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Giant fluidic impedance of nanometer-sized water bridges: Shear capillary force at the nanoscale
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We analytically show that the interfacial fluid’s molecular dynamics of capillary bridges induces both elastic
and dissipative forces to the shearing plane. Surprisingly, the nanometer-sized, liquid-solid contact line of the
bridges exerts a giant “shear” force on the solid surface, which is 105 higher than the usual viscous interaction
and comparable to that of solid-solid direct-contact friction. These results are consistent with previously reported
experimental data and may provide clues to longstanding questions on the apparent viscosity of the nanoconfined
fluids.
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Nanobridges of water are ubiquitous in nature. Such liquid
bridges can form by capillary condensation in nanometric
gaps exposed to air [1–3]. The nanometric water bridges
induce a capillary force, usually much stronger than other
surface interactions such as van der Waals and electrostatic
forces [4,5], that may dominate the contact mechanics of
solid objects in air [6,7]. This capillary interaction has been
extensively investigated for fundamental understanding of
liquid-solid interaction [8] and for practical applications such
as friction control [9], optical switching [10,11], manipulation
of nano-objects [12,13], and self-assembly of colloidal parti-
cles [14,15].

In essence, the capillary force originates from the deep
negative pressure and the boundary-surface energy of the
liquid bridge; the negative pressure produces a normal at-
tractive force on the liquid-solid contact area [blue arrow in
Fig. 1(a)] and the surface energy induces a tangential force on
the contact line at liquid-solid interfaces [thin red arrows in
Fig. 1(a)]. By summing the tangential force around the contact
line, we obtain a net attractive force in the normal direction for
a symmetrically shaped bridge. The sum of contact-area and
contact-line forces is the “normal” capillary force [16]. When
the upper surface moves in the lateral direction, the bridge is
sheared and distorted; the resulting capillary force can have a
nonvanishing horizontal component [Fig. 1(b)]. This “shear”
capillary force can directly induce friction between two slid-
ing surfaces that may or may not be in contact [17]. This has
direct implications for many natural systems [18], as well as
for engineering and industrial processes [19].

While elaborate models of capillary forces have been de-
veloped to describe capillary phenomena, nearly all of them
describe normal capillary force, i.e., the vertical component
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of the capillary interaction. Thus, most studies have been
limited to examining the normal capillary interactions, though
the systems involve shear capillarity. Moreover, the capillary
bridges are known to mediate the tip-sample interaction in
shear-mode atomic force microscopy (AFM) [20–24], but the
physical mechanism of the shear interaction is still elusive.
Despite more than one hundred years of research on capillary
force [25], the physical origin and analytical formulation of
“shear” capillary force is absent.

In this paper, we theoretically investigate the capillary
shear interaction with a nanosized liquid bridge, taking into
account the fluid’s molecular dynamics on the contact line
at liquid-solid interfaces. In our theory, we assume that the
viscosity of the nanobridges does not change significantly
from that of the bulk phase. Instead, we consider the pinning-
depinning mechanics of the liquid molecules on the contact
line to derive the shear interaction. We analytically present
the “apparent” elastic and damping coefficients of the shear
capillary force, which are the experimental observables in
oscillatory probing techniques such as AFM. As we shall
show, the nanometer-sized water bridge yields a giant fluidic
impedance given as the sum of the elastic and the dissipative
coefficients, which is consistent with previously reported ex-
perimental results [20–24]. Furthermore, our model captures
three essential characteristics of the shear capillary interaction
[17]: (i) finite values of elastic and damping coefficients in the
limit of zero modulation amplitude, (ii) the elasticity decaying
faster than the damping coefficient with increasing the mod-
ulation amplitude, and finally (iii) the logarithmic increment
of damping force and the converging elastic force with the
amplitude.

