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Prestrain-induced contraction in one-dimensional random elastic chains
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Prestrained elastic networks arise in a number of biological and technological systems ranging from the
cytoskeleton of cells to tensegrity structures. Motivated by this observation, we here consider a minimal model in
one dimension to set the stage for understanding the response of such networks as a function of the prestrain. To
this end we consider a chain [one-dimensional (1D) network] of elastic springs upon which a random, zero mean,
finite variance prestrain is imposed. Numerical simulations and analytical predictions quantify the magnitude of
the contraction as a function of the variance of the prestrain, and show that the chain always shrinks. To test these
predictions, we vary the topology of the chain, consider more complex connectivity and show that our results are
relatively robust to these changes.
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I. INTRODUCTION

Mass-spring networks or elastic network models (ENMs)
have been studied extensively due to their potential to model
many interesting real-world phenomena. Earlier applications
of such networks have been in the simulation of deform-
ing bodies such as clothes and other fabriclike materials for
computer graphics [1–3]. Recently, soft deforming bodies
of a biological nature have been studied using ENMs with
applications ranging from the study of facial tissue [4] to
simulation of body organs in a surgical context [5]. Even
smaller microscale biological phenomena, such as the mem-
brane mechanics of cells, have benefited from the simplicity of
ENMs [6,7]. This is in part due to the efficiency and low com-
putational complexity of ENMs compared to other competing
simulation frameworks such as finite elements methods [8].

When it comes to the study of large molecular structures
such as proteins, coarse-grained ENMs have been shown to be
computationally more efficient than the more accurate atomic
models which do not scale as well with the number of atoms
or molecules to be simulated [9]. In such studies, the nodes
of the ENM act as single amino acid residues, while the
links model the interresidue potentials. Despite the obvious
simplifications introduced in their formulation, ENMs have
been shown to capture not only the folding and unfolding
of conformations, but also fluctuations around these shapes
[10–12]. The normal modes of vibration ENMs can even
describe the large-amplitude motions related to ATP binding
and hydrolysis in various molecular machines and motors
[13–15].

Inspired by protein machines, there is a growing trend to
design mechanical networks that perform specific prescribed

tasks [16]. Abstract networks are also at the basis of many
coordination algorithms in robotics, such as consensus and
formation control [17]. At the cellular scale, cytoskeleton is
also stabilized by tensile stresses carried by its filamentous
structure. Cell stiffness increases as a function of the level of
tensile stress: cytoskeleton prestress and architecture are the
primary causes of the cell elastic response [18,19].

With potential interest ranging from material sciences to
biophysical systems to robotics, in this paper we propose
a novel method that uses a random, zero-mean prestrain
to induce contractions in one-dimensional (1D) elastic net-
works. Prestrain is an important concept in many diverse
fields, from tissue and biofilm engineering [4,7] in the bi-
ological realm, to the design of elastomer-based artificial
muscle actuators [20–23] in the realm of robotics. By mod-
ulating the strength or the variance of the randomness in
prestrain, one can control the state of the system as a whole.
In swarm robotics, for instance, this could pave the way to
consensus algorithms that are coupled to an external random
field that do not require any explicit communication between
robots.

Starting from an intuitive explanation as to the nature of
this contraction within the proposed framework, we develop
an analytical theory to show how the strength of the noise
affects the final contraction. We also explore how the topology
of these contracting networks affect the final state by nu-
merically testing Watts-Strogatz networks [24] and scale-free
networks [25] of, respectively, varying rewiring probability
and degree exponent. It is found that the amount of contraction
depends mainly on the magnitude of the noise, and the effect
of the topology fades as the size of the network increases, i.e.,
in the thermodynamic limit.
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II. PROBLEM STATEMENT

We consider a network composed of point masses linked
by linear springs with a spring constant k = ζ

l0
, where l0

is the rest length of the spring and ζ can be regarded as
the mechanical stiffness of the springs (proportional to the
Young’s modulus of the material composing it). The positions,
xi, of N masses are initialized at a regular spacing over a line
segment of length [−5N, 5N]1, so that they are equidistant. In
the following, the connections among masses—corresponding
to springs in the ENM—are generated according to the Watts-
Strogatz method [24], unless otherwise stated. By doing so,
networks of increasing disorder or randomness can be created
by starting from a regular lattice (of N nodes) with a specified
number of links to each neighbor. Each link is then rewired
randomly with a set rewiring probability p.

