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Effects of variable deceleration periods on Rayleigh-Taylor instability with acceleration reversals
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The dynamics of an interfacial flow that is initially Rayleigh-Taylor unstable but becomes statically stable for
some intermediate period due to the reversal of the externally imposed acceleration field is studied. We discuss
scenarios that consider both single and double-acceleration reversals. The accel-decel (AD) case consists of a
single reversal imposed at an instant after the constant acceleration instability has entered a self-similar regime.
The layer of mixed fluid ceases to grow upon acceleration reversal, and the dominant mechanics are due to
internal wave oscillations. Variation of mass flux and the Reynolds stress anisotropy is observed due to the
action of the internal waves. A second reversal of the AD case that is termed as accel-decel-accel, ADA is then
explored; the response of the mixing layer is shown to depend strongly on the duration and the periodicity of
the Reynolds stress anisotropy of the mixing layer during the deceleration period. We explore the effect of this
variable deceleration period after the second acceleration reversal where the flow once again becomes Rayleigh-
Taylor unstable based on metrics that include the integral mixing-layer width, bubble and spike amplitudes, mass
flux, Reynolds stress anisotropy tensor, and the molecular mixing parameter.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RT/RTI) develops at the
interface of a heavy and light fluid when the system is sub-
jected to an external acceleration field, g(t ) [1,2]. Classical
RTI, where the acceleration remains constant, is a well-
studied problem where a layer of turbulent mixing grows
between the two pure fluids as initial perturbations to the
interface develop into emergent vortical structures composed
largely of pure fluids. The growth of these structures, la-
beled as spikes (heavy fluid penetrating the lighter fluid) and
bubbles (light fluid penetrating the heavier fluid), and the
self-similar growth can be characterized by [3,4]

hb,s = αb,sAgt2, (1)

where hb,s is the height of the bubbles and spikes, αb,s is the
growth rate parameter , A = (ρH −ρL )

(ρH +ρL ) is the nondimensional
density difference known as the Atwood number (where ρH

and ρL are the densities of heavy and light fluids respectively),
g is the acceleration, and t is the time. The evolution of hb and
hs are similar for low Atwood numbers (A < 0.1); however,
an asymmetry in hb and hs values are observed for larger
A values, leading to faster-growing spikes [5–10]. RTI with
constant acceleration occurs in combustion and chemical re-
action processes, oceanic flows, weather inversions, and some
forms of geological processes like salt-dome and volcanic-
island formation [7,11,12]. The constant acceleration problem
has been studied extensively; details can be found in recent
comprehensive review articles [13–17].

*arb612@lehigh.edu

However, the RTI problem is more complex in some nat-
ural and engineering applications, for example, in inertial
confinement fusion (ICF) [18–20], and in blast waves of su-
pernovae formations [21–23], where the instability is driven
by a variable-acceleration g(t) that is subjected to multiple re-
versals [24,25]. Studies that investigate acceleration reversals
consist of a primary destabilizing acceleration of the system
(g > 0) followed by an acceleration reversal to a stabilizing
deceleration (g < 0) at a time t1, which in turn is followed
by a second reversal at a time t2, leaving the system in an-
other acceleration phase (g > 0). This acceleration history is
known as accel-decel-accel or ADA [24–27]. This paper ex-
plores the distinct flow regimes on either side of acceleration
reversals and the fundamental flow physics associated with
them. Although the test cases we examine are not specific to
ICF or supernovae, they are designed to understand the flow
response to multiple acceleration reversals and the formation
of relevant timescales observed by varying the deceleration
phase. Such a canonical test case will not only allow us to
better understand the flow and relevant physics in applications
where RTI experience several acceleration reversals but also
provide high-fidelity data for low-order model validation and
verification under such scenarios. In short, the first acceler-
ation reversal (deceleration phase) leads to a globally stable
configuration, which cuts the flow of the pure fluids into the
RTI mixing layer and thus increases the molecular mixing
[26]. However, there remain unstable flow patches within
the mixing layer where the flow is fully turbulent and well
stirred, which leads to a form of dynamical behavior first
observed in Ref. [27]. Such effects are, however, a short-term
response of the large scales of the flow to the acceleration
reversal. At time instants long after acceleration reversal, the
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flow still contains locally unstable patches due to residual
turbulent motion within the mixing layer with observed os-
cillatory behavior in the Reynolds stress anisotropy tensor
[27]; the oscillation properties were observed to be dependent
on the initial conditions [27]. We attribute these oscilla-
tions to a form of internal wave occurring within the mixing
layer.

In scientific literature, there has only been one experiment
[26] and a small number of numerical simulations [24,25,27–
31] that investigate the effects of variable acceleration on
RTI. Dimonte and Schneider [26] employed a linear electric
motor (LEM) to examine different acceleration histories us-
ing immiscible Freon and water (A = 0.22). They concluded
that turbulent mixing was strongly dependent on the tempo-
ral acceleration profile g(t) and may be important to ICF;
however, mixing was minimized for impulsive acceleration
profiles. In a follow-up publication, Dimonte et al. [24] com-
pared data from previously unpublished moderate Atwood
(A = 0.48) experiments with simulations using an implicit
large-eddy simulation (ILES) solver [24]. Two different sets
of initial conditions that promote bubble competition [24]
were chosen: a broadband spectrum with modes 3–64 and
an annular spectrum with modes 32–64; simulations with the
broadband spectrum resembling the LEM experiments [26].
The authors observed that the acceleration reversal shredded
previously formed bubble and spike structures under a stabi-
lizing deceleration phase, resulting in near-complete mixing
within that layer. Upon subsequent reacceleration, they found
the instability recovers and returns nearly to its self-similar
state. An increase in molecular mixing during the decelera-
tion phase was also observed in direct numerical simulation
studies of by Livescu et al. [30]. Ramaprabhu et al. [25]
conducted both single- and multimode simulations using a
massively parallel ILES solver, MOBILE. The single-mode
simulations (A = 0.15, 0.9) demonstrate that the enhancement
of mixing during the deceleration phase was directly related to
Kelvin-Helmholtz vortices formed during the initial accelera-
tion (growth) phase; those were, however, suppressed at larger
Atwood numbers (A = 0.9). In the multimode simulations
(A = 0.5), the authors observed a decrease in anisotropy ten-
sor in the mixing layer during deceleration. Upon subsequent
reacceleration, once transients associated with the conditions
at reversal recede in significance, the anisotropy in the mixing
layer recovers at late time to values consistent with the self-
similar RTI with constant gravity.

Previous work by the authors [27] explored the effects of
variation in initial conditions on the instability under multiple
acceleration reversals. Similar to other studies [25], substan-
tial anisotropy was observed during the deceleration period. In
addition, oscillations in the anisotropy tensor were observed,
leading the authors to hypothesize that internal waves oscil-
lating inside the mixing layer led to the shredding of coherent
structures in the mixed layer. Upon subsequent reacceleration,
the flow recovered to exhibit self-similar behavior similar to
constant-gravity RTI. It was concluded that the subsequent
reacceleration phase might be considered akin to a classical
RTI problem with an unusually thick interface which creates
initial conditions in which a fraction of total energy is held
as kinetic energy. The response to the acceleration reversal
strongly depends on the spectral content of this thick interface.

