemplary solutions of
Eqs. (11) and (12) are depicted in Figs. 3 and 4.

It is straightforward to verify then that systems (11) and
(12) conserve the respective constant of motion:

E = μ2 + 4(γ0 − μ) cos ε = Ã2 + 2Ã(2 cos ε − γ0) + γ 2
0 ,

(13)

which is related to the Hamiltonian Hwwm, under the con-
straint Atot = 0. Using (3), (6), and (13), we obtain that indeed

H(Atot=0)
wwm = (2σ cos ε − ω̂)A − βA2

= σ 2(E − γ 2
0 )

4β
= −βA2

0. (14)

III. ANALYSIS OF THE EXTENDED MODEL

A. Stability of fixed points

The fixed points of (11) and (12) are

(ε, μ, Ã)∗ = [(0, 2, γ0 − 2); (π,−2, γ0 + 2);

(± cos−1 (γ0/2), γ0, 0)]. (15)

The first two correspond to the cases in which the waves
are either in phase or antiphased. These fixed points can be
regarded as a limiting case of the fixed points of (7) in the
linearized dynamics, as for these configurations the waves’
amplitude growth is zero and consequently the mean shear
remains unchanged. The major difference between the lin-
earized and the nonlinear model is their stability properties.

In the linearized model, the two points are semistable as a
small perturbation δε evolves according to the second-order
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FIG. 5. Schematic illustration of the in-phase fixed point (a) and
the antiphase fixed point (b). Tendencies of amplitude perturbations
δÃ and phase perturbations δε are indicated in the four quadrants
surrounding the fixed points.

dynamics:

d

dτ
δε = −(δε)2 at ε∗ = 0 and

d

dτ
δε = (δε)2 at ε∗ = π.

(16)

For the in-phase state, this means that a slight increase or de-
crease of the phase difference reduces the ability of the waves
to help each other to counterpropagate, thus the (unaffected)
mean shear prevails and acts to decrease the phase between
the waves. By the same logic, when the waves are stationary
in a fully hindering configuration (ε∗ = π ), a slight change
in their phase allows the counterpropagation rate to overcome
the mean shear, and the phase between the waves increases.

In the nonlinear model, the Jacobian of either (11) or (12)
yields the eigenvalues λ1,2 = ±√

2(γ0 − μ∗) = ±
√

2Ã∗ for
the fixed point at ε∗ = 0, thus for the physically relevant case
of Ã∗ > 0 the point becomes a saddle node [Fig. 5(a)]. For the
fixed point at ε∗ = π , λ1,2 = ±i

√
2(γ0 − μ∗) = ±i

√
2Ã∗,

hence the point becomes a center [Fig. 5(b)]. The perturbation
first-order dynamics at these fixed points are

d

dτ
δε = δÃ = −δμ,

d

dτ
δÃ = − d

dτ
δμ = ±2Ã∗δε, (17)

where the plus (minus) sign in the second equation of
Eqs. (17) corresponds to ε∗ = 0 (ε∗ = π ). The reason why the
in-phase fixed point becomes a saddle results from the fact that
an increase in the phase difference brings the system into the
growing waves’ amplitude configuration [Fig. 5(a), regions
1,4]. Consequently near ε∗ = 0, when the phase difference
grows, this leads to growth of the waves’ amplitudes and thus
a reduction of the mean shear, which allows further growth of
the phase difference, and so on. In contrast, the out-of-phase
fixed point becomes a center, as an increase in the phase
transfers the waves into the decaying configuration [Fig. 5(b),
regions 1,4]. As the waves’ amplitudes decays, the shear is
recovered and pushes the waves back. When the phase crosses
the fixed point and becomes smaller than π [Fig. 5(b), regions
2,3], the waves’ amplitudes grow, the shear is reduced, and
thus the phase is pushed back from the other side toward the
fixed point. This yields harmonic oscillations with a frequency
of

√
2Ã∗.