Once the positions of the masses have been initialized and
the links between them have been assigned, we set the rest
length l0i j of the spring connecting masses j and i, such that
the system is at equilibrium, i.e., l0i j = |x j − xi|.

A prestrain is then applied to the system by changing the
spring rest length as l0i j �→ l̂0i j = l0i j (1 + δi j ), and l̂0i j refers
to the new rest length after perturbation. For each spring, the
prestrain term δi j is drawn from a random uniform distribution
over the range δ ∈ [−δmax, δmax]. The system is then allowed
to relax to its new equilibrium.

The dynamics of the system can be modeled by the set of
ordinary differential equations

ẍi =
∑

j

Ai jζ

(
1

l̂0i j

− 1

li j

)
(x j − xi ) − ηẋi − Fri j , (1)

where li j = |x j − xi| and A is the adjacency matrix of the
network, i.e., Ai j = Aji = 1 if there exists a spring between
masses i and j and Ai j = Aji = 0 otherwise. Dissipation has
been modeled by adding a viscous term with coefficient η.
The term Fri j models simple rigid sphere interaction, prevent-
ing the masses from swapping their relative ordering along
the segment as the system relaxes towards its equilibrium
state. For the simulation described below, this term is set to
Fri j = (x j − xi )−3. However, as the theoretical analysis will
show below, the exact form of this term does not matter, as
long as masses do not swap order during relaxation.

Given that links share the same stiffness ζ , i.e., have a
spring constant k that depends on the rest length, a prestrained
network tends to contract when subject to the prestrain de-
scribed above. This is because the zero mean perturbation of
rest length l0i j �→ l̂0i j = l0i j (1 + δi j ) creates a perturbed distri-
bution of spring constants

k̂i j = ζ

l0i j (1 + δi j )
(2)

that is biased. In other words, the uniform distribution of
prestrain P(δ) results in a distribution P(k) of spring con-
stants that is skewed more towards stronger and shorter

1The choice of 5 is arbitrary, however it is important for the length
of the system to scale linearly with N for meaningful comparisons of
networks of different sizes.

springs. Hence, springs with negative prestrain (δi j < 0) be-
come stiffer than springs with positive prestrain and the
overall network is expected to shrink.

III. EXPECTED SHRINKAGE

An exact analytical solution for the steady-state solution
of Eq. (1) is difficult to obtain due to the presence of the
nonlinear term Fri j . Therefore, here only the expected value
of the steady-state position xi is studied. This allows the
analysis of the mean outcome of the problem within given
bounds.

To this end, let us note at first that the problem can be
simplified by making use of the fact the nodes cannot swap
positions during motion thanks to the term Fri j . Let us then
define ẋ = vi and rewrite the model in Eq. (1) in matrix form
as

−̇→
V = ζ (L

−→
X − −→

B ) − η
−→
V , (3)

where each element of the vector
−→
B is Bi = ∑

j Ai j sign(x j −
xi ) and each element of the Laplacian operator matrix L is
defined as

Li j = A′
i j − k′δi j . (4)

Here, the following quantities are defined to simplify the
notation: A′

i j = Ai j

l0i j
and k′

i = ∑
j A′

i j .

Note that the vector
−→
B is a constant as long as the masses

keep their relative ordering, i.e., do not swap positions, during
relaxation. Furthermore, the repulsion term Fi j that models
the rigid sphere collisions in Eq. (1) has been omitted in
Eq. (3). This was done on the assumption that this repulsive
force is active only on a very short range, so that it does
not significantly alter the final state of the system. In other
words, we assumed that the effect of the rigid sphere collisions
can be adequately captured by having a fixed vector

−→
B in

the following analysis. This assumption will be validated a
posteriori by comparing the predictions from the analytical
theory with numerical tests.

It is important to note that the system is in equilibrium

(
−→
V 0,

−̇→
V 0) = (0, 0) before the prestrain is applied, therefore

the initial positions
−→
X0 must satisfy

L0
−→
X0 = −→

B , (5)

where L0 is the initial, unperturbed Laplacian matrix from
Eq. (4) formed from the initial rest lengths l0i j .