In humid air, the nanosized bridges of water can be formed
in the nanometric gap between two surfaces by capillary
condensation [1–3]. The condensed water induces capillary
forces at both the liquid-solid contact area and the liquid-solid
contact line (Fig. 1). On the one hand, the pressure inside
the nanometric bridge is much smaller than that of the at-
mosphere; this negative pressure in the bridge generates an
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(a) (b)

FIG. 1. Normal and shear capillary forces. (a) In humid air, a
nanometric water bridge forms in the gap between two surfaces by
capillary condensation. The symmetrical capillary bridge exerts a
“normal” capillary force (red and blue arrows), which is the sum
of the force due to the negative pressure in the bridge (blue arrow)
and the force at the liquid-solid contact line (red arrow). (b) If the
upper surface moves laterally, the bridge is sheared and the surface
experiences a laterally directed “shear” capillary force (grey arrow)
as well.

attractive force normal to the contact surface [blue arrow in
Fig. 1(a)], with magnitude equal to the pressure times the
liquid-solid contact area. On the other, the sum of the tangen-
tial forces [thin red arrows in Fig. 1(a)] around the liquid-solid
contact line results in a net attractive force normal to the
liquid-solid contact interface for an axially symmetric liquid
bridge [red arrow in Fig. 1(a)]. However, the situation is more
complex when the upper surface moves in a lateral direction
[Fig. 1(b)]: the contact angles change, and so do the directions
and magnitudes of the tangential forces. Thus, the sum of
tangential forces now includes a nonvanishing component in
the lateral direction [grey arrow in Fig. 1(b)], which is the
shear capillary force.

Let us first suppose that the upper surface moves slowly
(v ≈ 0) in the lateral direction while the liquid-solid contact
line remains pinned to the upper surface [Fig. 1(b)]. The
liquid-vapor interfacial surface is gradually distorted and the
overall interfacial surface energy Us increases. This leads to a
restoring force Fk = −dUs/dx, where x is the lateral displace-
ment. For simplicity, let us consider a cylindrical column of
water with radius Rψ [Fig. 2(a)]. Under a shear displacement
of x, the interfacial energy is given by 4γ RψhψE [−(x/hψ )2],
where γ is the surface tension, E is the complete elliptic
integral of the second kind, and hψ is the height of the water
column. Thus, the restoring elastic force Fk is given by the
gradient of the interfacial energy:

Fk(x, v = 0) = −4γ Rψ

E [−(x/hψ )2] − K[−(x/hψ )2]

x/hψ

, (1)

where K is the complete elliptic integral of the first kind (see
Supplemental Material [26] for the detailed derivation).

Next, we consider the shear force at the position of tip
plate, x = 0, while the tip moves at a velocity v in the lateral
direction. If the tip surface is undergoing harmonic oscillation
in the x direction, the maximum speed of the tip is v = wA at
x = 0, where w is the angular frequency of the tip oscillation
and A is the oscillation amplitude. Due to the dynamic motion
of the plate, the contact line can move along the moving
surface, changing the contact angle [27]. This can result in
a nonvanishing lateral component of the tangential force even
at x = 0, depending on the upper plate speed v = wA. We can
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FIG. 2. Shear capillary forces at two states of the tip: (a) the
tip (upper surface) velocity v = 0 and (b) the tip position x = 0.
(a) When the tip’s position is slowly displaced (v ≈ 0), the inter-
facial surface energy Us dominates the overall shear interaction. The
increased surface energy induces a restoring force Fk = −dUs/dx.
A cylindrical column can be used to calculate the surface area and
the associated elastic restoring force analytically. (b) When the tip
moves with a finite velocity v at position x = 0 in the x direction,
the liquid-solid contact angles change due to the pinning-depinning
dynamics of the contact line (inset). The changing contact angle
around the contact line results in unbalanced tangential forces, the
lateral components of which add up to a velocity-dependent damping
force.

analytically calculate the tip’s velocity-dependent damping
force Fb by assuming a circular distribution of the horizontal
components of the tangential force [Fig. 2(b)]. By horizontal
component f (�) at the polar angle � in ξ -η coordinate [the
blue-colored coordinate frame in Fig. 2(b)] we mean the pro-
jection of the tangential force onto the plane of the liquid-solid
interface [thin red arrows in Fig. 2(b)]; this clearly varies in
magnitude around the circumference of the contact circle in
the ξ -η plane. The magnitude and the direction of f (�) are
then determined in a way that the force is proportional to the
geometrical length l of the red arrow in the ξ -η plane, i.e.,
f (�) = τ l (�), where τ is a constant to be determined. As
indicated in Fig. 2(b), the outer circle, on which the f (�)
acts, has a radius of Rψ , and the radius of the inner circle is
unknown. The two unknowns (the constant τ and the radius of
the inner circle) are uniquely determined by the two relations
f (0) = γ cos θr and f (π ) = γ cos θl , where θr is the dynamic
contact angle at � = 0, and θl at � = π [Fig. 2(b)]. By inte-
grating f (�) over 0 � � < 2π , we formally obtain a force Fb

in terms of θr and θl :

Fb = −πRψ

2
γ (cos θr − cos θl ). (2)

If θr and θl are known, the tip’s velocity-dependent damping
force Fb at x = 0 can be determined.

