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Equivalence of three thermal boundary conditions in compressible turbulent channel flows
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In this paper, direct numerical simulations have been performed to explore the equivalence of different thermal
boundary conditions in compressible turbulent channel flows at fixed Re = 6000, Ma = 1.5. Three canonical
types of thermal boundary conditions will be investigated at almost equivalent setups, including the first boundary
condition with fixed wall temperature Tw (constant Dirichlet boundary condition), the second boundary condition
with fixed wall heat-flux qw (constant Neumann boundary condition), and the third boundary condition (Robin
boundary condition). The turbulent statistics of the temperature and velocity fields, including mean profiles,
root-mean-square values, second-order statistics, and normalized probability density functions, temperature
stripes near the wall and the budget of internal energy have been analyzed in detail to clarify the differences
caused by the different thermal boundary conditions. The results show that the three thermal boundary conditions
have almost negligible effect on the velocity field, whereas some discernible deviations can be observed for the
temperature field in the near-wall region with y+ � 30. Furthermore, the statistics from the second and third
thermal boundary conditions are very close, enabling the usage of the second boundary condition to mimic the
more complex third boundary conditions.
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I. INTRODUCTION

Compressible wall-bounded turbulence is of great impor-
tance in many engineering applications, such as the supersonic
and hypersonic vehicles. Different from the incompress-
ible wall-bounded turbulence, the wall-temperature condition
becomes one of the crucial features in compressible wall-
bounded turbulence. For example, the wall temperature on
the surface of the supersonic vehicles is essentially adiabatic,
whereas it is significantly lower than the adiabatic wall tem-
perature in hypersonic vehicles due to the substantial radiative
cooling and internal heat transfer [1].

Thanks to the pioneering works from Coleman and co-
workers [2,3], direct numerical simulations (DNSs) have been
becoming one of the powerful tools to investigate the com-
pressible wall-bounded turbulence. In the implementations
of the DNSs, different wall-temperature boundary conditions
were adopted, either the first thermal boundary condition
also denoted as the Dirichlet boundary condition where the
wall-temperature Tw was prescribed with a constant value
(isothermal) [2,4–11],

Tw = c1, (1)

or the second thermal boundary condition also denoted as the
Neumann boundary condition where the wall heat-flux qw was
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specified with a constant value (isoflux),

qw = −λ
dT

dn

∣∣∣∣
w

= c2. (2)

Here, λ is the thermal conductivity coefficient, n is the
normal direction of the wall, and the constant c2 is usually
zero to mimic the adiabatic wall-boundary condition [4–6,11–
13]. It should be noted that in many numerical simulations
of compressible turbulent boundary layer flows, the adia-
batic wall-boundary condition was not implemented directly
but substituted with the isothermal wall-temperature instead
where the wall temperature was set equal to the adiabatic
temperature with the constant recovery factor (or the recovery
temperature) [1,14–17]. The underlying philosophy of such
substitution, which is also called the pseudoadiabatic [13],
is that the isothermal adiabatic wall-temperature can mimic
the adiabatic thermal boundary condition in simulation of
compressible wall-bounded turbulence. Recent DNS results
of supersonic turbulent boundary layer by Shadloo et al. [6]
confirmed that basic turbulent statistics were not affected by
above substitution for adiabatic boundary except for some
deviations of the near-wall asymptotic behaviors.

In many real-life problems, especially for those cases when
the thermal diffusivity of the fluid and the solid are of the
same order of magnitude, the thermal interaction between the
solid wall, and the fluid must be considered. However, for
these problems, neither the isothermal nor the isoflux bound-
ary conditions could mimic the actual heat transfer behavior
realistically, and new treatments on the thermal boundary
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FIG. 1. Schematic of a compressible turbulent channel flow. On
the top wall, the isothermal boundary condition is applied. On the
bottom wall, three different thermal boundary conditions, i.e., (1)–
(3), are applied in three cases at almost equivalent setups.

condition should be adopted. A natural choice is to consider
the thermal conductivity in the solid wall together with the
thermal diffusivity in the fluid, i.e., the conjugate heat transfer.
Tiselj et al. [18] once investigated the influence of the ther-
mal boundary conditions in incompressible turbulent channel
flows with passive scalar transfer by DNS. They performed
direct comparisons among the conjugate heat transfer, the
imposed temperature and the imposed heat flux at the wall,
and observed substantial temperature fluctuations in the near-
wall region for the cases with conjugate heat transfer and the
isoflux boundary conditions. Another simplified option is to
use the Robin boundary condition, where

h0Tw + λ
∂T

∂n

∣∣∣∣
w

= C. (3)

Here, h0 is the heat transfer coefficient. The above Eq. (3)
could be rewritten in the following form, equivalently,

