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Continuum breakdown in compressible mixing layers
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Gas-kinetic simulations of rarefied and compressible mixing layers are performed to characterize continuum
breakdown and the effect on the Kelvin-Helmholtz instability. The unified gas-kinetic scheme (UGKS) is used
to perform the simulations at different Mach and Knudsen numbers. The UGKS stress tensor and heat-flux
vector fields are compared against those given by the Navier-Stokes-Fourier constitutive equations. The most
significant difference is seen in the shear stress and transverse heat flux. The study demonstrates the existence of
two distinct continuum breakdown regimes, one at low and the other at high convective Mach numbers. Overall,
at low convective Mach numbers, the deviation from continuum stress and heat flux appears to scale exclusively
with the micro-macro length scale ratio given by the Knudsen number. On the other hand, at high convective
Mach numbers, the deviation depends on the global micro-macro timescale ratio given by the product of Mach
and Knudsen numbers. We further demonstrate that, unlike shear stresses and transverse heat flux, the deviations
in normal stresses and the streamwise heat flux depend separately on Knudsen and Mach numbers. A local
parameter called the gradient Knudsen number is proposed to characterize the rarefaction effects on the local
momentum and thermal transport. Noncontinuum aspects of gas-kinetic stress-tensor and heat-flux behavior that
Grad’s 13-moment equation model reasonably captures are identified.
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I. INTRODUCTION

The Navier-Stokes-Fourier (NSF) constitutive equa-
tions form the foundation of the fluid flow and thermal
transport description in the continuum flow regime. However,
these constitutive relations can be inadequate to describe mo-
mentum or heat transport in rarefied flows. The degree of
rarefaction is typically characterized in terms of the Knudsen
number Kn, which is the ratio of the mean free path of the
medium λ to the length scale of the flow L. The limit of
vanishing Kn represents the continuum regime of fluid flow.
The Knudsen number can be finite in many practical applica-
tions, and rarefaction effects become important. For example,
rarefaction effects play a critical role in the free shear (mixing)
layers of the slipstream behind Mach stems [1,2], exhaust
plumes of satellite nozzles [3–5], and other space applications.
The extent of rarefaction effects can vary with the type of flow
and the Mach and Knudsen numbers. At the very extreme, rar-
efaction effects can manifest as anti-Fourier transport (cold to
hot heat transfer) as seen in certain regions of lid-driven cavity
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flows [6,7]. Yet Venugopal et al. [6] observed that, even at
large Knudsen numbers, areas of Fourier transport can coexist
with regions of anti-Fourier heat transfer in cavity flows. Thus,
the rarefaction effects can be complex and localized, requiring
further investigation.

Various nondimensional parameters have been employed
in the literature to characterize the deviation from contin-
uum NSF constitutive equations. Bird [8] demonstrated that
the continuum breakdown can be reasonably quantified in
terms of a suitably normalized density gradient. A parameter
Ma2

c/Re, where Mac is the convective Mach number and Re
is the Reynolds number, can be devised [8] to quantify the
degree of breakdown. Tsien [9] suggested a similar nondimen-
sional number by comparing continuum and noncontinuum
parts of the Burnett equation. Upon using the relationship
Re ≈ Mac/Kn, it can be seen that the above parameter is
MacKn, which is shown to be equal to the ratio of the micro-
scopic timescale to the macroscopic timescale. Ben-Ami and
Manela [10] showed that for a pulsating sphere, the failure of
the NSF and the regularized Grad13-moment equation [11]
depend on both the nondimensional length scale (Knudsen
number) and the nondimensional timescale (defined as the
ratio of the frequency of pulsation to the molecular colli-
sion frequency). A local parameter was suggested by Boyd
et al. [12], given as KnGLL = (λ/Q)|∇Q|, where Q can be
either temperature or density. Tiwari [13] obtained a similar
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expression for the deviation from equilibrium, using a method
identical to Grad’s 13-moment equation method [14]. It can
be seen that the above definition is similar to the conventional
definition of the Knudsen number, based on the gradient of
thermodynamic variables. It is also possible to directly relate
|∇Q| to the Mach number by considering compressibility
effects. A common limitation of the above methods is that all
these parameters show negligible values at low Mach num-
bers. An alternative method suggested by Lockerby et al. [15]
uses the parameter KnQ = ‖Q − QNS‖/‖QNS‖ to assess the
deviation from the NSF equation, where Q is either the stress
tensor or the heat-flux components obtained from the Boltz-
mann relationship, QNS is the stress or heat-flux components
obtained from the NSF equation, and ‖ · ‖ represents the
L2-norm of the components. In this approach, since all the
components are combined in the L2-norm, only the deviation
with respect to the most dominant component is highlighted.
This measure does not account for the deviation of individual
stress or heat-flux components and may not shed light on the
underlying physics. Further, this measure can be singular in
the limit of vanishing QNS. Wang et al. [16] showed that
the ratio of non-Fourier to Fourier parts of the heat flux can
be used to identify different regimes of interaction between
the bow shock and stagnation boundary layer in flow past
a cylinder. Singh and Schwartzentruber [17,18] have shown
that the stagnation point heat flux in hypersonic flow past
a blunt body scales as Ma2ω/Re, where ω is the viscosity-
temperature index, while the drag force on the body scales
with C∗Ma2/Re, as suggested by Macrossan [19].

The present study focuses on the characterization of the
continuum breakdown in compressible mixing layers. Unified
gas kinetic scheme (UGKS) [20] simulations of mixing layers
at different Mach and Knudsen numbers are performed. The
departure of the UGKS stress tensor and heat-flux components
from the NSF constitutive equations is examined. Different
scaling regimes are identified based on the Knudsen and Mach
numbers. An important finding is that the normal and trans-
verse stress or flux components exhibit markedly different
behavior. It is demonstrated that many of the noncontinuum
characteristics of momentum and thermal transport are cap-
tured reasonably well by Grad’s 13-moment equations. These
findings enhance our understanding of rarefaction effects in
free-shear flows.

II. KINETIC THEORY: SOLUTION AND MODELS

The particle distribution function f (xi, c j, t ) is defined
such that f (xi, c j, t )dc jdxi gives the number of particles
within a velocity range of c j and c j + dc j and position range
of xi and xi + dxi. In the present study, this quantity is multi-
plied by m, where m is the mass of a single particle. This gives
the density ρ(xi, t ) of the medium at a specific point when
f is integrated over the entire velocity space. The governing
equation for f is the Boltzmann transport equation, given by

∂ f

∂t
+ ci

∂ f

∂xi
+ ∂Fi f

∂ci
= C, (1)

where Fi is the external force per unit mass. The left-hand
side of the equation describes the changes in the particle
distribution function due to advection. The right-hand-side

term C (known as the collision operator) describes the changes
to the particle distribution function due to collision. Subject
to a series of assumptions, known as Stosszahlansatz [14],
it is possible to show that C is a nonlinear integral func-
tion of the particle distribution functions before and after
collisions. This equation is valid for a wide range of nonequi-
librium conditions. This makes the Boltzmann transport
equation an integro-differential equation which is challenging
to solve [21].

A. Moderate departure from equilibrium

In the near continuum limit, the collision operator can be
further simplified. Bhatnagar et al. [22] suggested a simplified
collision operator given as C = ν( f0 − f ), where ν is the col-
lision frequency and f0 is Maxwell’s equilibrium distribution
function. The Bhatnagar-Gross-Krook (BGK) approximation
to the Boltzmann transport equation is popular and is easier
to analyze. The simplified BGK-Boltzmann equation without
any external forces is given as

∂ f

∂t
+ ci

∂ f

∂xi
= ν( f0 − f ). (2)

The Maxwell equilibrium distribution function for monatomic
gas is given as

f0 = ρ
( m

2πkBT

)3/2
exp

( m

2kBT
(ui − ci )

2
)
, (3)

where ρ = ρ(xi, t ) is the density of the medium, kB is the
Boltzmann constant, T = T (xi, t ) is the temperature of the
medium, and ui = ui(xi, t ) is the macroscopic velocity. Since
the present work concentrates on monatomic gases, the inter-
nal degrees of freedom are not considered.