We can determine θr and θl by using molecular kinetic
theory [28], which relates the dynamic contact angle θ to
the relative velocity V of the contact line with respect to the
contact surface:

V = 2V0e−U/kBT sinh
(λ2γ (cos θeq − cos θ )

2kBT

)
, (3)

065108-2



GIANT FLUIDIC IMPEDANCE OF NANOMETER-SIZED … PHYSICAL REVIEW E 105, 065108 (2022)

with V0 ≡ λkBT/h. Here λ is the length of activated jump of
fluid’s molecules, and U the activation energy of the jump,
kB the Boltzmann constant, T the absolute temperature, h
the Planck constant, and θeq the equilibrium contact angle.
Thus, the dynamics of the contact line is governed by the out-
of-balance surface tension force γ (cos θeq − cos θ ) and two
parameters, the hopping length λ and the activation energy U .

Since a higher tip velocity could induce larger contact line
motion, we assume that the relative velocity V is approxi-
mately the same as the tip velocity v = wA, i.e., V = v = wA
at x = 0. Rewriting Eq. (2) as Fb = −(πRψ/2){γ (cos θeq −
cos θl ) − γ (cos θeq − cos θr )} and using Eq. (3), we obtain
the damping force Fb as a function of tip velocity v:

Fb(x = 0, v) = −πRψ

2kBT

λ2
sinh−1

( v

2V0e−U/kBT

)
. (4)

We construct the shear capillary force Fs at an arbitrary
position and velocity of the tip as the superposition of the
elastic force, Eq. (1), and the damping force, Eq. (4):

Fs(x, v) ≡ Fk(x, 0) + Fb(0, v). (5)

This assumption implies that the pinning of the contact line
changes the liquid-air interfacial energy under shear, which
generates the elastic force Fk dominating the overall interac-
tion at x = A (or v = 0). Further, the pinning-depinning of the
contact line induces the dominating dissipative damping force
Fb at x = 0 (or v = wA). Therefore, Eq. (5) is an approxi-
mation obtained by smoothly interpolating between two force
values at x = 0 and x = A, which is based on the decoupling
of position and velocity variables at x = 0 and x = A.

The expression of shear force, Eq. (5), yields the force
coefficients that are expected in the limit of small oscillation.
Under small oscillation, materials are expected to exhibit lin-
ear response such that force coefficients are “force divided by
displacement.” Indeed, Eq. (5) results in the elastic coefficient
kint ≈ Fs(x = A, v = 0)/A = Fk(x = A)/A and the damping
coefficient bintw ≈ Fs(x = 0, v = wA)/A = Fb(x = 0)/A. In
addition, as we shall show in Figs. 3(b) and 4(a), the ex-
act calculation gives very consistent results with experiments
[17]: the elastic coefficient kint decays faster than the damping
coefficient bintw with increasing the modulation amplitude,
and the damping force bintwA logarithmically increases and
the elastic force kintA converges to a value with the increment
of amplitude A.

Experimentally, the shear capillary interaction can be in-
vestigated with probe-based oscillatory techniques, such as
AFM [20,29] or use of a surface force apparatus [30,31]. In
such measurements, the shear interaction is extracted from
dynamic responses of the tip, such as the oscillation amplitude
change and the phase shift [32]. With this dynamical infor-
mation, we finally obtain the apparent elastic and damping
coefficients ks and bsw (see Supplemental Material [26]),

ks

k0
= 8

π2A
2

(
π2

2
3F2

[
−1

2
,

1

2
,

1

2
; 1, 1; −A

2
]

− 2

{
K

[
1

2

(
1 −

√
1 + A

2
)]}2

)
(6)