−λ
dT

dn

∣∣∣∣
w

= h0(Tf − Tw ), (4)

with Tf = 2Tw − C/h0 denoting the temperature of the exter-
nal fluid surrounding the object boundary [19]. In fact, in the
implementation of the conjugate heat transfer boundary con-
dition for temperature, which was a passive scalar, Tiselj et al.
[18] indeed used the Robin boundary condition for the fluid
side of the fluid-solid boundary and reported that the influence
of the thermal boundary condition was within a couple of
wall units depending on the Prandtl number Pr. The influence
range of the temperature boundary conditions is y+ ≈ 15 for
Pr = 0.71 and y+ ≈ 6–8 for Pr = 5–7, respectively. Flageul
et al. [20] also carried out an investigation on the effect
of four different thermal boundary conditions, including the
Dirichlet, Neumann, Robin, and the conjugate heat transfer
boundary conditions, through DNS for incompressible turbu-
lent channel flows with passive scalar, and they also found
that the temperature variance was strongly impacted in the
near-wall region by the different thermal boundary conditions,

and that the several statistics from the Robin boundary con-
dition were almost the same as those from the conjugated
case. They also concluded that their results enabled a sim-
plified Robin boundary condition to mimic a clearly more
complex conjugated condition involving a fluid-solid thermal
interaction. Other studies on the effects of different thermal
boundary conditions in incompressible or low Mach-number
wall-bounded flows with passive scalar transport include but
are not limited to Refs. [18,20–31].

Compared to the numerous papers on the incompressible or
low Mach-number wall-bounded flows, very few works have
been devoted to study the effect of thermal boundary con-
ditions in compressible wall-bounded turbulence, although
the temperature field is coupled with the velocity field in
compressible flows, making the thermal boundary conditions
more critical for the results. Morinishi et al. [4] once in-
vestigated the effects of adiabatic and isothermal conditions
on the statistics in compressible turbulent channel flows. In
their studies, they performed DNS on turbulent channel flows
with adiabatic and isothermal walls where one side was set
to the physical adiabatic condition and the other was isother-
mal. Their results showed that Morkovin’s hypothesis was
not applicable to the near-wall asymptotic behavior of the
wall-normal turbulence intensity, even if the variable property
effect was considered. Later on, Tamano and Morinishi [5]
performed a direct comparison between the adiabatic wall and
an equivalent isothermal wall in compressible turbulent chan-
nel flows, and they reported that the substitution of adiabatic
wall with an equivalent isothermal wall led to obvious differ-
ence in the mean temperature profiles at the high-temperature
and adiabatic walls where an additional maximum of the
mean temperature and the corresponding maximum of root-
mean-square (rms) temperature fluctuations existed near the
high-temperature wall. This observation conflicts with the
recent results drawn by Shadloo et al. [6] in supersonic bound-
ary layers where the basic turbulent statistics were not affected
by the thermal boundary conditions. The biggest conflict is
whether the different thermal boundary conditions can affect
the statistics away from the wall. The results of Tamano and
Morinishi [5] supported this argument, whereas those from
Shadloo et al. [6] disapproved. According to the mean tem-
perature profile [See Fig. 2(a) in Tamano and Morinishi [5]],
the wall temperature at the upper wall in case 1 was somehow
lower than required, and we inferred that the upper wall was,
in fact, nonadiabatic.

In the present paper, DNSs of compressible turbulent chan-
nel flows are performed to investigate the effect of different
thermal boundary conditions on turbulent statistics and flow
structures in detail. Three canonical thermal boundary condi-
tions, including the Dirichlet, Neumann, and Robin boundary
conditions were adopted at almost equivalent setups. Our aim
is to provide direct numerical evidences not only on the ef-
fect of different thermal boundary conditions on compressible
wall-bounded turbulence, which can be used to improve the
Reynolds averaged Navier-Stokes and large eddy simulation
modeling [32], but also on the equivalence of the three thermal
boundary conditions, which can resolve the above conflicting
observations between Tamano and Morinishi [5] and Shadloo
et al.[6].
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TABLE I. Details of the thermal boundary conditions at the three cases. Here, the values with bold form and underline denote the
input values, whereas the other ones are the calculated mean values at the statistically stationary state. The friction Reynolds number
Reτ = ρwuτ h/μw is defined using the quantities at the wall. The heat transfer coefficient is kept the same at all three cases when Tf ,b is
estimated. The rms values of qw, Tw , and Tf are calculated in the bottom wall for all cases.

Case Reτ,b Tw,b qw,b Tf ,b Tw,b,rms/〈Tref〉 qw,b,rms/|〈qw〉| Tf ,b,rms/|〈Tf ,b〉| Reτ,t Tw,t

M15T11 407.8 1.000 −3.407 × 10−3 −4.105 0 0.4050 0.5037 407.2 1.000
M15T21 413.2 0.985 −3.407 × 10−3 −4.106 0.131 0 0.0315 406.7 1.000
M15T31 409.9 0.991 −3.401 × 10−3 −4.105 0.118 0.0230 0 405.5 1.000

II. NUMERICAL SETUP

A. Governing equations

In the present paper, the three-dimensional compressible
turbulent flow with the perfect gas assumption is considered,
and the flow can be described by the following governing
equations:

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (5)

∂ρui

∂t
+ ∂ (ρuiu j + p δi j )

∂x j
= ∂τi j

∂x j
+ fiδi1, (6)

∂E

∂t
+ ∂ (E + p)ui

∂xi
= ∂uiτi j

∂x j
− ∂qi

∂xi
+ fiui. (7)

Here, the Einstein summation convention and notations are
used. δi j is the Kronecker tensor, ρ is the density, ui is ve-
locity, p is the pressure, fi is volume force, and E = ρ(e +
u2

i /2) is the total energy with e being the internal energy.
The equation of state is p = ρRT with R as the gas con-
stant. e = cvT with cv = R/(γ − 1), and cp being the specific
heat at constant volume and constant pressure, respectively.
γ = cp/cv = 1.4 is the specific heat ratio. The shear stress τi j

and heat-flux q j can be defined as

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ

∂uk

∂xk
δi j, qi = −λ

∂T

∂xi
,

where the dynamic viscosity μ follows Sutherland’s formula
[33], and the thermal conductivity λ is estimated through the
fixed Prandtl number Pr = cpμ/λ = 0.72.