The macroscopic conservative variables W = {ρ, ρui, ρE}
can be obtained from moments of f with the collision invari-
ants ψ = {1, ci, c2

i /2} and is given as

Wα =
∫

ψα f dci, (4)

where α refers to each of the components of W and ψ . Further,
the stress tensor τi j and heat-flux vector qi can be obtained as

τi j,B =
∫

f (ci − ui )(c j − u j )d �c − δi j

3

∫
f (ck − uk )2d �c,

(5)

qi,B = 1

2

∫
f (ci − ui )(ck − uk )2d �c, (6)

where the subscript B implies that it is obtained from f by
directly solving the Boltzmann transport equation. When the
flow is in equilibrium, f = f0, τi j,B = 0, and qi,B = 0.

On substituting ψ into the Boltzmann transport equa-
tion and integrating for all possible particle velocity ranges,
the governing equations for the macroscopic variables are
obtained as

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (7)

ρ
∂ui

∂t
+ ρu j

∂ui

∂x j
+ ∂τi j

∂x j
+ ∂ p

∂xi
= 0, (8)
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Cvρ
∂T

∂t
+ Cvρu j

∂T

∂x j
+ p

∂u j

∂x j
+ ∂q j

∂x j
+ τi j

∂ui

∂x j
= 0, (9)

where Cv = 3
2 R is the specific-heat capacity at constant vol-

ume for a monatomic gas, p = 1
3

∫
f (ck − uk )2d �c is the

pressure, and R = kB/m is the gas constant. However, τi j and
qi are unknowns in these equations, except at equilibrium.
Equations of τi j and qi can be obtained by taking the moments
of the Boltzmann transport equation; however, these equa-
tions also require higher-order moment terms, i.e., moments
of f where the integrand has higher powers of the components
of �c. Similarly, the higher-moment equations require even
higher-order moment terms; thus, an infinite set of coupled
moment equations are needed, raising a closure problem. A
common method to overcome this issue is to deduce a form
for f . Two methods of deduction are discussed here: the
NSF equation (using a Chapman-Enskog expansion for f )
and Grad’s 13-moment equation (using a Hermite polynomial
expansion for f ).

1. Navier-Stokes-Fourier equation

In the continuum limit, a first-order deviation from the
equilibrium distribution function is sufficient to describe
the development of flow in rarefied regimes. The NSF
equation can be obtained by using the Chapman-Enskog ex-
pansion, in which f is expanded, as shown by [21]

f = f0(1 + Kn f1). (10)

On substituting this equation in the BGK-Boltzmann transport
equation, neglecting terms of O(Kn2), and manipulating using
Eqs. (7)–(9), it is possible to show that

f = f0

(
1 − 1

ν

[
ĉi

(
ĉ2

k

2RT
− 5

2

)
∂

∂xi
(lnT ) + ĉ<iĉ j>

RT

∂ui

∂x j

])
,

(11)

where ĉi = ci − ui is the peculiar velocity of the particles and
ĉ<iĉ j> = (ĉiĉ j + ĉ j ĉi )/2 − 1

3 ĉ2
i δi j is the traceless symmetric

tensor of the product of peculiar velocities. On substituting
Eq. (11) into Eqs. (5) and (6), we get that

τi j,NSF = − p

ν

[(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
δi j

∂uk

∂xk

]
, (12)

qi,NSF = −5Rp

2ν

∂T

∂xi
, (13)

which have a similar form to the traditional NSF equa-
tion [23],

τi j,NSF = −μ

[(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
δi j

∂uk

∂xk

]
, (14)

qi,NSF = −κ
∂T

∂xi
. (15)

Comparison of the above equations gives that μ = p/ν and
κ = 5

2 (Rp/ν), leading to a Prandtl number Pr = μCp/κ = 1,
where the specific heat at constant pressure Cp = 5R/2 for
monatomic gas. Here μ is the dynamic viscosity, ν is the
collision frequency, and κ is the thermal conductivity. For
continuum flows, algebraic constitutive relationships for shear
and heat flux are sufficient to obtain momentum and thermal

transport. Further deviation from equilibrium needs to account
for history and other higher-order effects.

2. Grad’s 13-moment equations

In Grad’s 13-moment equations, the transport equations for
shear and heat flux are considered; thus, they are valid at high
degrees of rarefaction. In order to close Grad’s 13-moment
equations, the distribution function is assumed to have the
form [14]

f = f0
(
λ0 + λ0

i ĉi + λ1ĉ2
k + λ0

i j ĉ<iĉ j> + λ1
i ĉ2

k ĉi
)
, (16)

where λ
β
··· are 13 unknown coefficients which are obtained by

taking the moments given in Eqs. (4)–(6). The final form of f
is then obtained as

f = f0

(
1 + τi j

2p

ĉ<iĉ j>

RT
+ 2

5

q j

pRT
ĉ j

(
ĉ2

k

2RT
− 5

2

))
. (17)

In Grad’s 13-moment equations, unlike the NSF equation dis-
cussed previously, the moment equations governing τi j and
qi are also evaluated from the BGK-Boltzmann equation. The
higher-order moments and the moments of the collision op-
erator are then calculated using Eq. (17). The final form of
Grad’s 13-moment equations for τi j and qi are [14]

Dτi j

Dt
+2

5

(
∂qi

∂x j
+ ∂q j

∂xi

)
− 4

15
δi j

∂qk

∂xk
+

(
τki

∂u j

∂xk
+ τk j

∂ui

∂xk

)

−2

3
δi jτkl

∂ul

∂xk
+ τi j

∂uk

∂xk
+ p

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2p

3
δi j

∂uk

∂xk

= − p

μ
τi j,

(18)

Dqi

Dt
+ 5R

2
p
∂T

∂xi
+ 5R

2
τi j

∂T

∂x j
− τi jRT

∂lnρ

∂x j
− τi j

ρ

∂τ jk

∂xk

+RT
∂τi j

∂x j
+ 7

5
qi

∂u j

∂x j
+ 7

5
q j

∂ui

∂x j
+ 2

5
q j

u j

∂xi
= −2

3

p

μ
qi,

(19)

where D/Dt = ∂/∂t + uk∂/∂xk . Struchtrup [24,25] showed
that Grad’s 13-moment equation is accurate up to O(Kn2)
for the BGK-Boltzmann equation. On further increasing the
Knudsen number, Grad’s 13-moment equation is also invalid.

B. Large departure from equilibrium

At high rarefaction, the distribution function is unrelated to
the equilibrium distribution function and forms for the distri-
bution functions, such as those shown in Eqs. (10) and (16),
would not work. Moreover, the BGK-Boltzmann transport
equation is not valid for significant deviations from equilib-
rium. Various numerical methods to simulate rarefied flows
have been proposed, such as the discrete-velocity method
(DVM) [26,27] or direct simulation Monte Carlo (DSMC)
method [28]. The DSMC method is a stochastic method to
solve the particle distribution function, which becomes com-
putationally expensive when approaching the continuum due
to the increase in the number of simulated particles and re-
duction in the mesh size. The DVM is a deterministic method
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for the BGK-Boltzmann equation in which the advection
and the collision terms are decoupled and the particle dis-
tribution function is discretized in the velocity space. The
decoupling restricts the time step to be less than the molecular
timescale, making it computationally expensive in the con-
tinuum regime. A variation of the DVM method, known as
the unified gas-kinetic scheme [20,29], is used in the present
work.

The UGKS is a finite-volume method that numerically
solves the BGK-Boltzmann equation using an analytical
integral solution given by Prendergast and Xu [30]. As
mentioned earlier, in the UGKS, the particle distribution func-
tion is discretized in the velocity space. For simplicity, the
one-dimensional UGKS is explained here. In the jth discrete-
velocity space cell, the particle velocity c ranges from ( j −
1/2)�c to ( j + 1/2)�c. The particle distribution function in
the cell, having physical space index i and velocity space
index j at time step n, is represented as the cell averaged value

f (xi, c j, t n) = f n
i, j = 1

�c�x

∫ xi−1/2

xi−1/2

∫ c j+1/2

c j−1/2

f (x, c, t n)dc dx,

(20)

where f (x, c, t n) is the continuous particle distribution at time
t n, c j±1/2 = ( j ± 1/2)�c, and xi±1/2 = (i ± 1/2)�x. Thus,
the particle distribution function is decomposed into many
separate discrete distribution functions, representing the dis-
tribution function at that particular particle velocity.