Additional features of the acceleration-reversal problem have
also been explored by Boffetta et al. [32], who conducted
simulations using time-periodic rapid-acceleration reversals
similar to a Kapitza pendulum. The resulting flow was found
to freeze after a few periods of rapid reversals. A recent study
by the authors explored RTI with varying periods of zero
acceleration to mimic Richtmyer-Meshkov instability where
mixing occurs without external forcing [29]. The structural
changes in the mixing layer were remarkably small, and the
turbulent mixing appeared to be frozen during the period of
zero acceleration. Upon reacceleration, the RTI mixing layer
quickly resumed development and did not exhibit any changes
due to the intermission.

In this paper, we will explore the characteristics of stat-
ically stable flows evolving from a previously unstable
turbulent mixing layer. We present a sequence of simulation
campaigns examining both single and double-acceleration
reversals. The first test campaign covers the single-reversal
problem that is called the accel-decel (AD) case, in which the
instability grows under a constant acceleration until the time
(t1), followed by a deceleration of indefinite duration. This
time instant (t1) is chosen such that the constant-acceleration
RTI mixing layer has reached its self-similar behavior [4] that
also allows to generate internal waves during the decelera-
tion period. For the second test campaign, we conducted a
series of simulations with double reversals, the accel-decel-
accel (ADA) cases. For all the ADA simulations, the first
reversal instant is kept constant at time t1; the deceleration
period is varied prior to reacceleration after a time t2. To
permit comparison after the reacceleration we also performed
a constant-acceleration RTI case which is referred to as the
CG case. Our previous work [27] has shown evidence of
internal waves in the mixing layer during the deceleration
period (t1 < t < t2) that results in oscillatory behavior in the
anisotropy and mass-flux tensors. Here, we study this internal
wave oscillatory behavior in considerably more detail. We
hypothesize that varying the duration of deceleration (t2 − t1)
allows the internal waves to redistribute energy in the mixing
layer between kinetic and potential energy; the choice of t2
thus affects the properties of subsequent RTI growth after
reacceleration. Depending on the phase of these oscillations,
at the moment of acceleration reversal (t2), subsequent growth
evolves from substantially different initial conditions. The
AD test campaign can be considered as a special case where
t2 → ∞ and informs us of the long-term behavior of statically
stable mixing initialized in this way. We find it useful to
study this case to confirm the persistence of behavior over
many cycles. While this case was motivated by academic
concerns, there are many instances in atmospheric, oceanic,
and astrophysical contexts where decaying turbulent layers
form in a density-stratified flow. We choose Atwood num-
bers to explore density differences that are non-Boussinesq
(A = 0.5) to allow comparison with previous studies
[24,25,27–30].

II. METHODS

The governing equations used in this study are the incom-
pressible Euler equations together with the implicit large-eddy
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FIG. 1. (a) Schematic of the computational domain showing the heavy (red) and light (blue) fluids and their interface at z = 0, (b)
azimuthally averaged initial perturbations with energy in the modes 32–64, and (c) initial perturbations in physical space at z = 0.

simulation technique that is explained below. The equations
include

Volume conservation : ∇ · �v = 0; (2)

Scalar transport :
D f

Dt
= 0; (3)

Momentum :
D(ρ�v)

Dt
= −∇p + ρ�g, (4)

where �v is the velocity vector, �v = (u, v,w), ρ is the density,
p is the pressure, �g = (0, 0, gz ) is the gravity field, and D/Dt
refers to the material derivative. In addition, f represents the
nondimensional density, or mixing fraction, defined as f =
(ρ − ρH )/(ρL − ρH ). Here, ρL and ρL represent the light and
heavy fluids densities, respectively. In this study, the primes
represent the Reynolds fluctuation of a field and the angle
brackets 〈·〉 represent the averaged over horizontal plane at
the initial flow interface.

A. Problem setup and initial conditions

In this study, we use a three-dimensional computational do-
main with dimensions L × L × 3L in the x, y, and z directions
(where L = 1.0 cm). A grid resolution of 256 × 256 × 768
was used for all calculations. The initial interface of the two
fluids was set at z = 0 with the heavier fluid bounded be-
tween the interface and the top boundary of the domain at
z = 1.5 cm and the lighter fluid contained between the inter-
face and the bottom boundary of the domain at z = −1.5 cm
[see Fig. 1(a)]. The boundary conditions are periodic in the
x- and y directions and are zero-flux conditions at the top
and bottom surfaces of the domain (z direction). An ac-
celeration field of magnitude gz = 4.00 cm/s2 was applied
since this corresponds well with existing literature [25,27].
For our A = 0.5 simulations, the densities of the fluids were
selected as ρL = 1.00 g/cm3 and ρH = 3.00 g/cm3. The den-
sities of the fluids were selected as ρL = 1.00 g/cm3 and
ρH = 1.052 63 g/cm3 for the A = 0.05 case. All simulations
were initialized with the same interface perturbation function

[12,33,34]:

h(x, y) =
∑
kx,ky

ak cos(kxx) cos(kyy)+ bk cos(kxx) sin(kyy)

+ ck sin(kxx) cos(kyy) + dk sin(kxx) sin(kyy) (5)

where ak , bk , ck , and dk are randomly chosen Fourier am-
plitude coefficients within a narrow band of wave number

(k =
√

k2
x + k2

y ): modes 32–64, following the approach in the
α-group study [34]. The amplitude coefficients are scaled to
produce the desired rms amplitude of 3.15 × 10–4 L, where
the energy-density spectrum is calculated according to [33]〈

h0
′2〉

2
=

∫ kmax

kmin

Eh0(k)dk. (6)

The spectrum, together with a contour plot of the ICs,
can be seen in Figs. 1(b) and 1(c). The diffused interface is
calculated according to an error function that blends mass
fraction, c, across the interface: c = [1 + er f (104z)]/2. The
selection of a narrow-band IC spectrum at high wave numbers
was made to permit close comparison with previous stud-
ies [24,33,34]. Over time, due to nonlinear mode coupling,
energy at high wave numbers will migrate towards the low
wave-number end of the spectrum, allowing it to reach self-
similarity [25,27,33–35].