B. Numerical settings

A sketch of a three-dimensional fully developed com-
pressible turbulent channel flows with three different thermal
boundary conditions is shown in Fig. 1. The DNS is carried
out in a cuboid box whose sizes in the streamwise (x), wall-
normal (y), and spanwise (z) directions are Lx, Ly, and Lz,
respectively. The periodic boundary condition is applied in the
x and z directions for both the velocity and the temperature
fields. In the wall-normal direction, the boundary conditions
are different for the velocity and temperature fields. For the
velocity field, the no-slip condition is employed, i.e., u = v =
w = 0 at both walls. For the temperature field, the isother-
mal Dirichlet boundary condition with T = Tw,t is applied at
the top wall whereas three different boundary conditions are
adopted at the bottom wall, including the Dirichlet boundary
condition with T = Tw,b = Tw,t for the case of M15T11, the
Neumann boundary condition with fixed qw,b for the case of
M15T21, and the Robin boundary condition with prescribed

Tf ,b for the case of M15T31 as listed in Table I. It should be
noted that qw,b in case M15T21 and Tf ,b in case M15T31 are
prescribed based on the values estimated from case M15T11.
Therefore, the three cases are at almost equivalent setups.
The well-validated high-order finite difference code OPENCFD

[34–38] is used in the present simulations where the invis-
cid and viscous terms are discretized using a seventh-order
upwind scheme and an eighth-order central scheme, respec-
tively, and the time is advanced using an explicit third-order
Runge-Kutta scheme.

In the simulations, all quantities are nondimensionalized
by a reference temperature Tref = 288.15 K, the channel half-
width h, the bulk-averaged density ρm = ∫ h

−h ρ dy/(2h), and

the bulk velocity um = ∫ h
−h ρu dy/(2hρm). Here, φ (or 〈φ〉)

denotes the averaging operation in x, z, and t for a quantity
φ. The Reynolds number Re and the Mach number Ma are
defined as

Re = ρmumh

μref
, Ma = um

c0
,

with the dynamic viscosity μref and the sound speed c0 are the
values at Tref . In all cases, Re = 6000 and Ma = 1.5 remain
unchanged, and the computational domain is Lx × Ly × Lz =
4π × 2 × 4π/3. The grid point is uniform in the x and z
directions with Nx × Nz = 400 × 320, which corresponds to
a grid resolution with 
x+ × 
z+ ≈ 12.8 × 5.3, whereas it
is clustered in the near-wall region in the y direction with

y+ ∈ [0.6, 10.6]. Here, the superscript + denotes the nor-
malization by the viscous length scale δv = μw/(ρwuτ ) and
friction velocity uτ = (τw/ρw )1/2, for example, y+ = y/δv ,
u+

rms = urms/uτ . Here, τw is the wall shear stress, respectively.
The present grid resolution is fine enough and comparable
with those used by Modesti and Pirozzoli [9] and Li et al.[39].
It is worth noting that the case of M15T11 is actually from
Zhang and Xia [38] where the reliability of the code and the
grid resolution have been well documented. Meanwhile, the
time step is 0.001h/um, and the flow statistics are averaged
over 300 samples with an interval 0.8h/um when the simula-
tions reach the stationary states. In the simulations, M15T11
was first carried out with an initial field where the velocity
is the laminar profile plus random disturbances, and the tem-
perature is uniform. The simulation takes more than 300h/um

to reach its stationary state. After we obtained the statistics
in M15T11, Cases M15T21 and M15T31 were then carried
out, starting from one instantaneous field at the stationary state
from M15T11 with the prescribed qw,b and Tf ,b, respectively,
at the bottom wall. The corresponding transient time period is
around 200h/um.
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In the following investigations, the Reynolds decomposi-
tion (φ = φ̄ + φ′, φ̄ = 〈φ〉) and Favre decomposition (φ =
φ̃ + φ′′, φ̃ = ρφ/ρ̄, φ̃ = {φ}) will be used. The rms value is

defined as φrms =
√

φ′2.