For nonequilibrium conditions, the particle distribution
does not follow the Gaussian distribution function given in
Eq. (3) and its explicit form cannot be known with certainty
in rarefied regimes. Thus the discrete form of the particle
distribution function enables accurate simulation of flows in
rarefied regimes. Moreover, the BGK collision operator does
not accurately capture collisions at highly rarefied conditions.
However, the evolution of each discrete distribution function
can be suitably described using the BGK-Boltzmann equa-
tion as it spans only a small region in the velocity space [6].
Thus an analytical solution for the BGK-Boltzmann equa-
tion obtained by Prendergast and Xu [30] can be used in
each discrete-velocity point. This solution has been used in a
category of BGK-Boltzmann based continuum solvers, known
as the gas-kinetic method (GKM) [31–34].

The UGKS can thus be thought of as an amalgamation
of both the GKM and DVM. It uses discretization in ve-
locity space, similar to the procedure in the DVM, and the
flux computation uses the analytical solution of the BGK-
Boltzmann equation mentioned above, identical to the GKM.
The use of the analytical solution allows time steps in the
UGKS to be calculated using the Courant-Friedrichs-Lewy
criterion (rather than the molecular timescales), reducing the
computational expense in simulating continuum flows. The
discretization in velocity space provides flexibility to the par-
ticle distribution functions, enabling high-fidelity simulation
in rarefied regimes.

In the UGKS, the BGK-Boltzmann transport equation is
integrated over the finite velocity and physical space volume
to obtain the discretized equation BGK-Boltzmann equation,

Lx

0 u)tanh (y)

uA

B C

D

Periodic Boundary

Ly
Zero Gradients

FIG. 1. Computational domain with initial velocity profile and
boundary conditions.

given as [29]

f n+1
i, j = f n

i, j + 1

�x

∫ t n+1

t n

(c j f̂i−1/2 − c j f̂i+1/2)dt

+ 1

�x

∫∫
ν( f0 − f )dx dt, (21)

where the distribution function at the cell interface is f̂ . The
cell interface particle distribution function is obtained from
the solution of Prendergast and Xu [30] and is given as

f̂ n
i+1/2, j = ν

∫ t n+1

t n

f0(xi+1/2 − c j (t − t ′), t ′, c j )e−(t−t ′ )νdt ′

+ e−(t−t n )ν f̃ (xi+1/2 − c j (t − t n), t n, c j ), (22)

where f̃ is the particle distribution function at t n. In the
present work, the data obtained from the UGKS are con-
sidered the true data, and the NSF and Grad’s 13-moment
equations are the models considered.

The UGKS method can be summarized by the following
four points.

(i) The particle distribution function is discretized in the
velocity space along with the physical space and time.

(ii) The BGK approximation is valid at each discrete-
velocity point.

(iii) As rarefaction increases, more discrete-velocity points
are needed for high-fidelity simulation.

(iv) The macroscopic variables are calculated from the
discrete particle distribution function using quadratures such
as the Gauss-Hermite or Newton-Cotes quadrature.

The present work simulates a two-dimensional mixing
layer to identify breakdown of the continuum hypothesis.
The interpolation of the particle distribution to the cell in-
terface uses a third-order weighted essentially nonoscillatory
scheme, described by Venugopal and Girimaji [35]. The
two-dimensional flow domain, initial velocity profile, and
boundary conditions are shown in Fig. 1. The parameters for
the present problem are the convective Mach number (Mac =
�u/2

√
γ RT ), Knudsen number (Kn = λ/δ), specific-heat ra-

tio (γ = 1.6667), and Prandtl number (Pr = 1). The Reynolds
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number Re is related to Mac and Kn as

Re = 16

5

Mac

Kn

√
γ

2π
. (23)

All the variables are nondimensionalized using the
freestream temperature T∞, freestream density ρ∞, most
probable speed c∞ = √

2RT∞, and initial vorticity thickness
δ0. The mean velocity is given by ũ(x, y) = 0.5(�u)tanh(y),
which is seeded with harmonic (kxδ0 = 0.628, wavelength
equal to half the domain length in the streamwise direc-
tion) and subharmonic (kxδ0 = 0.314, wavelength equal to the
domain length in the streamwise direction) solenoidal pertur-
bations [36,37].

The initial temperature distribution follows the Crocco-
Busemann relationship and the pressure is kept constant
throughout the domain. The initial densities of both the
freestreams are equal. The particle distribution function is
initialized as a Maxwellian distribution function. The grid size
for all the simulations is taken to be �x/δ0 = 0.156 25 and
�y/δ0 = 0.132 45, the refinement as reported in the litera-
ture [36]. The velocity space integrals are calculated using
the Gauss-Hermite quadrature with 28 discretized points in
the velocity space obtained by the method stated in [38]. The
time step is calculated for a Courant-Friedrichs-Lewy number
of 0.6 for all cases. The UGKS computations were validated
in our previous paper [39]. A grid and domain independence
study has been conducted for all the cases discussed here.

III. RESULTS

The UGKS simulations for compressible mixing layers are
performed for a parameter range Mac = 0.1–1.2 and initial
Knudsen number Kn0 = 0.01–1.0. The global and local de-
viations of the stress tensor and heat-flux vector from the
NSF constitutive equation is studied. The ability of Grad’s
13-moment equations to capture the variation of stress and
heat flux is also tested.

The deviations are compared for various values of Mac and
Kn of the mixing layer for the boundary and initial conditions
discussed in Sec. II. We first discuss in this section the velocity
and temperature distribution of the mixing layer for various
rarefaction and compressibility regimes.

A. Velocity and thermodynamic variable distribution

The streamwise direction x is homogeneous in the compu-
tational domain at high Knudsen number since the amplitude
of perturbation decays in these Knudsen number ranges, as
has been shown in [39]. The distribution of velocity, tem-
perature, and density as a function of transverse distance is
analyzed for sample cases of (a) low Mach number, (b) inter-
mediate Mach number, and (c) high Mach number.

Figures 2 and 3 show the instantaneous distribution at
t∗ = �ut/2δ0 = 10 of ux, uy, T , and ρ at x = Lx/2 along y
for Mac = 0.2, 0.8, and 1.2 at Kn0 = 1. The width of the mix-
ing layer (calculated using vorticity thickness δ = �u/ωmax,
where ωmax is the maximum vorticity in the flow domain) is
shown by the horizontal dashed lines, with different colors
representing the corresponding Mac cases. From Fig. 2(a) it
can be seen that for Mac = 0.2 (which is stable to Kelvin-

FIG. 2. Variation of (a) ux (x = Lx/2, y) and (b) uy(x = Lx/2, y)
with y for Mac = 0.2 (black), Mac = 0.8 (red), and Mac = 1.2 (blue)
at Kn0 = 1.0 and t∗ = 10. The flow variables are normalized by the
corresponding freestream values.

FIG. 3. Variation of (a) ρ(x = Lx/2, y) and (b) T (x = Lx/2, y)
for Mac = 0.2 (black), Mac = 0.8 (red), and Mac = 1.2 (blue) at
Kn0 = 1.0 and t∗ = 10. The flow variables are normalized by the
corresponding freestream values. The legend is the same as in Fig. 2.
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FIG. 4. Variation of (a) ux (x = Lx/2, y) and (b) uy(x = Lx/2, y)
along y for Kn0 = 0.01 (blue), Kn0 = 0.1 (red), and Kn0 = 1 (black)
for Mac = 0.2 and t∗ = 10. The flow variables are normalized by the
corresponding freestream values.

