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Stabilization of periodically forced Hele-Shaw flows by means of a nonmonotonic viscosity profile

Vicente Pérez-Muñuzuri *

CRETUS, Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain

(Received 1 February 2022; accepted 24 May 2022; published 14 June 2022)

The onset of viscous fingering in the presence of a viscosity profile is investigated theoretically for two
immiscible fluids undergoing a time-dependent injection. Here, we show that the presence of a positive viscosity
gradient at the interface between both fluids stabilizes the interface facilitating the spread of the perturbation.
This effect is much more pronounced in the case of sinusoidal injection flows. The influence of the viscosity
gradient on the dispersion relation is analyzed. Numerical simulations of the Navier-Stokes equation confirm the
linear stability analysis.
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I. INTRODUCTION

Saffman-Taylor instability [1] may arise when two fluids of
different viscosities are pushed by a pressure gradient through
two horizontal parallel plates [Hele-Shaw (HS) cell]. It is well
known, both experimentally and theoretically, that when a
less viscous Newtonian fluid displaces a more viscous one, a
fingering instability develops at the interface between both im-
miscible fluids [2]. For non-Newtonian fluids, an unexpected
propagation of fractures may develop in the invaded fluid for
specific conditions [3–5].

Due to chemical and oil recovery applications, the possi-
bility to control this interfacial instability has been the subject
of numerous studies in the past decade [6]. Chemical reac-
tions occurring at the interface drive viscosity changes that
modulate the hydrodynamic viscous fingering instability, both
for unstable [7–10] or stable [11] fronts. For the last case,
for example, when a change in pH is chemically induced
at the interface, some fingers may develop [12,13]. Without
using a chemical reaction, the process involves displacing the
most viscous fluid first with some polymer-thickened fluid
(usually an aqueous phase containing water and polymer in
appropriate proportion to have the desired profile) followed
by the less viscous one. This strategy basically involves a
three-layer fluid with an intermediate layer of finite thickness
containing the polymer solution [14]. Other possibilities for
viscous fingering in the presence of nonmonotonic viscous
profiles have also been studied [15,16]. Other nonchemical
strategies to control this instability include imposing a time-
dependent injection rate, tapering the gap between plates so
they are no longer parallel [17,18], replacing one of the plates
with an elastic membrane [19], rotating the HS cell while the
inviscid fluid is injected [20], and competition between gravity
and viscous forces [21], among others.

Experiments and numerical simulations involving the in-
jection of a less viscous fluid into a more viscous one in a
radial HS cell showed that stronger injection rates result in

*vicente.perez.munuzuri@usc.es

an enhancement of viscous fingering. Most of the exist-
ing studies have focused on displacements under constant
injection. There are however numerous practical processes
where the injection is actually time dependent [20,22–26].
Most of these studies showed that better recovery can be
achieved through time-dependent injection schemes in com-
parison with constant injection ones due to an attenuation
of the finger instability. On the other hand, several authors
[27] demonstrated that for a periodic injection on a radial HS
cell the number of fingers and their structures could be con-
trolled. In contrast, other authors have shown that fingering
destabilization due to periodic injection favors fluid mixing in
confined systems, such as in microfluidic devices [28].

Based on the results reported, it is clear that injection rates
and periodicity play an important role to control the flow
behavior and interface instability. The objective of the present
study is to analyze the combination of imposing a time-
dependent injection rate with the presence of nonmonotonic
viscosity profiles at the interface. While we observed that the
periodic injection leads to a resonance-like effect destabiliz-
ing the interface, the presence of a three-layer nonmonotonic
viscosity profile stabilize the front, achieving better recovery
results for the viscous fluid. In this work, we present a linear
stability analysis for the onset of viscous fingering for two im-
miscible fluids subject to a periodic injection and a viscosity
gradient at the interface. Viscous fingering has been observed
numerically, confirming this analysis and the dependence with
parameters of the model studied.