III. RESULTS AND DISCUSSIONS

A. Basic statistics on the velocity and temperature fields

Figure 2 shows the profiles of the mean streamwise veloc-
ity, mean temperature, and mean density from the three cases
with different thermal boundary conditions at the bottom wall.
It is easy to see that the mean streamwise velocity profiles
from the three cases coincide with each other across the whole
channel, whereas some small deviations are observed among
the three cases for the mean temperature profiles. In the bulk
region where −0.9 � y � 0.9, 〈T 〉 from the cases M15T21
and M15T31 are almost the same, exhibiting a slight asymme-
try, and their values are around 1% lower than those from the
reference case of M15T11. Furthermore, as can be seen from
Fig. 2(b) and Table I, the mean temperature on the bottom wall
show slight difference, and around 1.5% and 1.0% reductions
as compared to Tw,b from the reference case of M15T11, can
be observed for cases M15T21 and M15T31, respectively.
The present results for compressible flows are consistent with
those results obtained from the incompressible channel flow
with passive scalar transport where the passive scalar should
not affect the velocity field and Tiselj et al. [23] observed
well-matched mean temperature profiles with the differences
being less than 1% for the cases with constant Tw and constant
qw. It should be noted that there was another constraint for the
constant heat-flux boundary condition in Tiselj et al.[23], i.e.,
the time and space averaged dimensionless wall temperature
was fixed to zero, which may eliminate the differences of the
mean-wall temperature. For the mean density profiles from
different cases as shown in Fig. 2(c), no obvious difference is
observed in the bulk region except in the near-wall region with
y+ � 10.

Figures 3 and 4 show the distributions of the rms values of
the velocity and temperature fields, respectively, in the bottom
and top half of the channel. It is seen from Figs. 3(b) and
4(b) that there is no discernible divergences among the three
cases for both the velocity and temperature fields at the top
half of the channel, which is consistent with the fact that the
thermal boundary condition is the same on the top wall for
the three cases. However, at the bottom half of the channel,
different thermal boundary conditions will result in different
statistics. For the velocity field as shown in Fig. 3(a), some
small difference between the case of M15T11 and the case
of M15T21 are observed within y+ � 10 for the streamwise
component, and some tiny divergences between M15T11 and
M15T21 can be observed around y+ = 50 for the spanwise
component and the wall-normal component. However, the
differences between M15T21 and M15T31 are almost indis-
cernible for all three components. Considering the facts that
the temperature can alter the density and the viscosity in the
governing equations for velocity and that the only production
term in the budget equations of the Reynolds normal stresses
[40] explicitly includes the density and viscosity, the differ-
ence of urms among the three cases near the bottom wall may

FIG. 2. Profiles of (a) mean streamwise velocity (normalized by
um), (b) mean temperature (normalized by Tref ), and (c) mean density
(normalized by ρm) in global coordinate (normalized by h). The inset
in (c) shows the corresponding near-wall behavior.

be attributed to the different density [see the mean density in
the near-wall region shown in Fig. 2(c)] and viscosity. This
situation is in sharp contrast to the incompressible case where
the velocity field could not be modified by the passive scalar.
For the temperature fluctuations near the bottom wall, clear
divergence could be observed as shown in Fig. 4(a). For the
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FIG. 3. Profiles of turbulence intensities from the three cases in
(a) the bottom half and (b) the top half. Here, the rms values are
normalized by uτ .

case of M15T11 where the isothermal boundary condition
is used at the bottom wall, Trms is zero at the wall, and the
local peak exists around y+ = 13. For the cases of M15T21
and M15T31, Trms’s are not zero at the wall but reach their
maximum values. Furthermore, the values from M15T21 are
larger than those from M15T31 in the bottom half of the
channel. At y+ > 30, Trms from the three cases are relatively
close. The obvious different behaviors near the bottom wall
for the temperature fluctuations are consistent with those re-
sults observed in the incompressible case [18,20]. However,
in their results, Trms reached its maximum value at y+ ≈ 15
for the case with constant flux, whereas in the present com-
pressible cases Trms reached its maximum value at the wall.
We also carried out three similar DNSs at Ma = 0.5 whereas
keeping other setups unchanged. Although the magnitudes of
Trms are reduced (not shown here for brevity), its maximum
value again locates at the wall for the cases with fixed qw,b or
Tf ,b. On the other hand, for the adiabatic walls in compressible
turbulent boundary layers (see Fig. 12(a) Wenzel et al.[13] and
Fig. 5(d) in Shadloo et al.[6]) and turbulent channel flows (see
Tamano and Morinishi [5]), Trms reaches its peak away from
the wall. Therefore, we infer that the wall heat transfer may

FIG. 4. Profiles of the rms values of the temperature fluctuations
(normalized by Tref ) in (a) the bottom half and (b) the top half.

enhance the temperature fluctuations near the wall, which will
result in the maximum of Trms at the wall. Since the thermal
boundary conditions are the same at the top wall for all three
cases, and the basic statistics of velocity and temperature
fields are almost the same on the top half, our discussions in
the following will mainly be limited to the bottom half of the
channel unless stated otherwise.