The additional pair of fixed points in (15) with the van-
ishing wave amplitudes (Ã∗ = 0) possess the eigenvalues,
λ1,2 = ±2 sin ε∗. They correspond to the linearized dynamics
of the emergence of small wave amplitudes, where instability

(stability) is obtained when the waves are “born” in the grow-
ing (decaying) configuration.

B. Homoclinic orbits

In Figs. 3 and 4, we show the phase plane flows in the
coordinates (X,Y ) = Ã(cos ε, sin ε) and (X,Y ) = (ε, Ã), re-
spectively, for various values of the control parameter γ0. For
γ0 < −2, no fixed points exist, the flow is rotational, and
ε increases monotonically (wave motion against the shear).
When γ0 > −2, the fixed points at ε∗ = π and at Ã∗ = 0
emerge. Then the main branch of the homocline (indicated
by the orange curves in Figs. 3 and 4),

Ãhomoc = 2(γ0 − 2 cos ε),

μhomoc = 2 cos ε ± |2 cos ε − γ0|, (18)

associated with the fixed point at Ã∗ = 0, separates between
the inside librated motion around the center ε∗ = π , and the
rotational motion outside of it.

When γ0 > 2, the saddle node at ε∗ = 0 is born out of
the fixed point of Ã∗ = 0, and the dynamics resembles an
upside-down nonlinear pendulum, as the center is at ε∗ = π

and the saddle is at ε∗ = 0. Using the energy conservation of
(13), the separatrix homocline (indicated by the red curves in
Figs. 3 and 4) attached to the saddle node is found to satisfy
the quadratic equations:

0 = Ã2
homoc + 2(2 cos ε − γ0)Ãhomoc + (γ0 − 2)2, (19a)

0 =
(

μhomoc

2

)2

− 2 cos ε

(
μhomoc

2

)
+ γ0(cos ε − 1) + 1.

(19b)

C. Libration or rotation?

As is evident from Figs. 3 and 4, the dynamical system
of (11) and (12) allows both librational and rotational mo-
tions. This, however, does not guarantee that waves which
are emanating from the unstable normal mode (of the phase-
locking configuration μ0 = 2 cos ε0, where π > ε0 > 0) will
experience both types of motion. In fact, we now show that
regardless of the magnitude of the initial finite amplitude Ã0,
all these waves are doomed to librate around the center point
of ε∗ = π .

As for these initial conditions Ã0 = γ0 − 2 cos ε0, γ0 must
be larger than −2 to allow the onset of positive waves’ ampli-
tude. Thus, panels (a),(b) in Figs. 3 and 4 are irrelevant to such
dynamics. For the range −2 < γ0 < 2 [e.g., panels (c),(d)],
rotation is allowed when the value of Ã0 is larger than the
value of Ãhomoc of homocline (18), at ε = ε0. Plugging Ã0 in
the homocline equation and using Eq. (10), we immediately
obtain, however, that Ã0 = 1

2 Ãhomoc at ε = ε0, hence only
libration is possible. Similarly, in order to obtain rotation for
the range γ0 > 2 [e.g., panels (e),(f)], Ã0 must be either larger
than the positive root of Ãhomoc in (19) at ε = ε0, or smaller
than its negative root there. Plugging Ã0 in (19) for ε = ε0, we

obtain the two roots Ãhomoc = Ã0 ±
√
Ã2

0 − (γ0 − 2)2, from
which it is clear that, here as well, the only possible dynamics
is libration.