B. Acceleration profiles and length scales

Previous studies [25–27] of variable acceleration RTI have
used a Heaviside step function to generate the acceleration
profiles:

gz = g0[−1 + H (t − t1)(2) − H (t − t2)(2)]. (7)

In those studies, the duration of the first acceleration and
the subsequent deceleration times were equal, with the focus
on flow evolution in response to the reversals. The chosen
acceleration profile begins with g0 = 4 cm/s2 for t < t1; both
H step functions are zero. Upon reaching t1, the acceleration
reverses direction, and the two-fluid system switches from an
RTI unstable configuration to a stable configuration. After the
second acceleration reversal, the system returns to the RTI
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FIG. 2. Representative accel-decel and accel-decel-accel pro-
files used for the current study. For the ADA simulations, the
deceleration time is varied, as indicated in the figure.

unstable configuration for all times t > t2. A representative
ADA profile is presented in Fig. 2 with t1, and t2 chosen
as 2 and 4 s, respectively, for illustration similar to prior
studies [25,27]. In this paper, we focus mainly on the ef-
fects of (a) an indefinite deceleration period (AD), [t2–t1] →
∞; and (b) a variable but finite deceleration period (ADA)
[t2–t1]; t1 was kept constant while (t2) was varied. In previous
studies, a length scale Z(t) was introduced as an acceleration-
independent measure of mixing-layer progress [25,27,36] and
works well for cases where the imposed acceleration field
does not change sign. This length scaling cannot meaningfully
be applied in the present work because Z(t) passes through
zero when the duration of acceleration and deceleration are
equal, but our evidence indicates that the mixing layer never
returns to zero thickness. Instead, to accommodate for vari-
able periods of t2, we redefine the length scale ZADA(t) shifted
in time origin as

ZADA(t ) = Ag0(t − t2)2 (8)

This definition ensures that during reacceleration, ZADA(t)
grows from t2 at the same rate as the constant acceleration RTI
and allows for comparison between the two cases.

C. Computational details

All simulations were performed using MOBILE, a mas-
sively parallel, three-dimensional variable-density, finite-
volume incompressible flow solver that uses an ILES tech-
nique. MOBILE has been validated for fluid mixing, and
transport problems, including single-mode and multimode
RTI flows up to A = 0.9 [25,27,37–39], Kelvin-Helmholtz
instability [40], and systems with variable acceleration [41].
Mass and momentum are conserved subject to an in-
compressibility constraint, and a fractional step approach
is employed, decoupling hyperbolic (advective transport),
parabolic (viscous dissipation, and scalar diffusion), and el-
liptic (pressure–velocity correction) components. It performs
a sequence of total-variation bounded one-dimensional advec-

tion subproblems, similar to Youngs [3] and Andrews [42],
to eliminate unphysical oscillations around steep material
gradients and in order to maintain numerical stability for
the full three-dimensional problem, even when the gradients
only marginally satisfy the Nyquist limit based on the mesh
resolution. Additional computational details can be found in
Ref. [40].

D. Dynamic mode decomposition analysis

In our previous work [27], the oscillatory behavior dur-
ing the deceleration period of an ADA configuration was
observed and attributed to internal wave activity. Here, we
analyze the internal wave by introducing a linear algebraic
tool to quantify the oscillatory features by decomposing them
into linear modes by using the dynamic mode decomposition
(DMD) technique [43]. Closely related to proper orthogonal
decomposition, DMD takes an observable representation of
the system’s state, expressed as a vector yk of length n at
some time (k�t), and finds the best-fit system evolution op-
erator, A, that satisfies a discrete linear update, yk+1 = Ayk,

over an averaging period. If a matrix Y is composed of a
temporal sequence of column vectors (of states y1, . . . ., ym−1)
and Y + represents the shifted-by-one sequence (y2, . . . ., ym)
then, Y + = AY . Suppose we let Y = U

∑
V T where � is a

diagonal matrix of singular values by convention ordered to be
decreasing, columns of U form the corresponding left singular
vectors of Y , and the right singular vectors of Y appear in rows
of V T ; then we find a great deal of information redundancy in
the sequence. Locally, flows tend to be both spatially and tem-
porally coherent, and so this reduces the linear independence
of one state vector with respect to another, and the evolution
operator is typically sparse and singular. This redundancy is
exploited to reduce the dimensionality of the evolution op-
erator from n × n to retain contributions from only the most
significant p modes. We denote Û as the p truncation of the
full matrix U . An approximate principal-axis transformation

A ≈ ÛÂÛ
T

into the truncated basis Û yields a dense, well-

conditioned p × p reduction, given by Â = Û
T

Y +V
−1∑

, that

closely approximates the dynamic properties of the original.
A further eigendecomposition, Â = R̂�̂R̂

−1
, provides a com-

plete diagonalization, A ≈ ÛR̂�̂R̂
−1

Û
T

, and the pairings ÛR̂
are known as the dynamic modes. In general, they form in
conjugate pairs, with the phase of each ith eigenvalue pair (λ)
determining its frequency according to

ωi = tan

( |Imλi|
|Reλi|

)
. (9)

By performing a transformation with respect to the inverse

dynamic modes, zk = R̂
−1

Û
T

yk , one can evolve each trans-
formed mode independently in time according to zk+1 = �zk ,
then invert the transformations to reconstruct a continuous
sequence of images.

III. RESULTS AND DISCUSSION

The results from our simulation campaigns are subdivided
into two sections. In Sec. III A, the case of single-acceleration
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FIG. 3. (a) Oscillatory (internal wavelike) behavior observed in the vertical component of anisotropy tensor (B33), its time derivative B′
33,

and the mass flux 〈u3c〉, and (b) time evolution of total KE and total change in PE during the deceleration period for an RTI mixing layer
undergoing a single acceleration reversal (AD case). The acceleration reversal occurs at t = 2 s. The oscillations are used for selecting the
reacceleration time, t2, for the ADA test cases (see Table I). Symbols denote the reacceleration times for I, P, D, and T cases.

reversal (AD) is discussed. Oscillatory behavior of mass flux
and anisotropy tensor was observed, and a DMD technique
is used to analyze the internal-wave behavior during the
deceleration period. Section III B discusses the ADA sim-
ulation cases where the acceleration is reversed twice. The
sensitivity of the duration of the deceleration period due
to the internal wave dynamics on the reacceleration of the
RTI mixing layer is quantified. The phase of the dominant
oscillation at which acceleration is reversed for the second
time is discussed. Finally, in Sec. III B 1, the evolution of
second-order statistics during the period of re-acceleration is
examined. We observe a strong sensitivity in the transient
behavior of RTI after re-acceleration as an important conse-
quence of the wave activity that arises during the deceleration
period.

A. Dynamics of RTI under single-acceleration reversal

In the AD simulations, the interface is accelerated (un-
stable, g0 = −4 cm/s2) until t1 of 2 s (t ime = 2 s); beyond
this, the interface is decelerated (stable, g0 = +4 cm/s2). The
deceleration period is extended until t ∼ 6.7 s. This is suf-
ficiently long to characterize the flow as the kinetic energy
within the flow approaches to the value of zero. Shortly af-
ter the first acceleration reversal, the growth of the mixing
layer ceases, which is consistent with the previous findings
[25,27,29]. This indicates that the growth-rate parameter, α,
introduced in Eq. (1), goes to zero during the deceleration
period with minor fluctuations due to the internal wave-
like motions within the mixing layer. The Reynolds stress
anisotropy tensor B is a quantity that emphasizes perturba-
tions in mean turbulent kinetic energy away from isotropy by
subtracting the expected value for an isotropic turbulent flow
as [44]