Figure 5 shows the profiles of 〈u′v′〉, 〈u′T ′〉, and 〈v′T ′〉 in
the bottom half of the channel. Again, it is shown that there
is no obvious difference between the cases of M15T21 and
M15T31 for all three quantities and that some tiny devia-
tions could be observed between the case of M15T11 and
M15T21 for 〈u′v′〉 and 〈v′T ′〉, whereas evident deviations
can be observed between M15T11 and M15T21 for 〈u′T ′〉
in the near-wall region with y+ � 30. These results are in
consistency with those results discussed before. It should be
noted that, in incompressible flows with passive heat transfer,
Tiselj et al. [23] and Flageul et al. [20] also observed profound
effect on the statistics of the temperature fluctuations between
the isoflux and the isothermal wall-boundary conditions in the
near-wall region. However, the influence region of different
boundary conditions was rather close to the wall with y+ < 10
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FIG. 5. Profiles of (a) 〈u′v′〉 (normalized by umum), (b) 〈u′T ′〉
(normalized by umTref ) and (c) 〈v′T ′〉 (normalized by umTref ) in the
bottom half of the channel. Please note that they are zero for all cases
at the wall. The near-wall asymptotic behaviors of 〈u′T ′〉 and 〈v′T ′〉
are also shown in the insets in (b) and (c).

for the incompressible case. We believe that the coupling of
the thermal field and the velocity field extends the influence
region of different thermal boundary conditions. According to
the Taylor series expansions of the fluctuating velocity and

temperature at the wall [41], we may obtain the theoretical
asymptotic behavior of u′T ′ and v′T ′, and they are shown
in Table II. The second and third boundary conditions allow
the temperature fluctuations at the wall, which will result in
smaller scaling exponents in the near-wall region for 〈v′T ′〉
and 〈u′T ′〉 for M15T21 and M15T31 as compared to M15T11.
This is confirmed by the insets in Figs. 5(b) and 5(c). It should
be noted that the present wall-normal resolution cannot fully
recover the near-wall behavior of 〈v′T ′〉 within y+ � O(1) (R1
region) as reported by Baranwal et al. [41], who showed that
the scaling exponent of 〈v′T ′〉 in the R1 region with isothermal
walls at Mb = 1.5 and Reb = 5752 is around 2.2, a value
close to the theoretical estimation for compressible flows.
However, our result for M15T11 matches very well with theirs
in the R2 region (1.5 < y+ < 7) with the scaling exponent
around 2.8.

B. Normalized probability density function of velocity
and temperature fields

In the above, we have discussed the effect of different ther-
mal boundary conditions by analyzing the low-order statistics
of the velocity and temperature field. In order to further un-
derstand the influence of different boundary conditions on the
velocity and temperature fields, the normalized probability
density function (p.d.f.) will be analyzed here.

Figure 6 shows the normalized p.d.f.s of temperature fluc-
tuations from different cases at different wall-normal locations
away from both walls. It is obvious that, near the bottom
wall where different thermal boundary conditions are used,
there exist significant differences in the p.d.f.s of the tempera-
ture fluctuations between the cases of M15T11 and M15T21,
whereas no obvious differences can be discerned between the
cases of M15T21 and M15T31. On the top half of the chan-
nel where the same thermal boundary conditions are used,
the p.d.f.s of temperature fluctuations from all three cases
collapse with each other. This is also consistent with those
results discussed above. At the location with y+ ≈ 5 away
from the bottom wall [see Fig. 6(a)], the p.d.f. from the case
of M15T11 is positive skewed, whereas those from the cases
of M15T21 and M15T31 are negative skewed. It is interesting
to note that the p.d.f of fluctuating temperature in M15T11
behaves very similarly to that of the streamwise velocity
fluctuations [see Fig. 7(a) y+ = 5]. This can be explained
by the fact of the no-slip boundary condition for velocity
and the fixed temperature boundary condition in M15T11,
and the fact of strong correlation between u′ and T ′ (not
shown here). Due to the constraints at the wall, the velocity
fluctuations and temperature fluctuations near the wall are
small in magnitude [see Figs. 3(a) and 4(a)] in M15T11. It
is unlikely that a large negative velocity or temperature fluc-
tuation will occur since there is no location in the flow that
has a lower mean value of velocity or temperature than the
wall (where u = 0 and T = T min). However, large positive
fluctuations of u′ or T ′ can easily occur when high-speed or
high-temperature fluid away from the wall moves towards the
wall. Nevertheless, for M15T21 and M15T31, the second and
third boundary conditions will change the temperature fluctu-
ations near the wall, and they become more coherent in the
streamwise direction (see the later discussions in Sec. III C).
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TABLE II. The asymptotic behavior of the turbulent heat flux.

Term Incompressible case M15T11 M15T21 M15T31

u′T ′ ∝y2 + O(y3) ∝y2 + O(y3) ∝y + O(y2) ∝y + O(y2)
v′T ′ ∝y3 + O(y4) ∝y2 + O(y3) or y3 + O(y4) ∝y + O(y2) or y2 + O(y3) ∝y + O(y2) or y2 + O(y3)

The values of the temperature fluctuations are no longer small
in magnitude as shown in Fig. 4(a). Therefore, large nega-
tive temperature fluctuations can also occur in the near-wall
region. This may provide a clue to the negatively skewed
p.d.f.s at y+ = 5 in M15T21 and M15T31. When the location
moves further away from the bottom wall to y+ ≈ 15 [see
Fig. 6(b)], the p.d.f.s from the cases M15T21 and M15T31 are
skewed more severely, whereas that from the case M15T11
approach them. The right leg is very close to those from
the cases of M15T21 and M15T31, whereas its left leg has
much lower values. When the location further moves away
from the bottom wall [see Fig. 6(c)], the p.d.f.s from the three
cases begin to collapse with each other except some scattering
at T ′/Trms > 2.