Starting then from the initial unstable modal phase ε0, with
an initial finite amplitude Ã0, the librated dynamics reaches
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FIG. 6. Depicted are exemplary polar trajectories of the nonlinear system Eq. (12) where X = Ã cos(ε) and Y = Ã sin(ε) and A(t ), ε(t ).
Panels (a)–(c) show results for Ã0 ∈ [2.9, 3.7, 4.6, 5.6, 6.7, 7.9, 9.2] in black, blue, green, orange, red, brown, and magenta. These
trajectories depart from the initial normal mode conditions 2 cos ε0 = μ0. (a) ε0 = π/50, μ0 = 1.996; (b) ε0 = π/4, μ0 = 1.414; (c),
ε0 = π/2, μ0 = 0. Panel (d) depicts polar trajectories for γ0 = 5.5 all starting at ε0 = 3π/4 (black diagonal) and onset amplitudes of
Ã ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, . . . , 15]. Shown in red are the homocline of (19) and the in-phase saddle point. The origin and the antiphase
fixed point are indicated, respectively, by orange and green. The green trajectory is associated with the normal mode initial condition as shown
in Fig. 4, panel (f). Magenta trajectories indicate librated solutions for which |μ0| < 2, and black and blue curves correspond to either libration
or rotational trajectories where |μ0| > 2. Panels (e),(g) Amplitudes Ã(t ) and ε(t ) for panel (a). (f),(h) Amplitudes and phases for panel (d).

its maximum amplitude after a period of amplitude growth
at ε = π (as indicated from Fig. 4). When the waves cross
this point, the wave interaction begins to reduce the waves’
amplitudes. Equating the energy expression in (13) between

the initial modal position (Ã0, ε0) and the maximum ampli-
tude position (Ãmax, π ), we obtain that the maximal additional
growth, resulting from the wave–mean-flow interaction, is
given by

Ãmax − Ã0 = 2 cos ε0 + 2
√

cos ε0(cos ε0 + Ã0) = 2 cos ε0 + 2
√

cos ε0(γ0 − cos ε0), (20)

which maximizes when ε0 tends to zero as then the residence time in the growing regime (ε0 < ε < π ) increases. Panels (a)–(c),
in Fig. 6, show various trajectories of libration in the polar plane, starting from the initial unstable modal phases, where panels
(e) and (g) show the amplitude and phase evolution from the small initial condition ε0 = 0.02π , corresponding to the trajectories
in panel (a).

In principle, rotational dynamics can be obtained for imposed finite amplitudes (i.e., when the initial onset does not depart
from the growing mode configuration, so that μ0 �= 2 cos ε0). Using the homocline equations of (18) and (19), we obtain the
critical conditions

Ãc
0 =

{
2(2 cos ε0 − μ0) if − 2 < γ0 < 2,

(2−μ0 )2

4(1−cos ε0 ) if γ0 > 2,
rotation: Ã0 < Ãc

0, libration: Ã0 > Ãc
0 (21)

(where for μ0 = 2 cos ε0, Ãc
0 = 0 if −2 < γ0 < 2 and

Ãc
0 = [Ã0 − (γ0 − 2)]/2 if γ0 > 2, thus libration is indeed the

only option for positive initial amplitudes). Panel (d) of Fig. 6
is the same as panel (f) of Fig. 3, but it shows more trajectories
for the case in which γ0 = 5.5. All trajectories start from the
phase ε0 = 3π/4. The green trajectory corresponds to the
libration initiated from the unstable normal mode (μ0 =
2 cos ε0 ≈ −1.41, Ã0 = γ0 − μ0 ≈ 6.91). The magenta
trajectories represent librated solutions for which |μ0| < 2

[that in the linearized dynamics of HG would have otherwise
converge to the unstable mode phase, e.g., panels (b)–(e) of
Fig. 2]. Solutions that are colored black are of |μ0| > 2
[therefore, rotational in the linearized dynamics, e.g.,
panels (a),(f) of Fig. 2]. They can either librate or rotate
in the nonlinear system. For example, for μ0 = 4.5,
Ã0 = 1 > Ãc