Bi j = 〈uiu j〉
〈ukuk〉 − δi j

3
(10)

where i, j = 1, 2, or 3, corresponding to the x-, y-, and z
axes, respectively. From the definition, the components of the
anisotropy tensor where i = j are bounded between values
of −1/3 and +2/3; the total sum of all three components
must equal to zero. Values of −1/3 correspond to zero energy
ascribed to that component, whereas values of 2/3 indicate all
energy is located in that component. In a special isotropic flow
case, the three diagonal components of the tensor, B11, B22,
and B33, must all equal zero. The classical RTI is known to
be highly anisotropic in the acceleration direction (B33 �= 0)
and is horizontally isotropic (B11 = B22) because the flow
has symmetry in the horizontal direction [45,46]. In addition,
the examination of B33 shows that it remains maximal at
the center of the mixing layer [4,7,47]. The temporal evo-
lution of the vertical component of the anisotropy tensor
(B33) is shown in Fig. 3 for density differences that are non-
Boussinesq (A = 0.5). It was observed that the oscillation
amplitude progressively decreases with the vertical velocity
being highly anisotropic at relatively late times. Simulations
were also conducted for the Boussinesq case (A = 0.05), and
similar observations were observed irrespective of Atwood
number and are not presented for brevity. To investigate the
mechanism behind this behavior of B33, we also plot the mass
flux 〈u3c〉, and the time derivative of the vertical component
of the anisotropy tensor (B′

33) at the center plane (z = 0). The
values of mass flux are multiplied by a constant value of 50
to aid in comparison with B′

33. In classical RTI [48], negative
values of mass flux (having the same sign as the acceleration)
represent energy conversion from potential energy (PE) to
kinetic energy (KE); this conversion is global as the difference
in PE in the pure fluids gets converted to KE in the RTI mixing
layer [7,33]. For the AD case, there occurs a rapid increase in
mass-flux value after the acceleration reversal at t ime = 2 s;
since the mixing layer becomes statically stable beyond this
point, there is no net transfer of energy from PE to KE.
However, as observed in Fig. 3, the mass flux 〈u3c〉 (where
c = f −〈 f 〉), oscillates around a value of zero, indicating a
persistent internal wave-induced energy exchange between PE
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TABLE I. Nomenclature of RTI simulations reported in this paper: constant gravity (CG), accel-decel (AD), and accel-decel-accel (ADA).
The ADA cases are further labeled as increasing (I), peak (P), decreasing (D), and trough (T) based on the vertical component (B33) of the
anisotropy tensor with values of the second reversal instant listed for different oscillatory periods of B33.

Time (s)

Case nomenclature First reversal Second reversal

Constant gravity (CG) NA NA
Accel-decel (AD) NA
Accel-decel-accel Increasing Peak Decreasing Trough
(ADA) (I) (P) (D) (T)

1 2.45 2.80 3.15 3.45
2

ADA Period # 2 3.70 4.00 4.35 4.65
3 5.00 5.25 5.60 5.85

and KE that is consistent with the oscillatory behavior of B33

during deceleration.
A comparison between the time derivative B′

33 and mass
flux in Fig. 3 provides further evidence that PE and KE energy
exchange over one period of oscillation is responsible for
the changes we observe in key turbulent statistics. A con-
sistent offset in phase angle between B33 and mass flux of
around π/2 is observed with peaks in mass flux correlated
closely with peaks of B′

33. A high positive value of mass
flux signifies a continued local transfer of PE to KE within
the mixing layer. Any increase in KE arises from localized
pockets of fluid that are relatively buoyant with respect to its
surroundings, and such pockets will tend to move vertically
more than horizontally, leading to a temporary increase in
statistical anisotropy. The return phase coincides with the
mass flux reaching a negative value signifying a high rate
of transfer locally in the opposite direction from KE to PE,
with the mixing layer becoming more isotropic. We classify
the stationary and inflection points of B33 as peaks (P) where
the flow is highly anisotropic and troughs (T) where it is
almost isotropic; a region where anisotropy is increasing (I)
between the troughs and peaks, and a region where anisotropy
is decreasing (D) between the peaks and troughs (see Fig. 3).
These four-phase references serve to classify, in our ADA
campaign detailed in Sec. III B, our selected reacceleration
times (t2). For each oscillatory period of B33, the reacceler-
ation time (t2) values were selected and denoted as increasing
anisotropy (I), peak anisotropy (P), decreasing anisotropy (D),
or trough anisotropy (T). A complete list of t ime values and
their denotations for the subsequent ADA cases is listed in Ta-
ble I. All points are chosen such that the t ime value accurately
represented their respective segment of the B33 curve and
represent a different balance and redistribution phase of the
PE to KE transfer process. Figure 3(b) presents time evolution
of total KE and total negative change in PE for the AD case.
Hence, the positive value of change in PE represents discharge
of the PE. As it is seen, at early time (t < 1 s) most of the PE is
converted to the KE. This finding is confirmed consistent with
the direct numerical simulations of the buoyancy-driven ho-
mogeneous variable-density turbulence [8]. The sign change
in PE at time = 2 s is related with the PE gain just after the
deceleration due to the flow inertia during the first acceleration
period. The figure suggests a similar conclusion with Fig. 3(a).
In subsection III B 2, we will proceed to show that in ADA
cases, they are the principal predictors of RTI growth after
reacceleration.

1. Internal wave dynamics during deceleration period

In this subsection, we focus on the dynamics of the internal
waves during deceleration. The behaviors we observe have
a slow dominant timescale compared with the turbulent mo-
tions established during the initial RT mixing-layer growth, so
we consider the case of a single acceleration reversal accel-
decel (AD) with prolonged deceleration to observe trends
over several periods of wave oscillation. During the initial
acceleration, potential energy present in the initial density
stratification is incrementally converted into kinetic energy.
By enabling molecular mixing, this kinetic energy facilitates
the release of further potential energy, and the layer of mixed
fluid grows in volume. One consequence of this mixing is
that an initially sharp-density interface becomes progressively
smoother and the mean-density gradient (typically measured
as an average across the center plane) reduces accordingly.
However, at the small scale, density gradients remain steep,
especially near the outer boundary of the mixing layer, and
this boundary is characterized by well-defined coherent struc-
tures penetrating above (bubble) and below (spike) the mixing
layer, which act to release further potential energy to sustain
the instability.

We observe that during deceleration, coherent structures
previously extractive of potential energy now act to stabilize
the system by doing work against the stratification. High-
density gradients present at the instant of reversal become
rapidly lower, using the supply of existing kinetic energy at
the small scale to do mixing and thereby convert it back into
potential. We find in Fig. 4(a) that the quantity of molecularly
mixed fluid grows rapidly at this juncture. Without a mech-
anism to release ever-increasing potential energy, previously
coherent structures collapse and lose their coherence, as may
also be inferred from this figure. While the smallest scales
exchange kinetic energy for potential most rapidly, there is
a broad distribution of scales in the flow at the point of ac-
celeration reversal, and the longest of those (associated with
mean motions in the domain) are persistent because viscous
and molecular diffusion act very slowly once density gradients
reduce.