Figure 7 shows the normalized p.d.f.s of the streamwise
velocity fluctuation u′ and the wall-normal velocity fluctuation

v′ at several wall-normal locations. It is seen that, at all the
four chosen locations, the p.d.f.s from the cases with different
thermal boundary conditions collapse with each other for both
u′ and v′, although we have shown in Fig. 3(a) that some
differences can be observed for the rms values of u′ near the
bottom wall. We also investigate the p.d.f.s of pressure and
density fluctuations. The results show (not shown here for
brevity) that the p.d.f.s of density fluctuations have similar
performance to the temperature fluctuations from the three
cases, whereas the p.d.f.s of pressure fluctuations behave more
likely to those of the velocity fluctuations. Combing the basic
statistics and the p.d.f.s of the temperature and velocity fields
discussed above, we believe that in compressible channel flow
different wall thermal boundary conditions will affect the
temperature field, but the influence will be limited only in
the near-wall region. At the same time, the influence on the

FIG. 6. Normalized p.d.f.s of the temperature fluctuations from different cases at different wall-normal locations. (a) y+ ≈ 5, (b) y+ ≈ 15,
(c) y/h = 0.3 from the bottom wall, and (d) y+ ≈ 5 and y/h = 0.3 from the top wall.
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FIG. 7. Normalized p.d.f.s of the streamwise velocity fluctuations (a) and (b) and wall-normal velocity fluctuations (c) and (d) at different
wall-normal locations. Here, (a) and (c) are in the bottom half and (b) and (d) are in the top half.

velocity field is almost negligible, whether in the near-wall
region or in the region far away from the wall, which is quite
similar to those observed in incompressible cases where the
temperature field is a passive scalar.

C. Temperature stripes near the wall

Now, we would like to investigate the temperature stripes
structures in the near-wall region near the bottom wall. Dif-
ferently from the isothermal boundary condition at the bottom
wall, the isoflux and the Robin boundary conditions allow
the temperature differences on the wall, and this argument
could be verified by Fig. 8 where the temperature fluctua-
tion contours at the bottom wall from the cases of M15T21
and M15T31 are shown. Clearly, many high-low temperature
stripes present at the bottom wall for the two cases, which
indicates the thermal structures on the wall. Away from the
wall, the high-low temperature stripes exist for all three cases,
and we show in Fig. 9 the snapshots of the temperature
fluctuation at y+ ≈ 15 away from the bottom wall. For the
case of M15T11, very few extreme events on the temperature
fluctuations with |T ′|/Tref > 0.1 are observed, whereas for
the cases of M15T21 and M15T31, more extreme events are
observed, which is consistent with their larger Trms/Tref values

as shown in Fig. 4(a). Furthermore, the stripes from the cases
of M15T21 and M15T31 are much longer than those from the
case of M15T11.

In order to quantitatively measure the temperature
stripes’ spacing and length following the procedure

FIG. 8. The instantaneous temperature contours T ′/Tref at the
bottom wall from the cases of (a) M15T21 and (b) M15T31.
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FIG. 9. The instantaneous temperature contours T ′/Tref at y+ ≈
15 away from the bottom wall from the cases of (a) M15T11,
(b) M15T21, and (c) M15T31.

applied to the velocity stripes [1], the two-point correlation
function will be used. The correlation function of
quantity φ in the homogeneous z direction is defined
as

Rφφ (rz; y) = φ′(x, y, z, t )φ′(x, y, z + rz, t )

φ′(x, y, z, t )φ′(x, y, z, t )
. (8)

The two-point correlation function in the homogeneous x di-
rection can be defined similarly.

Figure 10 shows the spanwise and streamwise two-point
correlations for the temperature at y+ ≈ 15 away from the
bottom wall for the three cases. For the temperature’s span-
wise two-point correlations as shown in Fig. 10(a), they
behave very similarly. That is, they decay fast until their
minimal values and then oscillate around zero, which is
consistent with those figures shown in Coleman et al. [2].
Nevertheless, the points at which the minimal values arrive
are different, and they are around z/h = 0.2, 0.3, and 0.28
for the cases M15T11, M15M21, and M15T31, respectively.
Therefore, the mean spacing among the stripes are different
for the three cases, and it is about 80 wall units for the
case of M15T11, and about 120 wall units for the cases of
M15T21 and M15T31, which indicates that the second and
third kinds of thermal boundary conditions can increase the
mean temperature stripes spacing near the bottom wall. For
the temperature’s streamwise two-point correlations as shown
in Fig. 10(b), an obvious difference can be observed. Although
they decay with x, they are not zero for the cases of M15T21
and M15T31 even when x/h = Lx/2, whereas it is zero for
the case of M15T11 at x/h � 5. We attribute the different
behaviors of the streamwise two-point correlations among the
case of M15T11 and the cases of M15T21 and M15T31 to

FIG. 10. (a) Spanwise and (b) streamwise two-point correlations
for the temperature at y+ ≈ 15 away from the bottom wall for the
three cases.

different thermal boundary conditions. For the case of
M15T11, no temperature stripe is allowed on the wall due
to the isothermal boundary condition. On the other hand,
the stripes existed on the wall for the cases of M15T21 and
M15T31, and they can be more stable and longer in the near-
wall region.