Helmholtz instability), only ux shows an appreciable variation
with y. High transverse velocity is seen in Fig. 2(b) for Mac =
0.8 and 1.2 at the edge of the mixing layer. The transverse
velocity diffuses as the mixing layer evolves in time. At high
Mach numbers, like the transverse velocity uy, significant
density and temperature gradients (Fig. 3) are also seen, which
are negligible at low Mach numbers. As mentioned earlier, the
dashed horizontal lines indicate the mixing layer thickness,
and as the Mach number increases, the mixing layer becomes
thinner. The fluid tends to move away from the mixing layer
center in the presence of transverse velocity. The fluid carried
by uy also creates a density gradient due to mass conservation,
as shown in Fig. 3(a). The density increases at the edge of the
mixing layer and decreases at the center of the mixing layer.
The stream velocity shows a sharp gradient at high Mach
number due to the slower growth rate of the mixing layer
compared to that at lower Mach number, as has been shown
in [39]. Significant variation in the flow variables combined
with the slower growth rate of the mixing layer thickness
at high Mach numbers leads to large gradients in these flow
variables.

A similar examination of the velocity, temperature, and
density distribution for various Kn0 is shown in Figs. 4 and 5
at Mac = 0.2 and in Figs. 6 and 7 at Mac = 1.2. All the
snapshots, as before, are taken at an instantaneous value of
t∗ = 10. In Fig. 4(a), for Kn = 0.01, it can be seen that
the peak value of ux is greater than the freestream velocity,
and in Fig. 4(b) there exists a nonzero transverse momen-
tum. The tripping of Kelvin-Helmholtz instability [39] is

FIG. 5. Variation of (a) ρ(x = Lx/2, y) and (b) T (x = Lx/2, y)
along y for Kn0 = 0.01 (blue), Kn0 = 0.1 (red), and Kn0 = 1 (black)
for Mac = 0.2 and t∗ = 10. The flow variables are normalized by the
corresponding freestream values. The legend is the same as in Fig. 4.

FIG. 6. Variation of (a) ux (x = Lx/2, y) and (b) uy(x = Lx/2, y)
along y for Kn0 = 0.01 (blue), Kn0 = 0.1 (red), and Kn0 = 1 (black)
for Mac = 1.2 and t∗ = 10. The flow variables are normalized by the
corresponding freestream values.
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FIG. 7. Variation of (a) ρ(x = Lx/2, y) and (b) T (x = Lx/2, y)
for Kn0 = 0.01 (blue), Kn0 = 0.1 (red), and Kn0 = 1 (black) for
Mac = 1.2 and t∗ = 10. The flow variables are normalized by the
corresponding freestream values. The legend is the same as in Fig. 6.

attributed to the generation of uy and ux. As Kn0 increases,
the flow stabilizes and uy becomes negligible. Also, note that
in Fig. 5 the perturbations in density and temperature profiles
are negligible for this low Mach number as the flow is nearly
incompressible. Another remarkable inference is the widening
of the mixing layer as Kn0 increases. At this low Mac as
in Fig. 4(b), it can be seen that at large Kn0 the transverse
velocity is minimal. This negligible transverse velocity is due
to the density being constant at low Mac, as seen in Fig. 5(a).
On applying constant density in the mass conservation equa-
tion (which remains unaffected by the noncontinuum), it is
shown that the transverse velocity should also be constant.
Since the transverse velocity is zero far away from the mixing
layer, the transverse velocity is zero throughout the mixing
layer. In Figs. 6 and 7, at Mac = 1.2, the compressibility
effects are evident in the velocity distributions. At low Kn0,
the wavelike nature of the perturbations is visible for all the
flow variables, as reported by Karimi and Girimaji [40]. These
perturbations are present well past the mixing layer width
(dashed line), indicating the action of velocity-pressure oscil-
lations beyond the mixed layer. The density and temperature
distribution shows variation near the centerline of the mixing
layer for all Kn0, indicating the effect of compressibility at
high Mac, which is negligible for low Mac, as shown in Fig. 5.

The contour distribution of transverse velocity uy shown
in Figs. 8 and 9 highlights the wavelike perturbations due
to compressibility. This wavelike nature is seen to weaken
with the increase in Kn0, ultimately becoming nonexistent at
Kn0 = 1.0, as seen in Fig. 9. Instead, at high Kn0, the mixing
layer width increases and shows spreading of the transverse

FIG. 8. Transverse velocity uy contour for Mac = 0.2 and t∗ =
10 for (a) Kn0 = 0.01, (b) Kn0 = 0.1, and (c) Kn0 = 1.

velocity. At low Mac, the Kelvin-Helmholtz instability at low
Kn0, shown in Fig. 8(a), disappears at high Kn0. The absence
of transverse velocity perturbations results from the stabiliza-
tion of the flow.

B. Comparison of the Boltzmann solution with Grad’s
13-moment equations

This section compares the distribution of stress and heat-
flux components from computational results with the NSF
equations (14) and (15) and Grad’s 13-moment equations (18)
and (19). The macroscopic quantities and their derivatives
are obtained from UGKS simulations of Eq. (2). The NSF
and Grad’s 13-moment equations are not solved separately.
Rather, the terms in Eqs. (14) and (15) and in Eqs. (18)
and (19) are obtained from the postprocessing of macro-
scopic field data from UGKS simulations. Grad’s 13-moment

FIG. 9. Transverse velocity uy contour for Mac = 1.2 and t∗ =
10 for (a) Kn0 = 0.01, (b) Kn0 = 0.1, and (c) Kn0 = 1.
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FIG. 10. Comparison of (a) τxy, (b) τxx , and (c) τyy obtained from
moments of the particle distribution function with the Navier-Stokes
and Grad’s 13-moment equations for Kn0 = 1, Mac = 1.2, and t∗ =
25.

equations are able to capture nonequilibrium effects much
better than the NSF constitutive equations. The NSF equa-
tion and Grad’s 13-moment equations can be obtained from
the BGK-Boltzmann equation by an appropriate expansion of
the particle distribution function, as discussed in Sec. II A.
While the NSF equation is accurate up to O(Kn), Grad’s
13-moment equations are accurate up to O(Kn2) [24,25].

Figure 10 shows the distribution of instantaneous stream-
wise averaged stresses τxy, τyy, and τxx at t∗ = 25 for Mac =
1.2 and Kn0 = 1.0. The stresses from the present UGKS
simulation are compared with continuum NSF and Grad’s 13-
moment equations. It can be seen that the maximum deviation
from the NSF equation occurs at the center of the mixing layer
for all three stresses, where the gradients in the velocity field
are maximum. The NSF equation overestimates the magni-
tude of the τxy, whereas Grad’s 13-moment equations provide
better agreement with the computational value. The NSF τyy

FIG. 11. Comparison of (a) qy and (b) qx obtained from moments
of the particle distribution function with the NSF and Grad’s 13-
moment equations for Kn0 = 1, Mac = 1.2, and t∗ = 25.

and τxx fail to capture the peaks at the center of the mix-
ing layer, while Grad’s 13-moment equation overshoots the
UGKS Boltzmann solution. Since Grad’s 13-moment equa-
tion makes corrections to the NSF equation, thus producing
better agreement with the computational results, it would be
a good model equation to analyze continuum breakdown and
kinetic effects.

The comparison of heat fluxes is shown in Fig. 11. The
deviation of the transverse heat flux qy between the three
models is marginal, with Grad’s 13-moment equation being
closer to the UGKS results. According to the NSF equation,
qx should be uniformly zero throughout the domain; how-
ever, UGKS simulations show nonzero qx. Grad’s 13-moment
equation properly captures this, although it slightly overshoots
the computational value, as shown in Fig. 11(b). Unlike the
stress components, where the maximum deviation is seen
at the center of the mixing layer, the maximum deviation
occurs away from the centerline towards the edge of the mix-
ing layer width for the heat-flux components. The nonzero
heat flux in the Grad’s 13-moment equation is obtained by
accounting for spatiotemporal variation of heat flux, stress
tensor, and thermodynamic and kinematic variables, allow-
ing Grad’s 13-moment equation to capture nonequilibrium
phenomenon better than the NSF equation. Comparison of
Grad’s 13-moment equation and UGKS simulation results
shows that Grad’s 13-moment equation captures the variation
of gas-kinetic stress and heat flux with reasonable accuracy.