0 ≈ 0.91 [blue trajectory inside the homoclinic
basin of panel (d) of Fig. 6], thus libration is obtained.
On the contrary, for large enough counterpropagation rate
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against the shear, μ0 = −7.5, Ã0 = 13 < Ãc
0 ≈ 13.22 and

the counterclockwise rotation is maintained in the nonlinear
system [blue rotating solution, panel (d) of Fig. 6]. [These
trajectories correspond to the free solutions in the upper part
of panel (f) of Fig. 4.] For large enough values of μ0 (strong
enough positive shear and relative weak counterpropagation
rate) the solutions can be of clockwise rotation and correspond
to the dynamics inside the inner loop of the homocline,
circulating the origin in panel (d) of Fig. 6. These solutions
correspond to the lower part of panel (f) of Fig. 4. For instance,
for μ0 = 5, Ã0 = 0.5 < Ãc

0 ≈ 3.66. In panels (f),(h) of Fig. 6
we show the corresponding phase and amplitude evolution for
these trajectories. We see that large amplitudes correspond to
counterclockwise rotation trajectories, medium range for li-
bration, and small amplitudes for clockwise rotational motion.

To summarize, small perturbations that grow by normal
mode instability, in the linearized dynamics, will librate
around the center point at ε∗ = π , due to the restoring wave
mean flow interaction. Other finite amplitude initial condition
states will rotate against the mean shear (counterclockwise)
if the initial mean shear is weak enough to allow the self
counterpropagation rate to keep dominating the dynamics,
even when their amplitudes decrease by the wave–mean-flow
interaction. This requires relatively large initial waves’ am-
plitudes. The dynamics can also be clockwise rotation, with
the shear, in the opposite case where the initial shear is strong
enough to dominate the dynamics, even when decreased by
the wave–mean-flow interaction. This requires initial small
waves’ amplitudes to prevent a large reduction of the shear
during the evolution of the system.

IV. RELATIONS WITH KURAMOTO-LIKE
COUPLED OSCILLATORS

The phase-amplitude dynamics of equation set (1) re-
sembles well-known models of phase interaction among two
coupled oscillators [17–19] and is particularly similar to the
phase dynamics of Stuart-Landau-type equations [1,13] in the
limit of neutrally stable cycles [18]. The neutral stability of
amplitudes is the main difference from commonly analyzed
models of complex-amplitude equations and phase oscillators.
While in those systems the Kuramoto dynamics is a result of
a physically present balance of energy generation and dissipa-
tion (viscosity effects), both the HG model and the extended
model considered here are assumed inviscid, and therefore
they do not incorporate amplitude dissipation. Consequently,
their states are fully determined by the initial conditions and
by the conservations of wave action and pseudoenergy.

To further elaborate on relations to oscillators, we gener-
alize equation set (1) to an ensemble of interacting vorticity
waves by a discretization of the shear profile into N interfaces
at positions y j . Each of the interfaces then hosts a localized
vorticity wave with amplitude A(y j ) = A j and phase ε(y j ) =
ε j [20] that evolves according to

Ȧi =
N∑

j �=i

A jσi, j sin(εi − ε j ), (22)

ε̇i = −ωi(Ai) +
N∑
j �=i

σi, j
A j

Ai
sin(εi − ε j + δ), (23)

where δ = π/2. It becomes clear that the wave-wave–mean-
flow interaction can be indeed regarded as a specific type of
Kuramoto-Sakaguchi dynamics [21,22]. For such models, it is
well known that there exist three main factors that influence
the emergence of patterns of synchrony among oscillating
units: (i) the form of the frequency distribution, (ii) the cou-
pling topology, and (iii) the phase lag parameter δ in the phase
interaction. The emerging patterns are a mixture of order
(synchrony) and disorder (chaos/turbulence) [23–25] known
as chimera states [26–29]. Thus, the N-interface-model, given
by (23), is expected to accommodate chimera states, as it
incorporates the following three ingredients:

(i) The distribution of natural wave frequencies is deter-
mined by the mean-flow profile [at least bimodal if U (y) ∼
tanh(y)]. Interestingly, the frequencies are also spatially cor-
related due to the spatial dependence of the mean flow as
ω = kU (y) + kc(y).