In Tiselj et al. [18], they also reported RT T will persist
nonzero even for a doubled streamwise computational domain
(Lx = 10πh) in an incompressible channel with passive scalar
at Pr = 0.71 and claimed that RT T did not show any differ-
ences larger than the statistical uncertainty in a longer domain.
We also performed three extra simulations with Lx = 10πh,
and our results indeed show that RT T will decay to zero at
x/h � 10 for the case of M15T21 and case of M15T31 (not
shown), indicating that there are much longer streamwise
temperature stripes in the near-wall region in M15T21 and
M15T31. As compared to the results in M15T11, it is evident
that the second and third thermal boundary conditions can
elongate the temperature stripes in the near-wall region, which
is consistent with those contours shown in Fig. 9. It should
be noted that most of the single-point statistics do not show
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FIG. 11. (a) Spanwise and (b) streamwise two-point correlations
for the streamwise velocity component at y+ ≈ 15 away from the
bottom wall for the three cases.

obvious difference for the simulations with different Lx’s (not
shown).

Figure 11 shows the spanwise and streamwise two-point
correlations for the streamwise velocity component at y+ ≈
15 away from the bottom wall from all three cases. It is
evident that no clear deviation exists among the three cases for
both the spanwise and the streamwise two-point correlations.
They all reach their minimal values around z/h = 0.2 for the
spanwise Ruu and decay to zero at x/h � 4 for the streamwise
Ruu. Again, the different thermal boundary conditions will
have no obvious impact on the velocity stripes.

D. Budget of the internal energy

We would like to investigate the budget of the mean in-
ternal energy to understand the effect of different thermal
boundary conditions on the temperature fields. The budget of
mean internal energy equation for fully developed turbulent
channel flow [3,5] is

Dem1 + Dem2︸ ︷︷ ︸
Dem

+εem + εk + Pem + Ck = 0, (9)

FIG. 12. Budget of the mean internal equation for case of
M15T11 in the bottom half of the channel. Ck ≈ 0 is not shown. The
terms are normalized by ρmu3

m/h.

where Dem1 = −∂ (Cvρv′′T ′′)/∂y and Dem2 = −∂q2/∂y are
the turbulent diffusion term and the molecular diffusion term,
respectively. (The summation Dem = Dem1 + Dem2 is the total
diffusion term). εem = τi2∂ui/∂y is the mean-flow dissipation,
εk = τ ′

i j∂u′
i/∂x j is the turbulent dissipation, Pem = −p̄∂ v̄/∂y

is the mean-flow pressure work, and Ck = −p′∂u′
j/∂x j is

the fluctuation pressure dilatation (fluctuation pressure work),
respectively. As pointed out by Huang et al.[3], terms εem

and εk are irreversible terms which transfer the energy from
the mean kinetic energy and turbulent kinetic energy to the
mean internal energy, whereas the Ck term is an additional
compressibility term due to the pressure fluctuations, which
can exchange energy between the mean internal energy and
the turbulent kinetic energy.

Figure 12 shows the mean internal energy budget terms
(normalized by ρmu3

m/h) in the bottom half channel for case
of M15T11. The fluctuation pressure work term Ck is almost
zero in the whole channel, and it is not shown in the figure.
The summation of all terms is zero, which also confirms that
the case has reached its fully developed state. It is seen that
the molecular diffusion Dem2 and the mean-flow dissipation
εem dominate near the wall. This indicates that the main con-
tribution to the mean internal energy in the near-wall region
is the transfer from the mean kinetic energy, which is mainly
balanced by the molecular diffusion term. The results are also
consistent with the previous results [5].

To display the effect of different thermal boundary con-
ditions on the budget terms of the mean internal energy,
Fig. 13 shows Dem1, Dem2, εem, εk , and Pem at the bot-
tom half of the channel for all three cases. It is seen
again that all the terms from M15T21 and M15T31 col-
lapse very well in the bottom half of the channel, whereas
some deviations can be seen in the near-wall region (within
y+ < 15) between M15T11 and M15T21. This result is
consistent with those results discussed above, although the
influence region is smaller than that for the temperature
fluctuations.
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FIG. 13. Budget terms for all three cases in the bottom half of
the channel: (a) Dem1 and Dem2; (b) εem, εk , and Pem. The terms are
normalized by ρmu3

m/h.