C. Scaling of deviation of τxy and qy from NSF equations

The kinetic effect at continuum breakdown has been quan-
tified using Kn Mac by many early investigators [8,9]. At low
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Mac, however, this parameter is negligible and thus useless.
An alternative method provided by Lockerby et al. [15] looked
at the L2-norm of the deviation of the stress tensor and heat-
flux components. In this section the scaling of shear stress
and transverse heat flux with Knt = Kn0δ0/δ(t ) and Knt Mac

is investigated to identify a parameter to quantify the kinetic
effects.

In the preceding section it was seen that the peak deviations
in stress at the centerline and heat flux occur slightly away
from the centerline of the mixing layer. The scaling is done
by taking the peak deviations of τxy and qy, obtained from the
computational results from the NSF equation and normalizing
it at each instant of time. The normalization is done using the
order of magnitude analysis as

O(τxy) = O

(
μ

∂ux

∂y

)
= μ�u

δ
, (24)

O(qy) = O

(
κ

∂T

∂y

)
= μ�u2

δ
, (25)

where O(RT ) = �u2, O(ux ) = �u, O(y) = δ, and O(μ) =
O(κ/R) = μ [see the discussion pertaining to Eq. (15)].
Temperature is normalized using the Crocco-Busemann re-
lationship, which gives d2h/du2 = −1, where h = CpT is
enthalpy, for zero streamwise pressure gradient and Pr = 1
[41].

The deviations of τxy and qy are scaled as

�τxy = τxy,B − τxy,NS

μ�u/δ
, (26)

�qy = qy,B − qy,NS

μ�u2/δ
. (27)

The real distribution function for mixing layers at t∗ = 0 is
not known beforehand. The flow is assumed to be in local
equilibrium in the domain, which can be utilized to initialize
the particle distribution function. Thus, the Maxwellian equi-
librium distribution function is chosen to initialize the flow
field. It should be noted that due to the presence of gradients
in the flow field, this does not represent a state of global
equilibrium. Thus, the particle distribution function evolves
from this state. In the present computation, since the flow
field is initialized with the equilibrium distribution function,
τxy,B = 0 at t∗ = 0. Thus, the parameter �τxy would be equal
to unity at t∗ = 0 from Eqs. (24) and (26).

Figures 12(a) and 12(b) plot the maximum deviation of
normalized shear stress against Knt and Knt Mac, respectively.
As shown in Fig. 12(a), the deviation of shear stress from the
NSF constitutive equation increases with an increase in Knt ,
as well as with an increase in Mac. As Mac → 0, the deviation
of shear stress is nearly independent of Mac, as the red and
the black (bottom two) curves in Fig. 12(a) almost coincide.
However, as Mac increases, the deviation depends on Mac.
The deviation of shear stress at higher Mac follows MacKnt

scaling, as seen from Fig. 12(b), where the curves of the devia-
tions all cluster together. Intermediate values of Mac, given by
the green (Mac = 0.3), blue (Mac = 0.4), and brown curves
(Mac = 0.5), show neither the high-Mac nor the low-Mac

behavior, as can be seen in both Figs. 12(a) and 12(b). These
cases act as transitions between the low-Mac and the high-Mac

FIG. 12. Maximum deviation of the shear stress τxy,B from
the Navier-Stokes constitutive equation, τxy,NS, with (a) Knt and
(b) MacKnt for different values of Mac and Kn0 = 1.0.

scaling. The inference from Fig. 12 is that for τxy, there exist
three scalings, namely, at low Mac, �τxy ∼ Knt [Fig. 12(a)];
at high Mac, �τxy ∼ Knt Mac [Fig. 12(b)]; and at intermediate
Mac [Fig. 12(c)], which shows behavior intermediate to the
previous two scaling.

A similar inference can be obtained for the qy scaling from
Figs. 13(a) and 13(b). The magnitude of the deviation of qy

from continuum is one order lower than that of τxy. It should
be noted that �τxy and �qy in Figs. 12 and 13 are global
measures of the deviation of kinetic shear stress and transverse
heat flux from the NSF equation.

The physical interpretation of Knt Mac can be obtained by
rearranging the terms as follows:

MacKn = �u

2a

λ

δ
= λ/a

2δ/�u
. (28)

It can be seen from Eq. (28) that at large Mac, continuum
breakdown depends on the ratio of the microscopic timescale
(given by λ/a) to the macroscopic timescale (2δ/�u), unlike
Kn, which is the ratio of the length scales. It can be inferred
that while at low Mac the length scales are important, at high
Mac timescales play an important role in determining the
deviation of τxy and qy from the NSF equation.
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FIG. 13. Maximum deviation of the heat-flux vector qy,B from
the Navier-Stokes constitutive equation, qy,NS, with (a) Knt and
(b) MacKnt for different values of Mac and Kn0 = 1.0.

1. Local scaling for high-Mach-number flows

In the continuum regime, due to the elliptical nature of
the incompressible NSF equation, information about changes
in the flow field is instantaneously available throughout the
entire flow domain. However, at high Mach numbers, the NSF
equation becomes hyperbolic, such that only certain regions
in the flow field have information about changes in a partic-
ular point (zone of action). In contrast, the remaining regions
do not get that information (zone of silence). Moreover, the
Poisson equation is solved in incompressible solvers, which
requires information about the entire flow field, whereas only
local flow variables are needed in compressible solvers. This
indicates that a global scaling of deviation from the NSF
equation would be sufficient in the low-Mach-number limit,
whereas in the high-Mach-number limit a local scaling would
be better than the global scaling, as evident from Figs. 12
and 13 in the preceding section.

The objective of this section is to define the local equiva-
lents of �τxy , �qy , and Knt Mac, which are checked for scaling.
The local equivalent of the above variables are suggested as

�lτxy(y) = τxy,NSF − τxy,B

τxy,NSF
, (29)

�l qy(y) = qy,NSF − qy,B

qy,NSF
, (30)

Kng(y) = ∂

∂y

(
λux

a

)
, (31)

where λ = (μ/p)
√

πRT/2 [42,43]. The relationship between
the gradient Knudsen number Kng and Knt Mac is analogous
to the relationship between the convective Mach number Mac

FIG. 14. Plot of the local deviation of the shear stress �lτxy

against Kng for different Mac and Kn0 = 1 at (a) t∗ = 10 and (b) t∗ =
20.

and gradient Mach number Mag = (∂u/∂y)/ka (k is the wave
number of the perturbation considered), defined in continuum
compressible mixing layers [40,44]. A high value of Knt Mac

would correspond to a high value of the gradient Knudsen
number due to the large gradients of field variables generated
in the flow.

A comparison of Kng with KnGLL defined by Boyd
et al. [12] demonstrates the effectiveness of the present def-
inition. Boyd et al. [12] defined KnGLL = (λ/Q)|∇Q|, where
Q can be either temperature or density. The KnGLL is a special
case of Kng, as can be seen by expanding Eq. (31) as

Kng = ux

a

∂λ

∂y
+ λ

a

∂ux

∂y
− λux

a2

∂a

∂y
. (32)

By taking a = √
γ RT , the third term on the right-hand side

can be further simplified as

λux

a2

∂a

∂y
= λux√

γ R

1

T 3/2

∂T

∂y
. (33)

Equation (33) is of the form of KnGLL. In the case not account-
ing for the variations of ux and λ in space, Eq. (32) reduces to
the form of KnGLL.

From Eq. (32) it is evident that there are three scales which
play an essential role in determining the magnitude of the ki-
netic effects. These are based on the gradient of the mean-free
path, velocity, and temperature. The discussion that follows
correlates the quantities in Eqs. (29) and (30) with Kng and
KnGLL.