A useful rule of thumb to characterize the structural
breakdown may be constructed by relating it to the overall
stability of the stratified layer. We define a gradient Richard-
son number, Ri, here defined across the whole mixing layer
to be |N |/|S|, where S2 = 〈dux/dz〉2 + 〈duy/dz〉2, since other
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FIG. 4. (a) Vertical density contours for the CG and AD cases
at t = 4 s, Z = 32 cm. (b) Kinetic energy is Fourier transformed
and mapped onto transformed axes in which N2 is a linear gradient.
Points sampled in Fourier space are represented as black dots with
radii that scale with the logarithm of energy. The red overlay is the
region satisfying the dispersion relation for observed values of N and
thus admits resonant internal wave activity.

contributions cancel in a horizontally periodic domain. We
find that is found to be Ri > 4, at t = 2 s, indicating (since
Ri > 1) a regime of stable wave motion, at the beginning
of the deceleration period. The behavior of stable stratifica-
tions differs fundamentally from unstable stratifications. The
simplest form of Taylor’s model [2,39] for unbounded linear-
exponential growth of an unstable density interface predicts
an exponent “n” given by Agk = n2, where A is the Atwood
number, g is the strength of the acceleration field, and k is
the wave number of a perturbation to the interface. When
acceleration acts in the interface-destabilizing direction, the
exponent n is real. Conversely, when it acts to stabilize the
interface, n is complex, and produces oscillatory motion: trav-
eling waves across the interface. The detail of any wavelike
behavior is dependent on whether the mixing region, which
has acquired appreciable thickness by the reversal time, oscil-
lates as a diffuse interface between upper and lower layers, or
as a region that as a whole is static but within which lies a
continuous stratification that supports the oscillatory motion.
Our statistical analysis indicates the latter. The type of wave
motion supported in continuous stratifications is known as
internal gravity waves [49].

The key question Fig. 4(b) seeks to resolve is whether the
characteristics of RTI turbulence shortly after an accelera-
tion reversal have a distribution of energetic wave numbers
and frequencies that naturally satisfies the dispersion relation
[Eq. (A2)]. We approach this question by overlaying the dis-
persion curve on the energy spectrum. It is convenient to do so
in a transformed axis system. In a decelerating mixing region,
we expect statistical homogeneity across a horizontal plane
and differing spectral behavior aligned with the acceleration,
so we choose to decompose wave-number space into a hori-
zontally averaged mean, k2

xy (see the Appendix) whose values
are constant on circles in the horizontal Fourier plane, and
preserve kz. Thus, we may write the dispersion relation in
three dimensions in terms of the transformed variables, X =
k2

xy

ω2 , obtained from a ratio of the horizontal wave number to
temporal frequency, and Y = k2

xy + k2
z , the squared magnitude

of the wave number. It follows that Eq. (A2) may be written

as Eq. (A3) and so spectral features satisfying the dispersion
relation will populate a straight line with gradient N2.

Working from the definition of the Brunt-Väisälä frequency
[Eq. (A1)], the natural frequency of motion in a stably strati-
fied fluid, we obtain the following bounds from the geometry
of a Rayleigh-Taylor mixing layer at any stage of relaxation
in terms of straightforwardly measurable variables:√

2Ag

hb + hs
< N <

√
−2g

ρH + ρL

dρ

dz

∣∣∣∣
max

, (11)

which represents the range of admissible gradients of den-
sity across the RTI mixing layer. The red-shaded overlay
in Fig. 4(b) indicates the admissible range of N2 in which
wave numbers and frequencies will satisfy the dispersion
relation for resonant waves. Kinetic energy in the flow has
been Fourier transformed and decomposed into horizontal and
vertical directions and plotted in the transformed axes. The
radius of the dots scales with the logarithm of kinetic energy
at each sample point in Fourier space. As expected, many of
the sampled points are associated with turbulent eddy activity
and appear in the top left of the figure, where wave numbers
are large and timescales are small. However, a substantial
fraction of total energy is distributed across low wave numbers
and long timescales. Several sampled points coincide with
the dispersion curve, and this leads us to expect resonant
wave activity during deceleration. Dispersion in this system
is a key mechanism for the collapse of coherent structures
as seen clearly occurring between the two contour panels
in Fig. 4(a). A group velocity, cg = ∂ω

∂k , which defines the
rate of transport of wave packets and strongly wave-number
dependent velocities that satisfy the dispersion relationship.
Wave packets will disperse in physical space with a rapid
breakdown of coherent structures. While the loss of coherence
is predominantly a linear process, nonlinear mode interactions
are prevalent in RT-unstable systems through small-scale mix-
ing processes and, in particular during deceleration, there is a
further available nonlinear mechanism driven by wave-wave
triadic interactions. The breakdown of coherent structures is
thus an irreversible process, and the structures do not reappear.

The DMD technique described in Sec. II D was applied
to the deceleration period of our RTI AD dataset, where we
anticipate that a component of the motion in the mixing layer
will be periodic. The truncated distribution of eigenvalues �̂ii

(see Fig. 5) cluster around a unit circle on the complex plane,
indicating that most modes are neither growing nor decaying.
Those dynamic modes are identified with lines through the
origin that correspond to the frequency of the mode. Selected
dynamic modes from the full sequence ÛR̂, which share the
dimensionality of the original center-plane density-field im-
ages, are plotted in Fig. 6. The images of the dynamic modes
with corresponding temporal frequencies are computed using
Eq. (9). The magnitude of the singular value of a mode is
related to the statistical variance of its rate of change through-
out the image sequence. This quantity is linked to the kinetic
energy of a mode, but this is quite distinct from its total energy
content. Some modes with large variance represent motions
with a limited vertical variation or that are predominantly
due to localized eddy turnover, and in configurations such
as ours where potential energy is a significant fraction of the
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FIG. 5. DMD analysis of RTI AD case. The plot of the left side
shows a truncated distribution of eigenvalues �̂ii and is plotted on
a complex plane. The dashed gray line indicates a unit circle, and
the dashed black lines indicate the buoyancy frequency. The zoomed
subfigure on the right highlights the eigenvalues that correspond to
the internal waves present during the RTI deceleration phase.

total [7,33], these are less influential than their variance may
suggest.

The dynamic modes that appear earliest in the sequence
are conjugate pairs of oscillatory modes representing eddy
turnover activity and have broadly similar features to Fig. 6(a),
which is the mode with the largest singular value. One may
view this set of modes as a spectral decomposition of turbu-
lence from the time- to the frequency domain, where the basis
functions are found by a least-squares fit to the data rather than
by projecting onto regularly spaced fixed-frequency Fourier
modes. In Fig. 6(b), we obtain a mode at zero frequency,
and this represents the background statically stable density
stratification. This mode has no conjugate pair since it lies on
the real axis in Fig. 5.