E. Budget of the temperature variance

At last, the transport equation of temperature variance is
investigated, and the equation is [5]

PTV + CTV 1 + CTV 2 + CTV 3 + DTV 1 + DTV 2 + εTV = 0,

(10)

where the production term PTV , compressibility terms CTV 1,
CTV 2, and CTV 3, turbulent diffusion term DTV 1, molecular
diffusion term DTV 2, and dissipation per unit volume εTV are
defined as follows:

PTV = −〈ρ〉{T ′′u′′
2}

∂{T }
∂x2

, (11)

CTV 1 = − 1

cv

[
〈T ′′〉〈p〉∂〈u2〉

∂x2
+

〈
T ′′ p′ ∂u′

i

∂xi

〉

+〈T ′ p′〉∂〈u2〉
∂x2

+ 〈p〉
〈
T ′ ∂u′

i

∂xi

〉]
, (12)

CTV 2 = 1

cv

[
〈T ′′〉〈τi2〉∂〈ui〉

∂x2
+

〈
T ′′τ ′

i j

∂u′
i

∂x j

〉

FIG. 14. Profiles of the budget terms in M15T11(normalized by
ρmumT 2

ref/h).

+〈T ′τ ′
i2〉

∂〈ui〉
∂x2

+ 〈τi j〉
〈
T ′ ∂u′

i

∂x j

〉]
, (13)

CTV 3 = − 1

cv

〈T ′′〉∂〈q2〉
∂x2

, (14)

DTV 1 = −1

2

∂ (〈ρ〉{T ′′2u′′
2})

∂x2
, (15)

DTV 2 = 1

cv

∂

∂x2

(
〈T ′κ ′〉∂〈T 〉

∂x2
+

〈
T ′κ ′ ∂T ′

∂x2

〉
+ 〈κ〉

〈
T ′ ∂T ′

∂x2

〉)
,

(16)

εTV = − 1

cv

[〈
κ ′ ∂T ′

∂x2

〉
∂〈T 〉
∂x2

+
〈
κ ′ ∂T ′

∂x j

∂T ′

∂x j

〉
+ 〈κ〉

〈
∂T ′

∂x j

∂T ′

∂x j

〉]
.

(17)

Figure 14 shows the transport budget terms in the bottom
half channel for M15T11. It is found that PTV , CTV 2, DTV 2,
and εTV are the dominated terms, and the main balance in the
near-wall region is between DTV 2 and εTV . The summation of
all terms is very close to zero, demonstrating the correctness
of our statistics. Figure 15 shows the four dominated terms
in the bottom half of the channel for all three cases. It is seen
that CTV 2, DTV 2, and εTV exhibit differently between M15T11
and M15T21 (or M15T31) in the near-wall region, whereas
there is no substantial change in PTV among the three cases.
CTV 2 has the largest positive value in the near-wall region,
which will be balanced by the summation of DTV 2 and εTV .
Furthermore, CTV 2 from all three cases behave similarly as
Trms shown in Fig. 4(a), which might suggest that the com-
pressibility term CTV 2 is the main reason for a maximum Trms

at the wall for M15T21 and M15T31.

IV. CONCLUSIONS

We have carried out DNSs of fully developed compress-
ible channel flows to investigate the equivalence of different
thermal boundary conditions at fixed Re = 6000, Ma = 1.5.
Three different thermal boundary conditions are adopted
at the bottom wall, including the first boundary condition
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FIG. 15. Near-wall behavior of the dominated terms: (a) PTV , (b) CTV 2, (c) DTV 2, and (d) εTV for all three cases.

with fixed wall temperature Tw (constant Dirichlet boundary
condition), the second boundary condition with fixed wall
heat-flux qw (constant Neumann boundary condition), and
the third boundary condition (Robin boundary condition).
Here, the values of qw and Tf ,b are chosen according to the
results obtained in the isothermal cases to make sure that
the three cases are almost the same. The turbulence statis-
tics of the temperature and velocity fields, including mean
profiles, rms values, second-order statistics, normalized prob-
ability density functions, and temperature stripes structures
near the wall, and the budgets of internal energy and temper-
ature variance are analyzed and compared, and the following
main conclusions related to the equivalence of different ther-
mal boundary conditions can be drawn:

(1) Different thermal boundary conditions will have an
obvious impact on the temperature field in the near-wall re-
gion about y+ < 30, and the influence is negligible further
away from the wall. The Neumann and Robin temperature
boundary conditions allow the temperature fluctuations at
the wall, making the temperature stripes more coherent in
the streamwise direction with a larger spanwise spacing.
Compared with those results in incompressible cases, the
coupling between the temperature and the velocity indeed
enlarges the influence region of different thermal boundary
conditions.

(2) Although the velocity is coupled with temperature in
compressible cases, the different thermal boundary conditions
have negligible effect on the velocity field. Therefore, the sim-
plest isothermal boundary conditions can be selected for the
future study of velocity field in compressible wall-bounded
flows.

(3) The statistics from the second and third thermal bound-
ary conditions are very close, enabling to use the second
boundary condition to mimic the more complex third bound-
ary conditions.

(4) If the temperature fluctuations in the near-wall region
are not the main concern, the isothermal boundary condition
can also be used to mimic the second and third boundary
conditions, which directly confirms the rationality of using
the isothermal wall with recovery temperature Tr to replace
the real adiabatic condition in the researches of compressible
boundary layer.

The present paper provides direct numerical evidences on
the equivalence and differences among three canonical ther-
mal boundary conditions in compressible turbulent channel
flows, which can be used to guide the community on choosing
the appropriate thermal boundary condition. In the future,
we will consider the solid-gas coupled thermal boundary
conditions and investigate whether the flow field will be
affected by solid heat conduction.
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