Figure 14 shows the variation of �lτxy(y) as a function
of Kng(y) at two representative instances t∗ = 10 and 20.
Since τxy,NSF = 0 outside the mixing layer, �lτxy would be
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FIG. 15. Plot of the local deviation of the transverse heat flux
�l qy against Kng for different Mac and Kn0 = 1 at (a) t∗ = 10 and
(b) t∗ = 20.

undefined; thus �lτxy and Kng are evaluated for y ∈ (−δ, δ).
It can be seen from Fig. 14 that as Kng increases, �lτxy also
increases. As Mac increases, the curves shift towards the right,
which implies that an increase in Mac leads to an increase
in Kng. For low values of Kng, �lτxy calculated for different
values of Mac follows different curves. However, at high Kng,
�lτxy is a function of Kng only. This is because the global
scaling with Knt Mac obtained only works at large values of
Mac, as was observed previously in Fig. 12, which would
correspond to high values of Kng.

Similarly, Fig. 15 shows the variation of �l qy with Kng

for t∗ = 10 and 20. The �l qy becomes undefined outside the
shear layer and at the center of the shear layer, where the tem-
perature peaks (∂T/∂y = 0). Thus, �l qy is only calculated for
|y| ∈ (0.1δ, δ). Conclusions similar to those regarding �lτxy

can also be drawn for �l qy. In short, as the deviations from
the NSF equation, represented as �lτxy and �l qy, increase,
the parameter Kng also increases.

Figures 16 and 17 show the variations of �lτxy(y) and
�l qy(y), respectively, against KnGLL at t∗ = 10. The KnGLL

can be computed by either substituting Q = T , shown in
Figs. 16(a) and 17(a), or by substituting Q = ρ, shown in
Figs. 16(b) and 17(b). It can be seen in both figures that neither
of the two methods to compute KnGLL shows any reasonable
scaling for �lτxy or �l qy. It is seen that as Mac increases,
the range of values covered by KnGLL, �lτxy and �l qy also
increases. The deviations from the NSF equation, namely,
�lτxy and �l qy, are nonmonotonic with KnGLL, unlike the
monotonically increasing behavior noted with Kng. Thus, it
is concluded that KnGLL is not a reliable parameter to identify

FIG. 16. Plot of the local deviation of the shear stress �lτxy

against KnGLL based on (a) temperature and (b) density for different
Mac at t∗ = 10.

continuum breakdown and to characterize the deviations from
the NSF equation.

In the present section it is observed that the local equiv-
alents of �τxy , �qy , and Knt Mac are able to accurately
characterize the local deviation from continuum. The gradient
Knudsen number, the local equivalent of Knt Mac, provides
a good scaling for the local deviation of shear stress and
transverse heat flux at high values.

D. Scaling of deviation of τyy, τxx, and qx from the NSF equation

In this section the scaling of the deviation of τyy, τxx, and
qx from the NSF equation with respect to Knt and Knt Mac

is studied. This is done to check whether all stress tensor
and heat-flux components scale comparably. Similar to the
preceding section, the peak deviation is considered for the
scaling. The normalization is done using the argument that

O(τyy) = O(τxx ) = O

(
μ

∂uy

∂y

)
= μ2

ρ∞δ2
. (34)

The scaling for the transverse velocity uy is obtained by us-
ing the boundary layer assumption (viscous and advective
forces balance each other) and the mass conservation equa-
tion, which gives O(uy) = μ/ρ∞δ.

The stress component τyy plays an important role in the de-
velopment of rarefied mixing layers by contributing to viscous
force in the y momentum (∂τyy/∂y) and viscous heating in the
energy equation [τyy(∂uy/∂y)]. The normalization of τyy and
τxx, given by �τyy and �τxx , respectively, is similar to Eq. (26)
with the denominator replaced by μ2/ρ∞δ2. Figure 18 shows
�τyy as a function of Knt and Knt Mac. Figure 18(a) shows
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FIG. 17. Plot of the local deviation of the transverse heat flux
�l qy against KnGLL based on (a) temperature and (b) density for
different Mac at t∗ = 10.

FIG. 18. Maximum deviation of the normal stress τyy,B from
the Navier-Stokes constitutive equation τyy,NS with (a) Knt and
(b) MacKnt for different values of Mac and Kn0 = 1.0.

FIG. 19. Maximum deviation of the normal stress τxx,B from
the Navier-Stokes constitutive equation τxx,NS with (a) Knt and
(b) MacKnt for different values of Mac and Kn0 = 1.0.

that �τyy increases as Mac increases and decreases as Knt

increases. The latter trend, which is different from what is
seen for �τxy , is due to the denominator of �τyy , i.e., μ2/ρ∞δ2,
approaching zero faster than the numerator, i.e., τyy,B − τyy,NS,
as Knt decreases. Figure 18(a) shows that at low Mac, �τyy de-
pends only on Knt , as can be seen by the proximity of the red
and black curves. From Fig. 18(b) it is inferred that the term
Knt Mac does not play an important role in �τyy ; instead, both
Knt and Mac individually contribute to this deviation. Thus, it
is deduced that τyy and τxx shows two modes of scaling, at low
Mac, where �τyy ∼ Knt [Fig. 18(a)], and at high Mac, where
�τyy ∼ f (Knt , Mac) [Fig. 18(b)]. Similar conclusions can be
drawn for �τxx , from Figs. 19(a) and 19(b). In Sec. III B it
was shown that, even though the NSF equation gives qx = 0,
a nonzero value of qx is obtained from computational results
and that Grad’s 13-moment equation is able to reproduce the
computational result better. In order to normalize the deviation
of qx from the NSF equation, a noncontinuum term in Grad’s
13-moment equation is chosen, namely, (τxy/ρν)(∂τyy/∂y),
and is normalized using the equation

�qx = qx,B − qx,NS

λμ3u∞/a∞ρ2∞δ4
. (35)

Here O(ν) = a∞/λ, where a∞ is the freestream speed of
sound, which is of the same order of magnitude as the molec-
ular speeds, u∞ = �u/2 is the freestream velocity, and λ is
the mean-free path of the medium. Figure 20(a) shows that,
similar to �τxx and �τyy , �qx decreases with an increase in
Knt but increases with Mac. Similar to �τyy and �τxx , as
Knt decreases, the denominator in �qx decrease faster in
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FIG. 20. Maximum deviation of the normal stress qx,B from
the Navier-Stokes constitutive equation qx,NS with (a) Knt and
(b) MacKnt for different values of Mac and Kn0 = 1.0.

comparison to the numerator; hence the value of �qx increases
with decrease in Knt .

It is inferred from the present section that the deviation of
τxx, τyy, and qx from the NSF equation shows characteristics
different from the deviation observed for τxy and qy.

E. Notion of effective viscosity in the rarefied regime

A study by Ou and Chen [43] on Couette flow in the
rarefied regime analyzed the effective viscosity and effective
thermal conductivity. However, they looked only at shear
stress and transverse heat flux in the study. The present sec-
tion shows that effective viscosity and conductivity would not
be a reliable approach to analyze rarefied regimes. Figure 21
shows the variation of normalized τxy,B against normalized
∂ux/∂y [Fig. 21(a)] and normalized qy,B against normalized
∂T/∂y [Fig. 21(b)] for Mac = 0.1, 0.5, and 1.2, with Kn0 =
1.0 over a range of time in the evolution of mixing layer.
These variables have been averaged in the streamwise direc-
tion as the flow is streamwise homogeneous. It can be seen
in Figs. 21(a) and 21(b) that there is a linear dependence
of ∂ux/∂y on τxy,B and ∂T/∂y on qy,B at low Mac; however,
there is a considerable spread in the data at high Mac. The
spread decreases with a decrease in Mac. The spread is caused
by kinetic effects discerned as the deviation from the NSF
equation in the rarefied regime, which has been shown to
be more at high Mac in Secs. III C and III D. In order to
elucidate the spread of data seen in Fig. 21, the effective
viscosity μeff is plotted against the gradient of streamwise
velocity and temperature. Figure 22 plots the normalized ef-
fective viscosity μeff/μ against ∂ux∂y [Fig. 22(a)] and ∂T/∂y
[Fig. 22(b)]. Effective viscosity can be calculated in two ways,

FIG. 21. Scatter plot of (a) normalized τxy,B against normalized
∂ux/∂y and (b) normalized qy,B against normalized ∂T/∂y for Mac =
0.1 (black), 0.5 (red), and 1.2 (green) for Kn0 = 1 at various times.