II. LINEAR STABILITY ANALYSIS

The equation of motion of an incompressible Newtonian
fluid is given by

ρ
Dui

Dt
= − ∂ p

∂xi
+ ∂

∂x j
(2μei j ), (1)

∂ui

∂xi
= 0, (2)

where D/Dt is the material derivative, ρ is the constant
density, ui is the velocity field, p is the pressure, μ is the
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FIG. 1. Sketch of the Hele-Shaw cell (a) and the piecewise vis-
cosity profile μ(x1) (b) used here. L stands for the region where
a linear viscosity gradient is considered between both fluids with
constant viscosities μa and μb.

dynamic viscosity, and ei j = (∂ui/∂x j + ∂u j/∂xi )/2 is the
strain rate tensor. For a nonmonotonic viscosity profile μ =
μ(xi ), Eq. (1) becomes

ρ
Dui

Dt
= − ∂ p

∂xi
+ μ

∂2ui

∂x j∂x j
+ 2ei j

∂μ

∂x j
. (3)

We consider the case where a viscous fluid with viscosity
μa is pushing a more viscous one μb in the x1 direction be-
tween closely spaced parallel plates separated some distance h
as shown in Fig. 1(a), subject to a perturbation at the interface
x1 = ξ (x3, t ). In between both fluids, a region with a viscosity
gradient is considered, Fig. 1(b). In the basic HS flow, we
suppose a constant negative-pressure gradient along the x1

axis so that the flow goes from the left (x1 < 0) to the right
(x1 > 0) with velocity field [u0

1(x2), 0, 0]. Following the stan-
dard decomposition in normal modes, we perturb the system
of equations (3). Thus, the perturbed velocity field is [u0

1(x2) +
εu1

1(xi, t ), 0, εu1
3(xi, t )], the pressure P0 + εP1(xi, t ), and the

interface equation is x1 = ξ 0(t ) + εξ 1(x3, t ) (ε � 1). Assum-
ing a sinusoidal perturbation along the x3 axis, the perturbed
quantities can be written as

ξ 1(x3, t ) = ξ exp(ık3x3 + ωt ),

u1
1(xi, t ) = ua,b(x2) exp(ık3x3 + ωt ) exp (±k1x1),

u1
3(xi, t ) = wa,b(x2) exp(ık3x3 + ωt ) exp (±k1x1),

P1(x1, x3, t ) = Pa,b exp(ık3x3 + ωt ) exp (±k1x1),

where ± stands for the left (a) and right (b) fluids with vis-
cosities μa and μb, respectively. ξ , u(x2), w(x2), and P are
the amplitudes of the normal modes of the perturbation. The
problem is completed by the no-slip boundary condition at the
plates ui = 0 for x2 = 0, h. Without loss of generality, from
now on, we assume a piecewise viscosity profile μ = μ(x1)
as depicted in Fig. 1(b).

Rewriting Eq. (3) at zero order, we obtain

u0
1(x2) = G

2μa,b

(
x2

2 − hx2
)

(4)

with G the negative pressure gradient along the x1 axis.
Averaging in the x2 direction, the Darcy’s law U = 〈u0

1〉 =
−Gh2/12μa,b is obtained. The interface between the two flu-
ids is x1 = ξ 0(t ) with ξ 0(t ) = Ut .

At first order, the amplitudes of the normal modes ua,b are
given by

ρ(ωua,b ± Ukua,b) = ∓Pa,b − 12μa,b

h2
ua,b ± 2μ′

a,b(x)kua,b

(5)

FIG. 2. Maximum growth rate ωmax as a function of α, μ′
a =

(αμb − μa )/L, for the unstable case (μb > μa). Dashed line corre-
sponds to the Saffman-Taylor case. Set of parameters: h = 10−3 m,
U = 0.01 m/s, water μa = 0.896 × 10−3 Pa s, glycerine μb =
0.95 Pa s, γ = 29.06 × 10−3 N/m, L = 0.01, and μ′

b = 0.

with μ′
a,b(x) = ∂μa,b/∂x, and we have used the incompress-

ibility of the flow to show that k = k1 = k3. A similar
equation can be obtained for the mode wa,b.

Three conditions must be imposed at the interface, namely
the kinematical condition and the condition of continuity of
normal and tangential stresses,

u1
1(x2)a,b = ∂ξ 1

∂t
,

(
P0

a + P1
a

) − (
P0

b + P1
b

) = −γ
∂2ξ 1

∂x2
3

, (6)

μa
∂ua

∂x2
= μb

∂ub

∂x2
,

where γ is the surface tension at the interface, and P0 is
obtained integrating the Darcy’s law.