We now turn our attention to the resonating internal wave
modes. We find two energetic modes identified by the DMD
in Fig. 5 with frequencies that lie within or below the admis-
sible range of N given in Eq. (11). An “effective” buoyancy
frequency N is dependent on the sensitivity of the system
to curvature in the density gradient throughout the mixing
layer, but the range of uncertainty is small once the mixing
layer is well developed. With some confidence we can identify
the conjugate pair of modes indicated in Fig. 5 intersecting
the black dashed line to correspond to vertically propagating
critical internal waves. These “critical” waves oscillate verti-
cally at the buoyancy frequency (N) of 2.53 rad/s, and have
stationary phase. In a mixing layer these are identifiable as a
standing-wave motion of the layer as a whole, and the shape
of this dynamic mode is indicated in Fig. 6(c).

The frequency of the associated vertical motion corre-
sponds exactly to oscillatory behavior found in the vertical
component of the anisotropy tensor (B33) and in the mass flux.
The internal wave interpretation of vertical fluxes of mass and
energy is therefore fully consistent with the picture laid out
in Fig. 3. Given this corroboration, we infer that any modes
with frequency below N must be propagating internal waves.
In Fig. 5 we find one conjugate pair, indicated by the red

dots, and the corresponding dynamic mode shape is given in
Fig. 6(d). As a visual guide, we overlay lines whose angle to
the vertical is calculated using θi = ±cos−1( ωi

N ), correspond-
ing to the angle of propagation within the mixing layer. These
waves may only propagate within the mixing layer where a
density gradient exists. Towards the edges of the mixing layer
the stratification weakens, and diagonally propagating wave
packets will preserve their frequency but be refracted towards
the vertical as N locally reduces. Our observations suggest
that most wave energy remains within the layer, and therefore
wave packets must reflect back from the edges.

Although propagating modes have now been shown to
play an important role in the mixing-layer structure, not all
internal wave motion manifests as waves propagating in spe-
cific directions. The spectrum of dynamic mode-associated
turbulent scales all have ω > N . We may also interpret such
modes as internal waves, but these have “evanescent” form
and radiate over short distances in all directions; there is no
single direction of propagation, nor is there significant nonlo-
cal transmission of wave packets. The reason for the change
in behavior is that the governing equations for linear internal
waves are hyperbolic when ω < N and so exhibit real-valued
characteristics with a well-defined direction, but when ω > N
these become imaginary, and the governing equations become
elliptic. A thorough treatment of these issues is covered in
work by Dobra et al. [50,51]. As already discussed, the rate
of mixing is high during the deceleration period and this mod-
ifies the density stratification, and the buoyancy frequency
will evolve as a consequence. A slow evolution of oscillation
frequencies is to be expected, and this behavior may be seen
clearly in Fig. 3.

B. Dynamics of RTI under two acceleration reversals (ADA)

After the second acceleration reversal, the mixing layer
once again becomes RT unstable and starts to regrow. It has
been shown in previous studies that RTI recovers to exhibit
self-similar behavior on the long term, analogous to that
observed in the constant-acceleration RTI [27]; the reaccel-
eration might be considered as classical RTI initialized with a
much thicker and more energetic interface between the pure
fluids. Since our AD simulations demonstrate an oscillatory
behavior prompted by PE to KE exchange due to internal
waves reverberating within the mixing layer, the second ac-
celeration reversal can be initiated at a time instant t2 that
corresponds to the phases I, P, D, and T corresponding to
the oscillatory behavior of B33 discussed in Sec. III A. It is
expected that RTI growth in the short term after t2 depends
strongly on the duration of the deceleration period. This short-
term behavior may be key in some application areas, notably
with ICF capsules, where the instability is not anticipated to
persist long enough to recover the asymptotic self-similar be-
havior. Figure 7 shows clear qualitative differences in integral
mix width and mixing states within the mixing layer for I,
P, D, and T phases, and we provide a constant-acceleration
case for reference (denoted CG). Vertical (midplane) slices
of density contours are plotted in the top row of Fig. 7, and
horizontal (at the height of the original interface) slices on
the bottom row. These qualitative observations will now be
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FIG. 6. Visualization of modes: (a) a turbulent mode, (b) the zero-frequency mode, (c) the critical B33 mode, and (d) a propagating internal
wave mode. The dashed lines on the internal wave mode correspond to the direction of propagation implied by its frequency given in Fig. 3.

quantified in some detail by presenting key statistics of mixing
layer width and second-order moments.

Figure 8(a) presents the integral mix width [Eq. (A4)],
plotted as a function of time (s) for all cases with A = 0.5
investigated in this paper. The integral mix width for the
different I, P, D, and T cases indicates a significant difference
in the growth rate upon reacceleration. Since the 12 ADA
cases each commence reacceleration at a different value of
t2, an unmodified scaling on the basis of Z does not allow
for direct comparison. As introduced in Eq. (6), we modify
the scaling by shifting its time origin to t2, thus avoiding
physically inconsistent outcomes, such as negative values.
Once self-similar length scales are adjusted to account for the
variation in t2, a consistent pattern emerges between common
choices of phase I, P, D, and T across several oscillations
[compare Figs. 8(a)–8(c)]. We note that growth rates follow
the pattern |D| > |P| ∼ |T| > |I| and our simulations suggest
that although their short-term development may be substan-
tially different, in the long-term, any I, P, T, or D choice
within an oscillation period is likely to produce a similar
long-term trajectory. This long-term behavior is similar to the

self-similar growth of the classic RTI, Eq (1), and the growth
of the W tends to become linear with ZADA. This is another
indication that after reacceleration the RTI flow recovers itself
in the long run. T is consistently anomalous with intermediate
growth rates |D| > |T| > |P|, and so long-term trajectories
remain delayed with respect to the others. Figure 8(d) rep-
resents the averages of the integral mixing widths over the
first three oscillations. As observed in Fig. 3, when anisotropy
is increasing (I), the mass flux has local maxima indicating
exchange from KE to PE. When we choose reversals at Is, it
takes longer for RTI to establish upon reacceleration. Equally,
when we choose reversals at Ds, the energy exchange is in
the opposite direction, and motions of the light and heavy
fluids are already preferentially aligned with the acceleration
vector, and for this phase in a direction favorable for instability
growth. When we choose reversals at Ps and Ts, there is no
significant directional preference within the flow as the mass
flux is zero. The growth rate of the mixing layer for both D
and I cases thus lies between the growth rates for the P and T
cases. Further analysis of mixing-layer growth, decomposing
the integral measure of its size into hb and hs, to identify any

FIG. 7. Vertical and horizontal density contours for the CG at Z = 12 cm. I, P, D, and T cases are shown for Z + ZADA = 12 cm. The
deceleration period is subtracted for I, P, D, and T cases to evaluate RTI mix states at similar values of Z + ZADA. The horizontal slices are
taken from the height of the original heavy-light fluids interface.
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FIG. 8. The integral mixing width, W , scaled by ZADA for the (a) first-, (b) second-, and (c) third oscillatory period of B33. (d) Average of
integral mix widths over the three oscillatory periods during the RTI ADA reacceleration phase.

sensitivity to the I, P, D, and T phases is shown in Fig. 9.
Bubble and spike widths (hb and hs) are estimated from the
location where the plane-averaged values of the mole fractions
of the light fluid reaches values of 99 and 1%, respectively,

FIG. 9. Bubble and spike widths (hb and hs) averaged over the
three oscillatory periods for ADA cases during reacceleration.

and averaged over three oscillations for phases corresponding
to I, P, D, and T. The D and I cases exhibit, respectively,
the fastest and slowest growth on average. As expected, the
P and T cases are almost identical and occupy intermediate
rates of growth. In addition, at large A, it has been reported
that the growth rates of hb and hs are diverging as spikes
grows faster than the bubbles [5]. This observation extends
after the second acceleration as well and the hb/hs ratio stays
approximately constant around the value of 0.8. Though our
simulations extend over three full cycles of oscillation, total
KE in the mixing layer significantly decreases with each sub-
sequent oscillation of B33, and we may therefore expect that
the growth rate after reacceleration will become progressively
less sensitive to the phase.