FIG. 22. Scatter plot of the normalized effective viscosity
(a) μeff,1/μ obtained from τxy and ∂ux/∂y against normalized ∂ux/∂y
and (b) μeff,2/μ obtained from qy and ∂T/∂y against normalized
∂T/∂y for Mac = 0.1 (black), 0.5 (red), and 1.2 (green) and Kn0 = 1
at various times.
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FIG. 23. Scatter plot of (a) normalized τxx,B against normal-
ized ∂uy/∂y and (b) normalized τyy,B against normalized ∂uy/∂y for
Mac = 0.1 (black), 0.5 (red), and 1.2 (green) and Kn0 = 1 at various
times.

by taking (i) the ratio of τxy to ∂ux/∂y, indicated as μeff,1, or
(ii) the ratio of qy to ∂T/∂y, indicated as μeff,2. The second
method gives effective conductivity κeff and since Pr = 1,
μeff,2 can be obtained from the relation μeff,2 = 2κeff/5R [14].
Figure 22 shows that for Mac = 0.1, μeff/μ ≈ 1 with only a
slight spread in its value (here μeff implies effective viscosity
calculated from both methods). However, as Mac increases,
the value of μeff/μ deviates from 1 and there is a consider-
able spread in the plot. The spread in the value of μeff,2/μ

in Fig. 22(b) is more than the spread of μeff,1/μ seen in
Fig. 22(a). This increase in the spread for Fig. 22(b) is due to
the larger deviation in qy from the NSF equation. Comparing
Figs. 14 and 15, it is evident that τxy has a smaller deviation
from the NSF equation compared to qy. Note that Eqs. (29)
and (30) can be also be written as �lτxy = 1 − μeff,1/μ

and �l qy = 1 − κeff/κ , respectively; thus a large deviation in
μeff,2/μ compared to μeff,1/μ is apparent. On changing the
x axis to Kng instead of gradients of streamwise velocity or
temperature, a better collapse in data can be obtained, which
was plotted earlier in Figs. 14 and 15.

Figure 23 shows the variation of normalized τxx,B

[Fig. 23(a)] and normalized τyy,B [Fig. 23(b)] against normal-
ized ∂uy/∂y for Mac = 0.1, 0.5, and 1.2, at Kn0 = 1.0 over
a range of time. It can also be seen in Figs. 23(a) and 23(b)
that ∂uy/∂y does not uniquely map to τxx,B and τyy,B, implying
that other variables play an important role in the calculation
of τxx,B and τyy,B, as given in Eq. (18). Indeed, Figs. 10(b)

and 10(c) show that τxx,NSF and τyy,NSF have a different profile
from τyy,B and τxx,B as y approaches the center of the mixing
layer. It is tempting to use the minimal spread of the data in
Figs. 21(a) and 21(b) to evaluate an effective viscosity and
thermal conductivity [43], but such an attempt is futile, as
can be seen from the scatter in Fig. 23. Further, an effective
conductivity cannot result in a nonzero value of streamwise
heat flux qx since the temperature gradient in the streamwise
direction is zero.

IV. CONCLUSION

Gas-kinetic (UGKS) simulations of rarefied compressible
mixing layers were performed to investigate continuum break-
down and the resulting effect on the flow physics. Momentum
and thermal transport were examined at various Knudsen
and Mach numbers. Most notably, at low Mach numbers,
the classical continuum Kelvin-Helmholtz instability was sta-
bilized with increasing Knudsen number due to significant
reduction in the transverse velocity. It is now well known
in the literature [40] that compressibility effects suppress the
Kelvin-Helmholtz instability in the continuum high-Mach-
number regime due to wavelike pressure-velocity interactions.
The wave behavior diminishes with increasing Knudsen num-
bers (at high Mach numbers). The transverse velocity remains
significant due to density variations. However, the flow re-
mains stable.

In low- and high-speed regimes, the gas-kinetic momentum
and thermal transport exhibit marked departures from NSF
values. In the low-Mach-number regime, the departure of
shear stress and transverse heat flux scales with Knt , whereas,
at high Mach number it follows Knt Mac. At intermediate
Mach number, this deviation scales independently with Knt

and Mac. In general, the deviation of normal stress and stream-
wise heat flux follows Knt and Mac independently at all Mach
numbers.

It was seen that the maximum deviation in the stress tensor
occurs at the center of the mixing layer, whereas the peak
departure of the heat-flux vector occurs away from it. A di-
mensionless parameter, the gradient Knudsen number Kng,
was identified, which characterizes the local departure in shear
and heat flux from NSF values. Grad’s 13-moment model was
shown to capture the qualitative aspects of the noncontinuum
effects quite well, even though marked quantitative differ-
ences remain. The use of effective viscosity and conductivity
as a method to study rarefied flow was tested. A linear relation
between ∂ux/∂y and ∂T/∂y with τxy,B and qy,B appears plau-
sible at low Mac numbers, but there is considerable spread in
data at high Mac. Further, the effective viscosity and conduc-
tivity paradigm was shown to be unsuitable for normal stress
and streamwise heat-flux components.

ACKNOWLEDGMENTS

We acknowledge the use of the computing resources at
HPCE, IIT Madras. The authors are grateful for financial
support from the government of India through SPARC Grant
No. P805.

065102-14



CONTINUUM BREAKDOWN IN COMPRESSIBLE MIXING … PHYSICAL REVIEW E 105, 065102 (2022)

[1] A. Rikanati, O. Sadot, G. Ben-Dor, D. Shvarts, T. Kuribayashi,
and K. Takayama, Shock-Wave Mach-Reflection Slip-Stream
Instability: A Secondary Small-Scale Turbulent Mixing Phe-
nomenon, Phys. Rev. Lett. 96, 174503 (2006).

[2] D. R. Chapman, Laminar mixing in compressible fluids, NACA
Technical notes, NACA-TN-1800 (1949).

[3] J.-L. Wu, Z.-H. Li, A.-P. Peng, X.-C. Pi, and Z.-H. Li, Numer-
ical study on rarefied unsteady jet flow expanding into vacuum
using the gas-kinetic unified algorithm, Comput. Fluids 155, 50
(2017).

[4] R. Kumar, E. V. Titov, D. A. Levin, N. E. Gimelshein, and
S. F. Gimelshein, Assessment of Bhatnagar-Gross-Krook ap-
proaches for near continuum regime nozzle flows, AIAA J. 48,
1531 (2010).

[5] S. F. Gimelshein, A. A. Alexeenko, and D. A. Levin, Modeling
of the interaction of a side jet with a rarefied atmosphere, J.
Spacecr. Rockets 39, 168 (2002).

[6] V. Venugopal, D. S. Praturi, and S. S. Girimaji, Non-equilibrium
thermal transport and entropy analyses in rarefied cavity flows,
J. Fluid Mech. 864, 995 (2019).

[7] H. Akhlaghi, E. Roohi, and S. Stefanov, Ballistic and collisional
flow contributions to anti-Fourier heat transfer in rarefied cavity
flow, Sci. Rep. 8, 13533 (2018).

[8] G. A. Bird, Breakdown of translational and rotational equilib-
rium in gaseous expansions, AIAA J. 8, 1998 (1970).

[9] H.-S. Tsien, Superaerodynamics, mechanics of rarefied gases,
J. Aeronaut. Sci. 13, 653 (1946).

[10] Y. Ben-Ami and A. Manela, The sound of a pulsating sphere in
a rarefied gas: Continuum breakdown at short length and time
scales, J. Fluid Mech. 871, 668 (2019).