Solving analytically the above equations, we obtain the
dispersion relation

ω(k) = Uk(μb − μa) − γ h2

12 k3

μa + μb + kh2

6 (μ′
a − μ′

b)
. (7)

Note that the classical Saffman-Taylor dispersion relation
(μb > μa) [2] is recovered for μ′

a,b = 0. An improvement of
the stability [lower values of ω(k)] is obtained for μ′

a − μ′
b >

0 compared to the Saffman-Taylor case. Figure 2 shows this
improvement as the viscosity gradient increases for μ′

a =
(αμb − μa)/L (α = μ(0)/μb) and μ′

b = 0.

III. NUMERICAL SIMULATIONS

Two-dimensional (x1, x3) direct numerical simulations
(DNS) of the Navier-Stokes equations (3) have been used with
boundary conditions ui = 0 for x3 = 0, xmax

3 , and ∂1ui = 0 for
x1 = 0, xmax

1 . At the interface between both fluids, the kine-
matical condition and the condition of continuity of normal
and tangential stresses hold. Equations (3) were integrated

065104-2



STABILIZATION OF PERIODICALLY FORCED … PHYSICAL REVIEW E 105, 065104 (2022)

using an implicit Crank-Nicholson method for the advection
and diffusion terms.

Pressure is obtained by means of a fractional-step, or time-
splitting scheme [29,30]. Process of solving the momentum
and the pressure Poisson equations is repeated until the veloc-
ity field is divergence free at each instant of time. The pressure
gradient is assumed to oscillate as ∂1P = G + P′ sin(	t ) with
G being the negative pressure gradient along the x1 axis.
The pressure boundary conditions are of Neumann type on
x3 = 0, xmax

3 .
The assumed rectangular computational domain is dis-

cretized on a staggered Cartesian grid when pressure P and
velocities are determined on three grids shifted relative to
each other. So, P is located in the center of each cell, the
x1-component velocity u1 is on the middle points of vertical
faces, and the x3-component velocity u3 is on the middle
points of horizontal faces.

The convergence of the code was first tested by varying
the spatial resolution from 1000 × 100 to 4000 × 400. Ac-
cordingly, the time step was changed from 0.001 to 0.1, and
nearly the same time evolution of fingers were obtained. To
ensure a good numerical convergence and relatively shorter
calculation time, a spatial resolution of 2000 × 200 and a
time step 
t = 0.01 were adopted for the range of parameters
examined throughout this study.

Initially we suppose an inlet front of viscosity μa push-
ing periodically another fluid with viscosity μb > μa and the
interface between both fluids has an initial sinusoidal pertur-
bation (amplitude 20 and wave number π/50) and a viscosity
gradient μ′

a.

IV. RESULTS

It is well known that for HS flows, under unstable con-
ditions (μb > μa) the interface between both fluids becomes
unstable and some fingers develop. This process is enhanced
under a pulsating inlet flow. Figure 3 shows, for two instances
of time, the fluid interface for three different forcing frequen-
cies 	 compared to the case without forcing. Note that in all
cases the interface has advanced more quickly under forcing,
and the net displacement depends on the forcing frequency.
For an intermediate value of 	, the front advances more
quickly than for the other two frequencies. The ratio of the
surfaces S f covered by the flow interface, with and without
forcing, allows us to quantify the effect of forcing, and can be
considered proportional to the ratio between the linear growth
rates for both cases. Figure 4 shows the time evolution of S f

for two values of α for the intermediate frequency shown in
Fig. 3. Note that the front accelerates with time, quickly as α

diminishes.
Figure 5 shows the ratio S f as a function of the forcing

frequency 	 for the same instant of time as in Fig. 3. Note the
significant enhancement of the flow instability at certain inter-
mediate frequencies that was clearly visible in Fig. 3. For very
small and large forcing frequencies, S f → S f (P′ = 0) = 1.
Maximum S f value was attained always for the same resonant
frequency 	res for any value of the ratio α = μ(0)/μb, and
seems to be the signature of a resonant behavior between
the characteristic timescale of the flow, ratio of the surface

FIG. 3. Interface fronts between fluids for three forcing frequen-
cies 	, with (blue and green dashed lines) and without periodic
forcing (red dot-dashed line). Green dashed interface corresponds
to an intermediate time. α = 0.4, G = −1 Pa/m, P′ = 1 Pa/m,
and the rest of parameters as in Fig. 2. From left to right, 	 =
0.004, 0.012, 0.026, respectively.

tension, and the viscous (pressure drop) forces,

tch ≡ γ

U
P
∝ γ

μb − μa
(8)

and the forcing frequency. A further investigation of this phe-
nomenon was carried out for other values of viscosity μb

and surface tension γ . Changing these parameters modifies
the structure of the interface (for example, increasing γ leads
to a smoothing of the front); however, the phenomenon of
resonance was found in all examined cases, although a change
in the resonant period Tres was observed (Fig. 6) consistent
with tch (8). The previous results show that at the resonant
frequency, the interface can be characterized by an increased
instability, which appears to emerge earlier and be stronger
than for the other flow periods.