The expected final equilibrium position can be estimated

by setting
−̇→
V = −→

V = 0, so that the Eq. (3) reads

L(δ)
−→
Xf = −→

B , (6)

where Xf denotes the final positions of the masses.
Upon perturbation, the only term that is directly affected

by the prestrain δ is the Laplacian L. Hence, by taking the
expected value of both sides of Eq. (6), one obtains

〈L(δ)〉〈−→Xf 〉 = −→
B . (7)
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FIG. 1. Comparison between theoretical predictions and numer-
ical results. The solid black lines show histograms of x fi /x0i plotted
for all nodes of the network. For each of the values of maximum
noise δmax shown, a new network was generated and tested according
to the method outlined in the text. Each of the tested networks has
N = 2000 masses and have been created according to the Watts-
Strogratz strategy [24] with rewiring probability p = 0.7. The dotted
green line represents the expected shift per node, 1/ψ , against δmax.
The circle markers show the mean of each of the histograms. A top
view of the plot is shown in the inset.

By integrating each term over the noise distribution one
can then estimate the average equilibrium positions of the
N masses. To this end, let us consider at first 〈Li j〉 =∫ δmax

−δmax
Li j (δ)P(δ)dδ with P(δ) = 1

2δmax
, thus obtaining

〈Li j〉 = ψL0i j , (8)

where the shrinkage factor ψ is defined as

ψ = 1

2δmax
ln

(
1 + δmax

1 − δmax

)
. (9)

Combining Eq. (7) with Eq. (8) then yields

L0ψ〈−→Xf 〉 = −→
B . (10)

The expected relative shift of each mass can thus be found
by comparing Eq. (10) and Eq. (5) as

1

ψ
= 〈x fi〉

x0i

, (11)

where x0i and x fi are the ith elements of the initial position

vector
−→
X0 and expected final position vector 〈−→Xf 〉, respec-

tively.
Note that ψ is only a function of the maximum prestrain

δmax, and hence the expected shift of each mass, as described
by Eq. (11), is only affected by δmax. In fact, as it can be seen
from the plot in Fig. 1, numerical simulations of the process
described in the previous section match remarkably well with
the theoretical predictions of shrinkage even with relatively
small networks of size N = 2000. This also confirms our
assumption that the effect of the rigid sphere collisions is well
captured by considering the vector

−→
B as constant.

It should also be noted from Fig. 1 and Eq. (10) that
x fi
x0i

< 1 for the test points shown and therefore the networks
are shrinking on average. The average magnitude of the ENM

overall shrinkage can be measured via the radius of gyration

R2
g = 1

N

N∑
i=1

(xi − xm)2, (12)

where xm refers to the center of mass of the system. This can

be used to compute the relative shrinkage �R2
g = (R2

g f
−R2

g0
)

R2
g0

,

where R2
g0

and R2
g f

are, respectively, the initial and the final
radii of gyration. Thanks to Eq. (11), the expected value for
the final radius of gyration can be written in terms of the
shrinkage factor ψ as

〈R2
g f

〉 = 1

ψ2
Rg0 (13)

with the expected relative shrinkage then reading

〈�Rg2〉 = 1

ψ2
− 1. (14)

Note that, in the setting considered in this paper, the pre-
strained elastic networks always shrink on average. In fact,
given a maximum prestrain between 0% and 100% [i.e.,
δmax ∈ (0, 1)], ψ is always greater than one and hence, from
Eq. (14), 〈�Rg2〉 < 0. It should also be remarked that a
similar analysis can be performed using the distribution of
prestrained spring constants P(k) instead of the distribution
of prestrain P(δ) to obtain the same results.

IV. NUMERICAL TESTS

The analytical results described above were validated
against numerical simulations of the exact dynamics Eq. (1).
Such numerical simulations were carried out also to rigor-
ously assess the effect that other factors, such as network
size, topology and the average coordination number, might
have on the relative shrinkage 〈�Rg2〉. We define the average
coordination number as ρav = L

2N where L is the total number
of links in the network.

The results of tests performed on random networks, gener-
ated with rewiring probability p = 0.7, of sizes N = 500, 200,
and 4000 masses are shown in Fig. 2. For each of these sizes
we tested varying average coordination numbers.