(ii) The coupling strength of two wave interfaces i, j de-
pends on the distance yi − y j between them and is given
by Green’s function G(yi − y j ), representing the evanescent
structure of the far-field velocity, induced by the waves’ vor-
ticity fields. For instance, in open boundaries, the simplest
Green function decays exponentially with the distance be-
tween the interfaces, G(yi − y j ) ∼ exp(−k|yi − y j |) [20,30].

(iii) The appearance of a phase lag δ = π/2 suggests a neu-
tral coupling between repulsion and attraction of the waves.

Particularly interesting in the given N-interface model of
shear waves is that each phase dynamics is coupled to the
evolution of amplitudes such that the coupling coefficients
(and the frequency of oscillations) are time-varying. Never-
theless, we see that Eq. (23) comprises Kuramoto solutions if
all amplitudes are similar. Thus, low dimensional descriptions
of the N-wave dynamics could exist. In fact, such descriptions
have been exactly found for Kuramoto-like oscillators where
they lead to a set of just three free variables, constrained by
N − 3 constants of motion [9,31–35]. Nonetheless, the wave
interaction model requires an extended analysis beyond the
Kuramoto manifold [36] due to the presence of amplitude
dynamics. Such an analysis was put forward earlier [37], but
it is still not fully understood.

The N-wave interaction model can be understood as a
second-order Kuramoto dynamics [38,39]. A reminiscence of
this can be realized from a combination of phase and ampli-
tude dynamics in Eqs. (11) or (12):

d2ε

dτ 2
= 2(γ0 sin ε − sin 2ε). (24)

This equation describes the motion of a bead on a rotating
hoop in the hypothetical situation where the centrifugal force
is acting inwards [40]. Then γ0 is equal to twice the ratio
between the magnitude of the gravity and the centrifugal
forces, whereas time is scaled by half of the frequency of the
rotating hoop. Alternatively, Eqs. (11) or (12) can be written
as a second-order amplitude equation:

d2Ã
dτ 2

= 2Ã[(Ã − Ã0) + (2 − μ0)]. (25)
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V. DISCUSSION

Nonlinear shear instability is a highly complex mechanism
[41], even when considering the high Reynolds number invis-
cid limit. Consequently, any minimal model that is focusing
only on one, or several, aspects of the dynamics is somewhat
naive and incomplete by construction. Yet, we find it instruc-
tive to isolate the different processes in order to deepen our
physical understanding on this mechanism. For the linearized
dynamics, the understanding of shear instability in terms of
action at a distance interaction between counterpropagating
vorticity waves has been found helpful, both conceptually and
computationally. Here, we therefore looked for the next step to
understand the basic interplay between waves, emerging from
the linearized unstable normal modes, and the mean flow.
While the model supports different regimes of dynamics, the
main result of our analysis is quite straightforward—when the
waves’ amplitudes become large enough to interact with
the mean flow, they “inviscidly” reduce their growth rate and
start to librate around the neutral antiphased configuration
with a mean finite amplitude.

How relevant is this mechanism to real hydrodynamical
systems? For stratified shear flow, such as the Taylor-Caulfield
setup of plane-Couette flow with two density interfaces, the
unstable linearized dynamics is well described by the lin-
earized model of Heifetz and Guha. There, the vorticity waves
are the two counterpropagating interfacial gravity waves at the
two interfaces [42]. The nonlinear evolution of the Taylor-
Caulfield instability has been investigated in [43], and it is
clear from their simulations (cf. their videos in the supplemen-
tary material) that as the waves reach finite amplitudes, they
become unlocked from their unstable modal phase, and their
phase difference increases toward π . However, the waves do
not exhibit libration as resonant triad interaction (k ⇐⇒ 2k)
becomes the dominant mechanism. Indeed, in a follow-up
study we intend to include resonant triad interactions [16,44]
in the truncated form suggested by [45].