FIG. 4. Time evolution of the surface ratio Sf for two values of
the ratio α = μ(0)/μb. 	 = 0.012.
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FIG. 5. Surface ratio Sf covered by the fluid interfaces, with and
without periodic forcing, as a function of the forcing frequency 	 for
two values of the ratio α = μ(0)/μb. Parameters as in Fig. 2.

The dependence of the flow instability enhancement at
the resonance peak on the values of α and the length of
the middle layer L is shown in Fig. 7. Note that increas-
ing p (L), increases (decreases) the viscosity gradient μ′

a =
(αμb − μa)/L at the interface, and S f diminishes (increases)
as expected from the theoretical dispersion relation, Eq. (7)
(Fig. 2). Increasing the gradient leads to stabilize the front
diminishing the growth rate of instabilities at the interface. For
α → μa/μb the classical two-layer Saffman-Taylor instability
is obtained but the risk of interface breakup increases. For
smaller ratios μb/μa than those used here, it is possible to
reach that limit without the interface eventually breaks up.
Note in Fig. 3 the formation of plumes or spikes when periodic
forcing is applied. When no periodic forcing is considered,
the initial sinusoidal perturbation evolves into a single fin-
ger and no cusps were observed. These plumes smooth out
as surface tension increases. As α diminishes, the interface
moves more quickly, increasing inertial forces compared to
surface tension (large Weber number), favoring the formation
of elongated plumes and the interface may break up as has
been observed in other interfacial instabilities [31]. Thus, we
may assume that periodic forcing increases inertial forces as
the interface moves more quickly than without forcing, and
cusps or plumes appear before the interface breaks up. Once

FIG. 6. Resonant period Tres as a function of the viscosity (a) and
the surface tension γ (b). In all cases, the behavior of Tres coin-
cides with the characteristic time of the flow tch ∝ γ /(μb − μa ).
γ = 29.06 × 10−3 N/m (a) and μb = 0.2 Pa s (b). α = 0.4 and
μa = 0.89 × 10−3 Pa s in all cases.

FIG. 7. Maximum surface ratio Sf as a function of the ratio
α = μ(0)/μb (a) and the length L of the middle layer (b). In panel
(b), lines correspond to α = 0.4 (circles and blue solid line), α = 0.5
(squares and dot-dashed red line), and α = 0.8 (triangles and dashed
green line). Parameters are as in Fig. 2.

this happens, our numerical algorithm is not stable. Different
numerical approaches should then be undertaken but they are
beyond the scope of this paper.

V. CONCLUSIONS

The onset condition of viscous fingering for a fluid dis-
placing a more viscous one in a Hele-Shaw cell undergoing
time-dependent injection in a homogeneous medium has been
studied in the presence of a nonmonotonic viscosity profile in
the direction of motion. For wave numbers above a critical
one, perturbations at both sides of the interface spread in
the same direction, destabilizing the interface. The spreading
velocity is modulated by the term exp (ωt ) that broads the
fingering in the direction of motion. The growth instabil-
ity rate is smaller when the viscosity profile has a positive
slope on the interface, Eq. (7). Periodic forcing enhances
formation of a single finger displacing the more viscous
fluid, while the presence of an intermediate layer with a
positive viscous gradient stabilizes the interface preventing
breakage.

For a critical value of the injection period, the inter-
face between both fluids grows significantly if compared to
other examined periods. This critical value of the period is
suspected to be associated with a resonance-like dynamics
between the external injection forcing and the characteristic
timescale of the flow (ratio of the surface tension and the
viscous (pressure drop) forces). The effect of a viscous linear
gradient at the interface was studied numerically and the re-
sults qualitatively coincide with those obtained from the linear
stability theory.

These results open new possibilities for experiments on
viscous fingering under periodic forcing in the presence of a
nonmonotonic viscosity profile for immiscible fluids. Another
perspective of this work is to perform new numerical simula-
tions of the observed plumes to understand the mechanism
that eventually may lead to the interface breaking up.
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