FIG. 3. Shear capillary force Fs and the associated elastic and
damping coefficients ks and bsw. (a) Shear capillary forces [Eq. (5)]
are plotted as a function of the tip position x at different oscillation
amplitudes A = 1, 5, 10, 15, 20, 25, 30, 35 nm. (b) The black solid
curve corresponds to apparent elasticity ks [Eq. (6)] and the red
curve to apparent damping coefficient bsw [Eq. (8)]. The black and
red colored dots are the results of numerically integrating the force
curves shown in (a) (Supplemental Material [26]). We have used
typical parameters of capillary-condensed water bridges [17]: Rψ =
15 nm, hψ = 6 nm, λ =0.6 nm, U = 15kBT , and w/2π = 32 768 Hz.

with k0 = πRψ

hψ

γ , (7)

bsw

b0w
= 4

π

√
1 + a2

a2

{
K

[
a2

1 + a2

]
− E

[
a2

1 + a2

]}
(8)

with b0w = πwRψh

λ3e−U/kBT
, (9)

where A = A/hψ , a = Aw/(2V0e−U/kBT ), and 3F2 is the gen-
eralized hypergeometric function.

As the tip oscillates laterally, the shear force Fs [Eq. (5)]
exhibits hysteresis [red arrows in Fig. 3(a)], because the
damping-force direction changes sign depending on the
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FIG. 4. Scaling behaviors of the magnitudes of elastic and damp-
ing forces, ksA and bswA, with the shearing amplitude A. (a) The
magnitude of the elastic force ksA converges to a finite value
[Eq. (10)], whereas the damping component bswA increases loga-
rithmically with A. The black solid curve is from Eq. (6) and the
red solid curve from Eq. (8). The black and red colored dots are the
results obtained by using the data sets of colored dots in Fig. 3(b).
(b) The function L(a) [Eq. (11)] (black curve) is well approximated
by Eq. (12) (red curve) for a > 1.

moving direction of the tip. Both the elastic and the damping
forces [Eqs. (1) and (4)] increase linearly with the oscillation
amplitude at small amplitude, but they change nonlinearly at
large amplitude. This leads to the inclined elliptical shape of
the shear-force curve [Eq. (5)] at small amplitude. The shape
is distorted as the amplitude becomes larger [Fig. 3(a)].

The fluidic impedance, characterized by ks and bsw

[Eqs. (6) and (8), and Supplemental Material [26]), is shown
in Fig. 3(b). The elasticity ks converges to k0 and the damp-
ing coefficient bsw converges to b0w, as A → 0. Since
ks(A) ≈ |Fk|/A and bswA ≈ |Fb|/A approximately, the spe-
cific nonzero k0 and b0w imply that the forces Fk and Fb

linearly increase with the amplitude A, and that the interaction
coefficients ks and bsw are independent of the amplitude A
for small A. Experimentally, these finite constant valued k0

and b0w are observed even at the amplitude of subnanometer

scale [21]. This indeed indicates the molecular process at the
contact line.

Surprisingly, the contact-line-induced damping impedance
bsw is about five orders of magnitude higher than the
viscous damping caused by bulk-valued viscosity. Further-
more, the elasticity ks is generated by the contact line,
which is not induced by the viscosity of the fluid. The
contact-line-induced damping b0w [Eq. (9)] is about 1
N/m, but the viscous damping of a nanometric water
bridge is estimated to be 10−5 N/m with bulk vis-
cosity of water 1 mPa s, contact radius Rψ = 15 nm,
and height hψ = 6 nm. This shows that the effect of the
contact line is significant for the overall interaction, although
it is nanometer sized.

We find ks decays faster than bsw with increasing A
[Fig. 3(b)]. This is because ks is associated with the interfacial
geometry [Eq. (1)] and bsw with the sliding dynamics at
the liquid-solid interface [Eq. (4)]. The liquid-vapor interfa-
cial energy change, associated with the elastic force, does
not infinitely increase but has a limited value under shear
modulation. However, the damping force on the contact line
persistently increases with shearing amplitude. These are con-
sistent with previous experimental results [17].