1. Evolution of the second-order moments for RTI under ADA

Second-order quantities obtained from moment equations
have been reported to remain constant in the self-similar
regime of classical RTI growth by Ristorcelli and Clark
[4]. We seek to determine if the RTI ADA conforms to
this expectation after the second acceleration reversal. The
scalar variance 〈cc〉, the normalized mass flux, 〈u3c〉/h0.5

tot , and
the normalized vertical-velocity fluctuation 〈u3u3〉/htot , where
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FIG. 10. Scalar variance 〈cc〉, averaged for each D, P, I, and T
case over the three oscillatory regions. The inset plot shows the scalar
variance of the AD case with reacceleration times marked.

htot = hb + hs, were determined taking planar averages at the
initial interface location (z = 0) [4]. Similar normalization
factors were also used by the authors in their previous study
[23]. The scalar variance 〈cc〉 (where c = f −〈 f 〉), the normal-
ized mass flux 〈u3c〉/h0.5

tot , and the normalized vertical-velocity
fluctuation 〈u3u3〉/htot, were determined taking planar aver-
ages at the initial interface location (z = 0) [4]. In both cases
of single (AD) and double (ADA) acceleration reversal, all
three parameters drop to near-zero values and exhibit slight
oscillatory behavior during the deceleration period of AD and
ADA cases similar to the observations reported in Ref. [27].
During reacceleration, the scalar variance and normalized
mass flux both return towards values comparable with those
obtained during the initial acceleration. However, they exhibit
sensitivity to the time instant (t2) of second acceleration rever-
sal and tend towards a constant value at late time.

The scalar variance 〈cc〉 is plotted in the inset to Fig. 10 for
the AD case; the scalar variance is near zero for t > 3 s. Low
values of the scalar variance correspond with greater molec-
ular mixing [27], and the flow becomes well mixed at the
center of the mixing layer, as seen earlier in Fig. 4(a). During
reacceleration, the increasing anisotropy (I) cases exhibit the
greatest mixing, whereas the decreasing anisotropy (D) cases
exhibit the least, consistent once again with evidence from
plots of the integral mix widths and field-slice data: faster
growth is associated with a mixing layer that is less mixed [see
also Fig. 7(d)]. Similar trends are observed for the mass flux
〈u3c〉 at the center plane. For t > 3 s, the mass flux oscillates
with a small amplitude around zero. As shown in Fig. 11, after
reacceleration, the mass flux returns to asymptotic (negative)
values, suggesting a self-similar behavior. The transient be-
havior, however, is dependent on the choice of phase I, P, D,
and T, and we note that a range of durations tends to reach a
self-similar state. We anticipate that if the Ps and Ts are run
longer, they will reach the self-similar value. Larger values of
mass flux and scalar variance are associated with fast-growing
mixing layers since they need to convert PE to KE at a more
rapid rate.

FIG. 11. The normalized mass flux 〈u3c〉/h0.5
tot , averaged for each

D, P, I, and T case over the three oscillatory regions. The inset
plot shows the mass flux of the AD case with reacceleration times
marked.

The vertical contribution to kinetic energy 〈u3u3〉, at the
center plane is shown in Fig. 12. The results are consistent
with our observations for the scalar variance and mass flux
for the AD campaign. The vertical component of the kinetic
energy is negligible for t > 3 s as oscillation amplitudes de-
cay away. While our findings are critical to understanding
the transient regimes during deceleration and reacceleration,
the dynamics of the long-term is somewhat simpler, and we
expect much less sensitivity due to the oscillation phase. It
is also important to note that the PE rapidly releases, and
KE increases similar to the classic RTI problem. The reaccel-
eration stage follows a similar pattern as shown in the first
acceleration stage in Fig. 3(b). We observed a small varia-
tion in reacceleration behavior when t2 is chosen during the
first oscillation period. In particular, we find for reversals at
phases D and T, 〈cc〉 and 〈u3c〉 appear to reach self-similarity
somewhat earlier. We believe that large structures from the

FIG. 12. The normalized vertical velocity fluctuation 〈u3u3〉/htot ,
averaged for each D, P, I, and T case over the three oscillatory regions
for A = 0.5. The inset plot shows marked reacceleration times during
the AD case.
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FIG. 13. θ averaged for each D, P, I, and T case over the three
oscillatory regions. The inset shows the marked reacceleration times
for the AD case.

initial acceleration may not yet have broken down so early in
the deceleration period; thus, the onward evolution is directly
influenced, and the patterns that arise from the phase may be
less clearly visible if taken in isolation.

The molecular-mixing parameter θ , θ = 〈f(1−f )〉
〈f〉〈(1− f )〉 , which

exhibits similar patterns to the mass flux and scalar variance,
is plotted in Fig. 13. We measure this value at the center plane
(z = 0). The value of unity for θ signifies a fully mixed flow,
and lower values imply a flow state that is less well mixed.
In classical RTI, θ asymptotes to a value of θ ∼ 0.8. Here,
for the ADA cases, although this asymptotic value is reached
in the initial acceleration, in the AD campaign, we observe
high levels of mixing during deceleration with asymptotic
values of θ = 1 at the center plane. At the subsequent reversal,
these values again drop as the mixing layer during growth is
consistently less well mixed. The fastest-growing example, D,
generally has a sharper decrease to a lower value of θ . Con-
versely, the slowest-growing example, I, only slowly reduces
to the expected asymptotic value of θ ∼ 0.8 and constitutes
the upper bound for the presented cases (see Fig. 7 for quali-
tative mixing-state differences).

IV. CONCLUSIONS

In this study, we explored the behavior of RTI mix-
ing layers under accel-decel (AD) and accel-decel-accel
(ADA) acceleration profiles through a sequence of simulation
campaigns. The application of deceleration to a previously
Rayleigh-Taylor unstable system causes an oscillatory pat-
tern to emerge in the anisotropy tensor and density-velocity
correlations. The behavior of second-order moments that in-
clude scalar variance, mass flux, and kinetic energy converge
for t > 3 s. Examination of the full spatiotemporal spectrum
demonstrates the consistency of the oscillatory behavior with
the resonance conditions for internal gravity waves within
the mixing layer. The idealized internal wave equations were
applied to the non-Boussinesq case (A = 0.5), even though
they were originally derived for a Boussinesq case; in this
study, internal wave behavior was observed for both cases.
Second-order moments were also insensitive to Atwood num-

ber during deceleration. In the ADA campaign, we explored
the sensitivity of reacceleration time on subsequent RTI
growth and found that phase of the internal oscillation was
the most reliable predictor. The mechanism underlying this
dependency on phase was associated with the proportion of
kinetic energy aligned with the vertical at the acceleration
reversal.