[11] H. Struchtrup and M. Torrilhon, Regularization of Grad’s 13
moment equations: Derivation and linear analysis, Phys. Fluids
15, 2668 (2003).

[12] I. D. Boyd, G. Chen, and G. V. Candler, Predicting failure of
the continuum fluid equations in transitional hypersonic flows,
Phys. Fluids 7, 210 (1995).

[13] S. Tiwari, Coupling of the Boltzmann and Euler equations with
automatic domain decomposition, J. Comput. Phys. 144, 710
(1998).

[14] H. Struchtrup, Macroscopic Transport Equations for Rar-
efied Gas Flows: Approximation Methods in Kinetic Theory
(Springer, Berlin, 2005).

[15] D. A. Lockerby, J. M. Reese, and H. Struchtrup, Switching
criteria for hybrid rarefied gas flow solvers, Proc. R. Soc. A
465, 1581 (2009).

[16] Z. Wang, L. Bao, and B. Tong, Rarefaction criterion and non-
Fourier heat transfer in hypersonic rarefied flows, Phys. Fluids
22, 126103 (2010).

[17] N. Singh and T. E. Schwartzentruber, Heat flux correlation for
high-speed flow in the transitional regime, J. Fluid Mech. 792,
981 (2016).

[18] N. Singh and T. E. Schwartzentruber, Aerothermodynamic cor-
relations for high-speed flow, J. Fluid Mech. 821, 421 (2017).

[19] M. Macrossan, in Proceedings of the 25th International Sym-
posium on Rarefied Gas Dynamics, edited by M. S. Ivanov
and A. K. Rebrov (Siberian Branch of the Russian Academy
of Sciences, Novosibirsk, 2007), Vol. 1, pp. 759–764.

[20] J.-C. Huang, K. Xu, and P. Yu, A unified gas-kinetic
scheme for continuum and rarefied flows II: Multi-

dimensional cases, Commun. Comput. Phys. 12, 662
(2012).

[21] W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas
Dynamics (Wiley, New York, 1965).

[22] P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for colli-
sion processes in gases. I. Small amplitude processes in charged
and neutral one-component systems, Phys. Rev. 94, 511 (1954).

[23] P. K. Kundu and I. M. Cohen, Fluid Mechanics (Elsevier, Ams-
terdam, 2002).

[24] H. Struchtrup, Stable transport equations for rarefied gases at
high orders in the Knudsen number, Phys. Fluids 16, 3921
(2004).

[25] H. Struchtrup, Derivation of 13 moment equations for rarefied
gas flow to second order accuracy for arbitrary interaction po-
tentials, Multiscale Model. Simul. 3, 221 (2005).

[26] L. Mieussens, Discrete-velocity models and numerical schemes
for the Boltzmann-BGK equation in plane and axisymmetric
geometries, J. Comput. Phys. 162, 429 (2000).

[27] L. Mieussens, Discrete velocity model and implicit scheme
for the BGK equation of rarefied gas dynamics, Math. Models
Methods Appl. Sci. 10, 1121 (2000).

[28] G. A. Bird, Molecular Gas Dynamics and Direct Simulation of
Gas Flows (Clarendon, Oxford, 1994).

[29] K. Xu and J.-C. Huang, A unified gas-kinetic scheme for
continuum and rarefied flows, J. Comput. Phys. 229, 7747
(2010).

[30] K. H. Prendergast and K. Xu, Numerical hydrodynamics from
gas-kinetic theory, J. Comput. Phys. 109, 53 (1993).

[31] G. May, B. Srinivasan, and A. Jameson, An improved
gas-kinetic BGK finite-volume method for three-dimensional
transonic flow, J. Comput. Phys. 220, 856 (2007).

[32] K. Xu, M. Mao, and L. Tang, A multidimensional gas-kinetic
BGK scheme for hypersonic viscous flow, J. Comput. Phys.
203, 405 (2005).

[33] G. Kumar, S. S. Girimaji, and J. Kerimo, WENO-enhanced gas-
kinetic scheme for direct simulations of compressible transition
and turbulence, J. Comput. Phys. 234, 499 (2013).

[34] S. Arun, A. Sameen, B. Srinivasan, and S. S. Girimaji,
Scale-space energy density function transport equation for com-
pressible inhomogeneous turbulent flows, J. Fluid Mech. 920,
A31 (2021).

[35] V. Venugopal and S. S. Girimaji, Unified gas kinetic scheme
and direct simulation Monte Carlo computations of high-speed
lid-driven microcavity flows, Commun. Comput. Phys. 17, 1127
(2015).

[36] N. D. Sandham, The effect of compressibility on vortex pairing,
Phys. Fluids 6, 1063 (1994).

[37] S. Arun, A. Sameen, B. Srinivasan, and S. S. Girimaji,
Topology-based characterization of compressibility effects in
mixing layers, J. Fluid Mech. 874, 38 (2019).

[38] B. Shizgal, A Gaussian quadrature procedure for use in the
solution of the Boltzmann equation and related problems, J.
Comput. Phys. 41, 309 (1981).

[39] V. Mohan, A. Sameen, B. Srinivasan, and S. S. Girimaji, In-
fluence of Knudsen and Mach numbers on Kelvin-Helmholtz
instability, Phys. Rev. E 103, 053104 (2021).

[40] M. Karimi and S. S. Girimaji, Suppression mechanism of
Kelvin-Helmholtz instability in compressible fluid flows, Phys.
Rev. E 93, 041102(R) (2016).

065102-15

https://doi.org/10.1103/PhysRevLett.96.174503
https://doi.org/10.1016/j.compfluid.2016.12.021
https://doi.org/10.2514/1.J050208
https://doi.org/10.2514/2.3814
https://doi.org/10.1017/jfm.2018.1028
https://doi.org/10.1038/s41598-018-31827-2
https://doi.org/10.2514/3.6037
https://doi.org/10.2514/8.11476
https://doi.org/10.1017/jfm.2019.329
https://doi.org/10.1063/1.1597472
https://doi.org/10.1063/1.868720
https://doi.org/10.1006/jcph.1998.6011
https://doi.org/10.1098/rspa.2008.0497
https://doi.org/10.1063/1.3525289
https://doi.org/10.1017/jfm.2016.118
https://doi.org/10.1017/jfm.2017.195
https://doi.org/10.4208/cicp.030511.220911a
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1063/1.1782751
https://doi.org/10.1137/040603115
https://doi.org/10.1006/jcph.2000.6548
https://doi.org/10.1142/S0218202500000562
https://doi.org/10.1016/j.jcp.2010.06.032
https://doi.org/10.1006/jcph.1993.1198
https://doi.org/10.1016/j.jcp.2006.05.027
https://doi.org/10.1016/j.jcp.2004.09.001
https://doi.org/10.1016/j.jcp.2012.10.005
https://doi.org/10.1017/jfm.2021.468
https://doi.org/10.4208/cicp.2014.m391
https://doi.org/10.1063/1.868339
https://doi.org/10.1017/jfm.2019.434
https://doi.org/10.1016/0021-9991(81)90099-1
https://doi.org/10.1103/PhysRevE.103.053104
https://doi.org/10.1103/PhysRevE.93.041102


MOHAN, SAMEEN, SRINIVASAN, AND GIRIMAJI PHYSICAL REVIEW E 105, 065102 (2022)

[41] F. M. White, Viscous Fluid Flow (McGraw-Hill, New York,
2006).

[42] D. A. Lockerby, J. M. Reese, and M. A. Gallis, Capturing the
Knudsen layer in continuum-fluid models of nonequilibrium
gas flows, AIAA J. 43, 1391 (2005).

[43] J. Ou and J. Chen, Nonlinear transport of rarefied Couette flows
from low speed to high speed, Phys. Fluids 32, 112021 (2020).

[44] M. Karimi and S. S. Girimaji, Influence of orientation on the
evolution of small perturbations in compressible shear layers
with inflection points, Phys. Rev. E 95, 033112 (2017).

065102-16

https://doi.org/10.2514/1.13530
https://doi.org/10.1063/5.0029680
https://doi.org/10.1103/PhysRevE.95.033112