The magnitude of the oscillatory elastic force ksA con-
verges to a finite value, as the amplitude increases. From
Eq. (6), we get

ksA

k0
= 16

π2
as A/hψ → ∞, (10)

where we have used the relations
(π2/4)3F2[− 1

2 , 1
2 , 1

2 ; 1, 1; −A
2
] ≈ A and K[ 1

2 (1 −√
1 + A

2
)] ≈ 0 as A ≡ A/hψ → ∞. This convergence,

observable in Fig. 4(a) (black dashed line), was also seen in
experiments [17].

The magnitude of the damping force bswA increases log-
arithmically with amplitude [red solid and dashed curves,
Fig. 4(a)]. This behavior follows from the asymptotic relation

L(a) ≡
√

1 + a2

a

{
K

[
a2

1 + a2

]
− E

[
a2

1 + a2

]}
(11)

≈ 1

2
ln(1 + a2) − σ − ψ (0)(1/2) − 1 as a → ∞, (12)

where σ is the Euler-Mascheroni constant and ψ (0)(1/2) is
the Polygamma function of order 0 at a value 1/2. We use the
approximation of L(a) to derive the scaling behavior for bswA
[Eq. (8)] as follows:

bswA

b0w
= 8V0e−U/kBT

πw

{
1

2
ln(1 + a2) − σ − ψ (0)(1/2) − 1

}
× as a → ∞. (13)

As shown in Fig. 4(b), Eq. (12) excellently represents L(a)
with a discrepancy of less than 3% for a > 1. Since a =
Aw/(2V0e−U/kBT ), a = 1 corresponds to A = 12 nm. Further,
(1/2) ln(1 + a2) approaches ln(a) for large a. Therefore, the
damping force bswA is expected to scale as ln a or ln A for
A > 12 nm [Fig. 4(a)], as observed in the previous experimen-
tal study [17].

065108-4



GIANT FLUIDIC IMPEDANCE OF NANOMETER-SIZED … PHYSICAL REVIEW E 105, 065108 (2022)

In conclusion, we have developed an analytical theory
for shear capillary force, taking into account the liquid-solid
contact line mechanics. Our theory captures quantitatively
the characteristic features of the experimental results, thereby
offering a means to study liquid-solid dynamic interaction at
the nanoscale. In particular, one can investigate the activation
energy U and hopping length λ for various nanometric liquids
by measuring ks and bsw.

The shear capillary force would strongly affect the slid-
ing friction between two macroscopic surfaces. Numerous
capillary-condensed liquid bridges could be formed within the
nanoscale gap between contact as well as noncontact asper-
ities on the surfaces. They not only increase effectively the
normal load in the system and thus the solid-solid contact
friction, but also could induce directly friction via the shear
capillary force. When the relative velocity of the two surfaces
is vanishingly small, the shear capillary force will induce a
restoring force as predicted by Eqs. (1) and (6), resulting in
enhanced static friction. On the other hand, when the two
surfaces move at a relative velocity, the shear capillary force
will also induce a damping [Eqs. (4) and (8)], contributing to
kinetic friction. Since there would exist numerous capillary
bridges between two macroscopic surfaces in contact [33,34],
the effect of shear capillary force could be significant.

This giant interaction on the contact line also provides a
clue for resolving the longstanding issue of viscosity enhance-
ment in nanoconfined water. Nanoconfined water measured
with interfacial force microscopy [35], surface-force appara-
tus [30,31], and quartz tuning-fork sensors [20–24] has shown
a giant fluidic impedance, which has been often interpreted as
enhanced viscosity in the nanoconfined water. However, the
experimental systems included liquid-solid contact lines, that
must have contributed significantly to the overall interaction.
Such contact-line interaction may explain the measured giant

interaction with water in such systems without the need to
assume viscosity enhancement.

The pinning-depinning dynamics of water molecules at the
liquid-solid contact line is distinct from hydrodynamics in
bulk phase, and the molecular dynamics of water would be
associated with the molecular structure of interfacial water.
Indeed, Uhlig and Garcia reported hydration layer structures
on a crystalline surface in capillary-condensed bridges [36].
This suggests a layered structure of water that could be formed
on shearing surface of the tip, in which the water molecules
on the layered structure could exhibit very different behav-
ior from usual viscous dynamics. Therefore, the giant shear
viscoelastic interaction might be associated with the pinning-
depinning mechanics of the interfacial hydration water. The
shear capillary force, the lateral component of capillary in-
teraction, should be taken into account when studying any
systems involving capillarity [37].
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