Figure 14 illustrates the dynamics of the flow during the
deceleration period. The I (increasing anisotropy) cases are
representative of when the mass flux (u3c) opposes the di-
rection of reacceleration, as small structures have formed and
travel quickly in the direction of deceleration. This leads to
relatively slow growth because the mass flux must change
direction before starting to globally convert PE to KE. Mean-
while, the D (decreasing in anisotropy) cases occur when the
mass flux is maximally negative, so during reacceleration, it
does not need to change sign before converting PE to KE.
Thus, these cases grow fastest. The regrowth rates of the P and
T cases lie in between I and D cases because the mass flux
is neutral at these phases. Cases reaccelerated when kinetic
energy is being most rapidly converted to potential grow up to
35% faster than those when the energy exchange is reversed.
Reported second-order moments asymptote towards constant
values, supporting the conclusion that self-similar behavior
persists at late time similar to the constant-gravity case and
is independent of the phase at which reacceleration was im-
posed. However, their short-term transient behavior, which is
of primary interest, is highly sensitive to the duration of the
deceleration stage and the phase of B33 behavior. The main
conclusions of this study are as follows:

(1) The first acceleration reversal leads to a stable stratifica-
tion and an immediate cease in the growth of the RTI mixing
layer. Hence, the self-similar growth-rate parameter, α, goes
to zero during the deceleration stage.

(2) After the second acceleration reversal, the response of
the RTI flow strongly depends on the undergoing physics dur-
ing the deceleration stage, such as it depends on the residual
energy’s distribution between the PE and KE.

(3) To predict the regrowth of the RTI mixing layer due to
reacceleration one should examine the internal wave dynamics
that arises during the deceleration stage.

(4) In the long term, the RTI ADA flow recovers its self-
similar behavior for the first- and second-order parameters
investigated in this study.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX: CONDITIONS THAT PROMOTE INTERNAL
WAVE MECHANISMS WITHIN RT MIXING LAYER

UNDER DECELERATION

Linear internal gravity waves are a restricted solution
of the Navier-Stokes equations in the case, where we
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FIG. 14. Three-dimensional visualization of the density field where the behavior of the vertical mass flux 〈u3c〉 during (a) classical RTI,
and (b) RTI under deceleration at DPIT phases of the anisotropy tensor. As it is seen, in decreasing anisotropy (D) cases, mass flux behaves
similarly to the classical RTI case, and the acceleration reversal at that point leads to the fastest regrowth. Meanwhile, the mass flux at the
increasing anisotropy (I) point is just the opposite direction of the mass-flux behavior during the classical RTI; hence, these cases grow slowest.
Besides, at anisotropy peaks (P) and trough (T) points, the behavior of the mass flux is almost neutral (〈u3c〉 ∼ 0), so their growth rates are
between I and D cases. (Note that the horizontal slices are taken from the height of the original heavy-light fluids interface.)

assume inviscid flow and the nonlinear terms, which contain
the advection operator u · ∇, are considered negligible. The
remaining derivative operators can be isolated into a complex-
valued matrix P that acts on a state vector φ, say, and the
system arranged into a homogeneous form. Taking a single
Fourier mode of φ, we can write φ = φ̂ei(k·x−ωt ), where for
the simplest two-dimensional case, k̂ = [ kx kz ]T

. The
derivative operator P then takes the complex-valued algebraic
form P̂. For a homogeneous system, nontrivial symmetries are
found when the determinant |P̂| = 0, and these correspond
to resonant wave behaviors. From |P̂| = ω2 − (− g

ρ0

dρ

dz ) k2

k2 = 0
arises a natural frequency,

N =
√

− g

ρ0

d ρ̄

dz
, (A1)

known as the buoyancy (Brunt-Väisälä) frequency, and by
examining the geometry of k/k̂ we may write the dispersion
relation as

ω2 = N2 k2
x

k2
x + k2

z

= N2cos2θ, (A2)

where θ is the angle between the wave vector k̂ and the
horizontal. Further examination of the properties of the de-
terminant shows that waves travel through a density-stratified
medium in beams perpendicular to k̂. It follows from the
properties of an inverse cosine that these resonant conditions
for internal waves only occur when ω < N. In the case of an
energetic stratified flow with a high Reynolds number, wave

beams may not be as easily observable as they are in the lami-
nar conditions analyzed above. However, a statistical analysis
can confirm their presence. In loose terms, one may associate
certain frequencies ω with eddy turnover in a turbulent flow
and wave number k with their length scale. Thus, we infer that
only certain combinations of frequency and scale will give rise
to a resonant wave condition.

In a decelerated mixing region, we expect statistical ho-
mogeneity across a horizontal plane and differing spectral
behavior aligned with the acceleration, so we choose to de-
compose wave-number space into a horizontally averaged
mean, k2

xy = k2
x + k2

y , whose values are constant on circles in
the horizontal Fourier plane, and preserve kz. Thus, we may

write the dispersion relation as ω2 = N2 k2
xy

k2
xy+k2

z
. We may ex-

press this in terms of substitute variables: X = k2
xy

ω2 a ratio of the
horizontal wave number to temporal frequency,Y = k2

xy + k2
z ,

is the squared magnitude of the wave number, and it follows
that

Y = N2X, (A3)

so spectral features satisfying the dispersion relation will pop-
ulate a straight line with gradient N2. We seek to relate the
conditions for internal wave resonance to those produced by a
developing instability. By inspection, (11) may be written in
terms of mean quantities defined for the mixing region as

N2 = 2Ag

W
, (A4)
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where A is the Atwood number, W (t ) = 6 ∫〈 fl〉〈 fh〉dz is the
horizontally averaged thickness of the region (integral mix
width). Combining (A2) and (A3) and rearranging, we obtain

W (kxy, kz, ω) = 2A
X (kxy, ω)

Y (kxy, kz )
. (A5)

The value of W can be measured from the turbulent scalar
or velocity field during the accelerated instability over a
range of locations in the Fourier space. Although the dura-
tion over which the flow may be deemed statistically steady
is short, the resolvable range of ω includes frequencies as-
sociated with eddy turnover. We calculate W fields over

short-duration windows several times t during the acceler-
ated instability. For each such flow state and any available
coordinate triplet of {kxy, kz, ω}, W predicts a mixing-region
height consistent with the emergence of resonant internal
waves if deceleration were to commence. A subset of these
available coordinates satisfies the dispersion relation given
in Eq. (A4), and one may look within this subset for val-
ues that match the current mean W . When such a match
(in this study at t1) is found, the gravity could be switched
from acceleration to deceleration, in the expectation that
the stably stratified flow would proceed to generate internal
waves.
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