It is also interesting to compare our model with the evo-
lution of finite amplitude Rossby waves in baroclinic shear
instability. The latter is a central mechanism in geophysical
fluid dynamics, where Rossby waves extract energy from the
jet stream to form the weather systems in the midlatitudinal
atmosphere [46]. The seminal weakly nonlinear analysis by
Pedlosky [47] of the two-layer Phillips model [12] suggests
libration around the zero phase between the waves rather than
around π . The main reason for that is the relation between the
baroclinic vertical shear with the mean potential vorticity (PV)
gradients at the two layers (via the thermal wind balance), so
that reduction in the mean shear reduces the mean PV gra-
dients in the two layers and therefore it reduces the efficiency
of the Rossby wave’s intrinsic counterpropagation mechanism
(represented by c1,2 in our model) and their interaction co-
efficients (represented by σ1,2 in our model). Consequently,
when the mean shear is reduced by the Rossby wave PV
flux, the counterpropagation speeds of the waves decrease
as well, and it turns out that the latter effect overwhelms
the former. This can be understood when writing our control
parameter μ = k

σ
[(|U1| + |U2|) − (|c1| + |c2|)]. In our model,

we assumed that only the mean flow is reduced when the

waves grow nonlinearly [that is, (|U1| + |U2|) decreases and
consequently μ decreases]. In the baroclinic model, however,
(|c1| + |c2|) decreases as well and even more intensively than
the mean flow. This causes μ to grow rather than to decay
as the waves grow and consequently the libration is reversed
toward the zero phase. It is still interesting, however, how the
nature of the libration (Fig. 5 in [47] and Fig. 7.16.6 in [12])
resembles the libration in Fig. 4. A crude but straightforward
way to represent this process in the minimal model is to allow
the wave–mean-flow interaction coefficients, β1,2 in (5), to
take negative sign.

Our minimal model is essentially 2D (streamwise and
cross-stream). This does not pose a problem in the linearized
stage of the instability, even when describing the canonical
“2.5D” baroclinic setups [12]. However, as was shown by
[47], in the weakly nonlinear regime one cannot ignore the
generation of spanwise (meridional, in the baroclinic case)
curvature of the jet, which in turn acts to reduce further the
mean PV gradient in the lower layer by generating an effec-
tive “β-plane stabilizing effect.” The spanwise dynamics in
nonlinear shear instability is indeed robust to maintain the
nonlinear generic self-sustaining process in shear flows, as
explained by Waleffe [48]. It is therefore on our “to-do” list
to extend our model to describe the essence of the Waleffe 3D
wave–mean-flow interaction self-sustaining circle. The need
for a three-dimensional minimal model is evident as well
when considering baroclinic instability from the generalized
Lagrangian mean (GLM) framework, where both the effect of
the Stokes drift and the GLM meridional velocity should be
taken into account [49]. A somewhat more straightforward for
implementation, but still an important aspect of the nonlinear
dynamics, is the role played by the critical layer in between
the interacting waves. This phenomenon, for the linearized
dynamics, considering a wave interaction minimal model has
been addressed in [42]. We plan as well to include its interac-
tion with the mean flow in a follow-up work.

In a different aspect, we find it interesting that the pre-
sented weakly nonlinear N-interfaces model, Eq. (23), relates
to the well-studied Kuramoto-Sakaguchi dynamics. On the
one hand, we identify all major ingredients for the emer-
gence of chimera states. On the other hand, the existence
of additional amplitude degrees of freedom is expected to
result in additional challenges to understand the shear-wave
dynamics from the perspective of coupled oscillators. Lastly,
the concept of wave (entities) interacting in a distance, while
altering their local mean flow (local surrounding), might be
relevant to resemble some features of the dynamics of active
matter [50]. Such an implementation, while intriguing, is less
straightforward and requires more thinking.
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