As can be seen in Fig. 2, neither the size of the network nor
the link density have a major effect on the observed 〈�Rg2〉.
On the other hand, there is a minor finite size effect that can be
appreciated in Fig. 2 for large values of δmax. Such discrepancy
is due to scarcity of samples to accurately estimate average
values in Eq. (8) and vanishes as the number of masses in-
creases. The percentage deviation of the observed shrinkage
from the theoretical predictions is about 2% at δmax = 0.9
for N = 4000, while it is about 5% for networks of N = 500
masses.

Overall, these numerical results confirm the theoretical
prediction that the expected shrinkage is only influenced by
the magnitude of prestrain δmax. Detailed analysis of the sim-
ulation results indicate that, as ρav increases, the nodes in the
network tend to not swap, further corroborating the hypothesis
that the repulsion term Fr does not play a major role in the
phenomenon described in this paper.
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FIG. 2. (a) Variation of the relative shrinkage �Rg2 < 0 against
the maximum prestrain δmax for networks of N = 500 masses while
(b) and (c) show similar results of tests done for N = 2000 and
N = 4000, respectively. The dashed green line represents the expec-
tation calculated using Eq. (12) and the solid lines refer to numerical
simulations. Networks of different average coordination numbers,
ρav are shown by the different markers. Each marker shows the mean
of six trials with separate realisations of networks, generated accord-
ing to the Watts-Strogatz (rewiring probability p = 0.7). The error
bars represent the Standard Error. The inset shows the difference
between the expected relative shrinkage and the shrinkage from the
numerical simulations �Rg2 − 〈�Rg2〉.

A. Role of network topology

In order to investigate the effect of network topology on the
expected network shrinkage, several numerical simulations
were performed on different classes of networks. Firstly, the
effect of small worldliness on the overall network shrinkage
was studied via a series of tests on Watts-Strogatz networks
with varying rewiring probability p. For each value of p, 50

10-4 10-2 100
-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

FIG. 3. Distribution (mean and standard error) of relative shrink-
age 〈�Rg2〉 against the rewiring probability p of the generated
Watts-Strogatz networks. 50 trials were tested for each rewiring
probability by generating a new network of N = 1000 (shown in
blue or circle markers) and N = 2000 (shown in magenta or diamond
markers). The prestrain level was set to the maximum δmax = 0.9
and the dotted green line is the expectation given by the theoretical
analysis. The scatter of the data is shown underneath as circles or
diamonds of a paler color, to show the overall distribution. The red
points (first two sets of points) refer to tests done with rewiring p = 0
and have been added on to the same axis for comparison for both
N = 1000 (red left-hand side or circle markers) and N = 2000 (red
right-hand side or diamond markers).

tests were performed and then the overall shrinkage averaged
as shown in Fig. 3. Each network was generated starting
from a ring lattice of N nodes with ρav = 3 (which translates
to average node degree 〈k〉 = 6), and the links then rewired
randomly with a probability p while avoiding self loops and

2 2.5 3 3.5
-0.65

-0.6

-0.55

-0.5

FIG. 4. Distribution (mean and standard error) of relative shrink-
age 〈�Rg2〉 against the degree exponent γ of the generated scale-free
networks. 50 trials were tested for each γ by generating a new
realisation of a network of N = 2000 for each trail. The prestrain
strength was set to the maximum δmax = 0.9 and dashed green line is
the expectation given by the theory. N = 2000 is shown in magenta
(or diamond markers) and the results of N = 1000 is shown in blue
(or circle markers). The pale dots show the scatter of the data. Notice
that the imposed vertical scale differs from that employed in Fig. 3.
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duplicated links. From results displayed in Fig. 3 it can be seen
that the variance of the shrinkage decreases as the rewiring
p increases. The mean values are slightly higher (7%) than
the expected value given by the theory for low rewiring p
while this difference drops to 2% for large values of p. This
is compatible with the finite size effect that was observed in
Fig. 2.

Similar tests were carried out for scale-free networks to
understand whether structural properties of scale-free net-
works, such as the degree exponent, have an effect on the
observed shrinkage distribution. To create the test networks, a
random degree sequence was generated for N = 2000 nodes
with a given degree exponent γ . Vertices or node degree
is then assigned to the nodes from this degree sequence,
essentially creating stubs or half connections. The configura-
tion model with hidden parameters was then used to connect
the stubs avoiding self loops and multiple links in order to
create a connected network from the degree sequence [26].
Figure 4 shows that there is a small tendency for the shrink-
age to decrease as the degree exponent γ increases. This
again could be attributable to the small size of the networks
tested not being able to form large enough hubs to see the
effect of the exponent or the degree cutoff effect in such
networks.

The last class of networks tested are what we are calling
End-Hub networks. These are symmetric networks that have
equal number of hubs on either end of the 1D network, and
are designed to maximize the link distances. For example,
if a network of N = 8 nodes has two hubs with H = 1 hub
on either ends, then the links are such that each hub links
to half the nodes of network. This is sketched in Fig. 5(a)
for reference. Further tests were done to assess the effect of
rewiring these networks in a fashion similar to that done with
the Watts-Strogatz networks. Once again, theoretical predic-
tions match numerical results within 4%. The comparison
between the results shown in Fig. 5 b and those in Fig. 3 high-
lights that, while Watts-Strogatz ENMs have a mean 〈�Rg2〉
that starts above the theoretical predictions and gets closer
with increasing randomness, the opposite is true for End-Hub
networks. The reason for this is believed to be linked to the
initial length of the springs. The regular lattice starts from the
shortest possible lengths for any given number of links while
End-Hubs starts from the longest links. As the randomness
increases with the rewiring probability we see that both of
these trends converge to roughly the same value for p = 1.

V. CONCLUSIONS

We proposed and studied a framework for inducing con-
traction in 1D elastic networks using a random, zero-mean,
prestrain. We have analyzed the expected behavior of such
systems within the given bounds and shown that these net-
works will always contract with the applied prestrain and,
furthermore, that for large networks the amount of contraction
is only influenced by the magnitude of the prestrain. Through
numerical testing we have found the theoretical predictions for
the average shrinkage to be robust with networks as small as
N = 500 nodes. However, minor fluctuations were observed
around the expected value at high prestrain strengths. This can

1 2 3 4 5 6 7 8

(a)

(b)

10-4 10-3 10-2 10-1 100
-0.7

-0.65

-0.6

-0.55

FIG. 5. (a) Sketch of of an End-Hub network of size N = 8
with H = 1 hub on either side. (b) Distribution (mean and standard
error) of relative shrinkage 〈�Rg2〉 against the rewiring probability
of the generated End-Hub networks with H = 3 hubs per side of
the network. 35 trials were tested for each rewiring probability by
generating a new network of N = 1000 nodes (shown in blue or
circle markers) and 16 trials have been tested for N = 2000 (shown
in magenta or diamond markers). The prestrain strength was set to
δmax = 0.9 and dashed green line is the expectation given by the the-
ory. Pale color dots show the scatter of the data. The red points (first
two sets of points) refer to tests done with rewiring p = 0 and have
been added on to the same axis for comparison for both N = 1000
(red left-hand side or circle markers) and N = 2000 (red right-hand
side or diamond markers). Notice that the imposed vertical scale
differs from that employed in Figs. 3 and 4.

be attributed to finite size effects, as those fluctuations vanish
for larger networks of N = 2000 or higher.

In the small N region where fluctuations were significant,
we investigated the role played by the topology of the connect-
ing network by numerically testing Watts-Strogatz, scale-free,
and End-Hub networks. It was found that having order and
regularity in the links, as in the case of Watts-Strogatz and
End-Hubs with low rewiring probability p, can influence the
direction of the observed fluctuations. This can be attributed
to the average link length, being shorter (Watts-Strogatz) or
longer (End-Hubs) than if the network were completely ran-
dom. For large values of rewiring probability p all topologies
converge to similar values of shrinkage.

It should be remarked that, although network topology
plays a limited role in the 1D case analyzed here, it could have
a more prominent role in the behavior of networks in higher
dimensions and represents an interesting avenue for future
study. Indeed, extending the analysis to systems embedded in
higher spatial dimension (2D and 3D) is mandatory, to pave
the way for possible applications of the reported phenomenol-
ogy. Preliminary simulations performed in 2D suggest that the
contraction takes place beyond the specific setting analyzed
here, thus motivating further investigations along this avenue
of research.
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